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Abstract. Polycyclic codes are ideals in quotients of polynomial rings by a
principal ideal. Special cases are cyclic and constacyclic codes. A MacWilliams

relation between such a code and its annihilator ideal is derived. An infinite

family of binary self-dual codes that are also formally self-dual in the classical
sense is exhibited. We show that right polycyclic codes are left polycyclic codes

with different (explicit) associate vectors and characterize the case when a code

is both left and right polycyclic for the same associate polynomial. A similar
study is led for sequential codes.

1. Introduction

Polycyclic codes (formerly known as pseudo-cyclic [10]) over a finite field F are
defined as ideals in Rf = F [x]/(f) where f 6= 0 is arbitrary in F [x] and were studied
under that name in [7]. Thus the choice f = xn − 1 leads to cyclic codes of length
n. Similarly f = xn − a leads to constacyclic codes. It is a classical exercise to
show that polycyclic codes are shortened cyclic codes and conversely [10, p.241]. A
possible engineering application is burst-error correction [5]. Still polycyclic codes
never enjoyed the same popularity that cyclic codes have. One possible reason is
that, for a generic f, the dual of a polycyclic code is not polycyclic.

In this paper, we introduce an alternate form of dual that is the annihilator
of the ideal. Under the condition that f(0) is a unit we derive a MacWilliams
formula between the code and its annihilator. We construct binary self annihilating
codes that are also formally self-dual codes in the classical sense that their weight
enumerator is a fixed point of the MacWilliams transform. In particular we show
that shortened quadratic residue codes are formally self-dual. In the second part
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of the paper, we study the notion of one-sided polycylic codes and the same notion
for sequential codes, the dual class of polycylic codes.

The material is organized as follows. Section 2 collects the necessary notations
and definitions. Section 3 studies the duality in the sense of annihilators. In Section
4, infinite families of annihilator self-dual polycyclic codes that are not self-dual are
constructed. In Section 5, we show that right polycyclic codes with associate vector
c are left polycyclic for another polynomial ĉ. We characterize the case when c = ĉ.
In Section 6, we do a similar study for sequential codes which are the dual class of
polycyclic codes.

2. Notation and definitions

2.1. Ring theory. Define an inner product on Rf by the rule

〈g, h〉f = gh(0).

Where g, h ∈ Rf are represented by polynomials of degree less than the degree of
f . If C ≤ Rf is a polycyclic code, then we define its annihilator dual C0 by the
formula

C0 = {g ∈ Rf | ∀h ∈ C, gh(0) = 0}.
The name is justified by the following result. Recall that the annihilator Ann(I)

of an ideal I in a commutative ring R is Ann(I) = {x ∈ R| ∀y ∈ I, xy = 0}.

Proposition 1. If the form 〈., .〉f is non degenerate then, for all C ≤ Rf , we have
C0 = Ann(C).

Proof. By definition Ann(C) ⊆ C0. By hypothesis C = 〈g〉, with f a multiple of g.
This implies Ann(C) = 〈f/g〉, and both Ann(C) and C0 have dimension deg(g).
The result follows.

2.2. Formally self-dual codes. The weight enumerator of a code C ≤ Fn
q is

WC(x, y) =

n∑
i=0

Aix
n−iyi,

where Ai counts the number of codewords of weight i.
A binary code C is said to be formally self-dual (fsd) if

WC(x, y) = WC(
x+ y√

2
,
x− y√

2
).

Thus a self-dual code is fsd but not conversely. Still, invariant theory can be
applied to study the weight enumerators of fsd codes. For more background, we
refer to [1, 2, 4, 6].

3. Duality

We begin with an easy lemma.

Lemma 1. If f(0) 6= 0 then the bilinear form 〈., .〉f is non degenerate.

Proof. We must show that the orthogonal of Rf is zero. Let g be an element in that
space. Since g ⊥ 1 we see that g = xg′ for some g′. Observe that, by hypothesis, x
is invertible in Rf with inverse −(f(x) − f(0))(f(0))−1, and by induction that xi

is invertible for all i. Considering successively g ⊥ x−i for i = 0, . . . ,deg(f)− 1, we
obtain the result.
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We set up a Fourier Tranform on a function φ with domain Rf by the formula

φ̂(g) =
∑
h∈Rf

ψF (〈g, h〉f )φ(h),

where ψF denotes the standard additive character of F defined by ψ(x) = ωTr(x),
with ω a complex primitive root of unity of order p, the characteristic of F.

Lemma 2. Assume f(0) 6= 0. If C is an ideal of Rf , then, for any function φ with
domain Rf we have the summation formula∑

c∈C0

φ(c) =
1

|C|
∑
c∈C

φ̂(c).

