
COMMUTATIVELY CLOSED SETS IN RINGS1
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Abstract. Encompassing many standard notions such as Dedekind finite and
reversible rings we introduce and study a new property for subsets of a ring.

We give many examples and characterize some rings such as 2-