Proof. We expand the right hand side of the summation formula as follows.∑
c∈C

φ̂(c) =
∑
d∈C0

φ(d)
∑
c∈C

ψF (〈c, d〉f ) +
∑
d/∈C0

φ(d)
∑
c∈C

ψF (〈c, d〉f )

Now, by Lemma 1 and the orthogonality of group characters, the second sum van-
ishes. The result follows.

We are ready for the main result of this section, an anlogue of the MacWilliams
formula.

Theorem 1. Assume f(0) 6= 0. If C is an ideal of Rf , we have

WC0(x, y) =
1

|C|
∑
c∈C

∑
d∈Rf

ψF (〈c, d〉f )xn−w(d)yw(d).

Proof. Follows by the preceding lemma applied to φ : d 7→ xn−w(d)yw(d).

4. Formally self-dual codes

In this section, we assume F = GF (2). We begin with a classic Lemma. Recall
that a code is homogeneous if sets of words of any fixed weight hold a 1-design. We
denote by C/i and C − i the shortened and punctured codes of C at coordinate i.

Lemma 3. If C is homogeneous, then for any coordinate i the weight enumerators
of its punctured and shortened codes are, respectively

WC−i =
∂WC

∂x
+
∂WC

∂y

and

WC/i =
∂WC

∂x
.

Proof. This is a restatement of Prange’s theorem [4, Th. 7.6.1] in terms of weight
enumerators.

Theorem 2. If C is an homogeneous code of distance > 1, obtained by puncturing
from a fsd homogeneous code of distance > 1, then any of its shortened codes is fsd.

Proof. Let E denote the homogeneous code from which C is obtained and let W =
WE , S = WC and T = WC/1. Since E is fsd we get

W (x, y) = W (
x+ y√

2
,
x− y√

2
).
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Applying Lemma 3 twice we get

S =
∂W

∂x
+
∂W

∂y
, T =

∂S

∂x
,

and, from the right hand side of the transformation law for W, eventually

T (x, y) =
∂2W

∂x2
(
x+ y√

2
,
x− y√

2
) +

∂2W

∂x∂y
(
x+ y√

2
,
x− y√

2
).

By substitution in that equality we obtain

T (
x+ y√

2
,
x− y√

2
) =

∂2WC

∂x2
(x, y) +

∂2WC

∂x∂y
(x, y).

Applying Lemma 3 again to the definition of W,S, T we identify the right hand
side of the last equality as T (x, y). The result follows.

There is a fsd code with distance 2, length 6, obtained for g = x3 + x + 1, the
generator polynomial of the [7, 4, 3] Hamming code. This example is generalized in
the two following corollaries.

Corollary 1. Let QR(p) denote the binary quadratic residue code attached to the
prime p. The shortening of QR(p) at any place is a self-annihilating code which is
formally self-dual.

Proof. The generator polynomial g(x) of QR(p) as a cyclic code of length p is also
the generator polynomial of its shortening modulo g2. Homogeneity properties come
from the fact that the automorphism group of the extended quadratic residue code
XQR(p) contains PSL(2, p) a group that is two-transitive. The fsd property of
XQR(p) is well known, since this code is either self-dual or isodual depending on
the congruence class of p modulo 4 [8]. The result follows then by the preceding
theorem applied to C = QR(p). The minimum distance of QR(p) is trivially > 1
by the BCH bound, and so is, as a consequence, that of XQR(p).

Corollary 2. Let RM(m−1
2 ,m) denote the binary Reed Muller code of order m−1

2
and length 2m ≥ 8. Let Cm denote this code punctured in one coordinate. The
shortening of Cm at any place is a self-annihilating code which is formally self-dual.

Proof. It is well-known that Reed-Muller codes are extended cyclic and, moreover,
that RM(m−1

2 ,m) is self-dual with automorphism group the affine group acting on

2m points, a 2-transitive group. The minimum distance of RM(m−1
2 ,m) is 2

m+1
2 > 2

for m ≥ 3. The result follows.

Remarks:

• The shortened cyclic codes constructed by the above theorem cannot be self-
dual; they contain odd weight vectors, being obtained by shortening and punc-
turing from an even weight code.

• There are shortened cyclic codes of rate one half that are not isodual. For
instance shortening the binary cyclic code of length 31 and generator polyno-
mial x15 + x7 + x3 + x+ 1 on its first coordinate yields a [30, 15, 5] code that
is neither self-dual nor isodual. In fact, it is not even formally self-dual, as it
contains 26 codewords of weight 5, and its dual only 6.

If C is a polycyclic code with C = C0 we say that C is a self-annihilator.
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Theorem 3. A polycyclic code 〈g〉 in F [x]/〈f〉 is a self-annihilator if and only if
f = g2.

Proof. If g2 = 0 then it is immediate that C ⊆ C0. Then we have that the deg(g) =
deg(f)

2 . Hence the dimension of C is precisely half the dimension of the ambient

space. Therefore C = C0.

A code over a field is said to be isodual if C and C⊥ are equivalent codes. It is
self-dual if C = C⊥.

Proposition 2. If C is self-annihilator and cyclic then C is isodual.

Proof. If C is cyclic then the generator polynomial of the annihilator and the gen-
erator polynomial of the dual are related by taking the reciprocal polynomial.

A polycyclic code over a field is said to be annihilating isodual if C and C0 are
equivalent codes.

Proposition 3. If C is a self-dual cyclic code then C is annihilating isodual.

Proof. The proof is identical to the proof of Proposition 2.

5. Polycyclic codes

In this section (Theorem 4) we provide a new proof of Theorem 2.4 in [7]. We
do so to serve our purpose of determining the non-existence of self-dual left-right
polycyclic codes (Theorem 6). That proof requires an explicit description of the
associate vector d when a right polycyclic code is viewed as left-polycyclic. Such
explicit description was not given in the original proof of Theorem 2.4 in [7].

We say that a linear code C over a field F is right polycyclic if there exists a
vector c = (c0, c1, . . . , cn−1) ∈ Fn such that for every (a0, a1, . . . , an−1) ∈ C we
have

(0, a0, a1, . . . , an−2) + an−1(c0, c1, . . . , cn−1) ∈ C.
Similarly, we say that a linear code C over a field F is left polycyclic if there exists
a vector c = (c0, c1, . . . , cn−1) ∈ Fn such that for every (a0, a1, . . . , an−1) ∈ C we
have

(a1, . . . , an−1, 0) + a0(c0, c1, . . . , cn−1) ∈ C.
We refer to c as an associate vector of C. Note that such a vector may be not
unique.

Associate c with the polynomial c(x) = c0+c1x+c2x
2+· · ·+cn−1xn−1. Let f(x) =

xn − c(x). It is shown in [7] that right polycyclic codes are ideals in F [x]/〈f(x)〉
with the usual correspondence between vectors and polynomials and left polycyclic
codes are ideals in F [x]/〈f(x)〉 with the reciprocal correspondence that associates
c with the polynomial c(x) = cn−1 + cn−2x+ cn−3x

2 + · · ·+ c0x
n−1. Hence both of

these types of codes are polycyclic codes in terms of our original definition.
It is shown in [7], that a right polycyclic code with associate vector c is held

invariant by right multiplication of the matrix D of the form:

(1) D =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
c0 c1 c2 . . . cn−1

 .
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It is also shown in [7], that a left polycyclic code with associate vector d is held
invariant by right multiplication of the matrix E of the form:

(2) E =


d0 d1 d2 . . . dn−1
1 0 0 . . . 0
0 1 0 . . . 0
...
0 0 . . . 1 0

 .

Lemma 4. Let D be a matrix with entries from the finite field F . If D is of
the form given in Equation (1) with c0 6= 0, then it is invertible, and its inverse

is D−1 =


d0 d1 d2 . . . dn−1
1 0 0 . . . 0
0 1 0 . . . 0
...
0 0 . . . 1 0

 where dj =
−cj+1

c0
for j < n − 1 and

dn−1 = 1
c0
.

Proof. Multiply the two matrices together and get

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 . . . 1 0

c0d0 + c1 c0d1 + c2 . . . c0dn−2 + cn−1 c0dn−1


.

Then by making the last row equal to (0, 0, . . . , 0, 1) we have the result.

Theorem 4. Let C be a code over the finite field F . If C is a right polycyclic
code for the polynomial c(x) = c0 + c1x + · · · + cn−1x

n−1 with c0 6= 0, then C is
a left polycyclic code for the polynomial d(x) = d0 + d1x + · · · + dn−1x

n−1 where

dj =
−cj+1

c0
for j < n− 1 and dn−1 = 1

c0
.

Proof. Let C be a right polycyclic code for the polynomial c(x) = c0 + c1x +
· · · + cn−1x

n−1 then CD = C, where D is the matrix given in Equation 1. Then
multiplying on the right byD−1 we have CDD−1 = CD−1 which implies C = CD−1

and then C is a left polycyclic code since by Lemma 4, D−1 is of the form for the
invariant of a right polycyclic code.

Remark: The proof of Theorem 4 requires an explicit description of the as-
sociate vector d when a right polycyclic code is viewed as left-polycyclic and such
an explicit description was not given in the original proof of Theorem 2.4 in [7]. It
follows from Lemma 4 that

(3) d(x) =
xn−1

c0
− (c(x)− c0)

c0
.

Namely, the first part gives dn−1 and the second part gives the rest.
We say that a code is left-right polycyclic, if it is both left polycyclic and right

polycyclic for the same polynomial c(x). The next result characterizes such codes
by their associate polynomial.
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Theorem 5. If C is left-right polycyclic for the polynomial c(x) then c(x) = xn+c0
1+c0x

where cn+1
0 = (−1)n+1.

Proof. In this case we have c(x) = d(x). Then by Equation 3, we have

c(x) =
xn−1

c0
− (c(x)− c0)

c0
c0xc(x) = xn − c(x) + c0

c(x) =
xn + c0
1 + c0x

.

We need this expression to be a polynomial, hence we need the denominator to
divide the numerator. The root of the denominator is −1c0 . We need this to also

be a root of the numerator. That is we need (−1c0 )n + c0 = 0. This simplifies to

(−1)n+1 = cn+1
0 . Then multiplying both sides by −1 gives the result.

Theorem 6. There are no self-dual left-right polycyclic codes.

Proof. If C = C⊥ then C and C⊥ are left polycyclic codes which implies C is
constacyclic by Theorem 3.5 in [7]. However, our polynomial c(x) for left-right
polycyclic codes is never the polynomial for constacyclic codes.

6. Sequential codes

Let C be a linear code in Fn, F a field. The code C is right sequential if there
is a function φ : Fn → F such that for every (a0, a1, . . . , an−1) ∈ C we have
that (a1, a2, . . . , an−1, b) ∈ C where b = φ((a0, a1, . . . , an−1)). The code C is left
sequential if there is a function ψ : Fn → F such that for every (a0, a1, . . . , an−1) ∈
C we have that (d, a0, a1, a2, . . . , an−2) ∈ C where d = ψ((a0, a1, . . . , an−1)). The
code C is bisequential if it is both right and left sequential. The functions φ and ψ
are, as a rule, linear functions. Each one of them is associated with any vector that
realizes them. This vector is known as the associate vector of the code.

It is shown in [7], that a right sequential code with associate vector c is held
invariant by right multiplication of the matrix DT of the form:

(4) DT =


0 0 0 . . . c0
1 0 0 . . . c1
0 1 0 . . . c2
...
0 0 . . . 1 cn−1

 .

It is also shown in [7], that a left sequential code with associate vector d is held
invariant by right multiplication of the matrix ET of the form:

(5) ET =


d0 1 0 . . . 0
d1 0 1 . . . 0
...

dn−2 0 0 . . . 1
dn−1 0 . . . 0

 .

Theorem 7. Let C be a code over the finite field F . If C is a right sequential
code for the polynomial c(x) = c0 + c1x + · · · + cn−1x

n−1 with c0 6= 0, then C is
a left sequential code for the polynomial d(x) = d0 + d1x + · · · + dn−1x

n−1 where

dj =
−cj+1

c0
for j < n− 1 and dn−1 = 1

c0
.
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Proof. If the code C is right sequential then we have that CDT = C where DT

is given in Equation 4. Then by multiplying on the right (DT )−1 we have C =
C(DT )−1.

We note that (DT )−1 = (D−1)T . Then the computation follows exactly as in
Theorem 4.

We say that a code is left-right sequential, if it is both left polycyclic and right
polycyclic for the same polynomial c(x).

Theorem 8. If C is left-right sequential for the polynomial c(x) then c(x) = xn+c0
1+c0x

where cn+1
0 = (−1)n+1.

Proof. Follows exactly as in Theorem 5.

Let C be a code with parity check matrix H. Then 0 = CHT . If C is right
sequential then 0 = CDTHT = C(HD)T . Therefore the dual of C is invariant by
multiplication by D on the right and hence is right polycyclic. Notice, however,
that they have the same associate vector. It is easy to see that the same is true for
left sequential and left polycyclic. Since it is the same associate vector we have the
following theorem.

Theorem 9. A code C over a field is left-right polycyclic if and only if C⊥ is
left-right sequential.

7. Conclusion and open problems

We have introduced the notion of the annihilator code of a polycyclic code which
behaves like the dual of a standard cyclic code in many ways. For example, we
derive MacWilliams relations which relate the weight enumerator of the code with
the weight enumerator of its annihilator. The class of self annihilator codes deserves
more attention. We have shown that right polycyclic codes are left polycyclic for
different associate polynomials and characterized the case when they are equal. We
conducted a similar study for sequential codes. Extension of these results to skew
polynomial rings warrants further study.
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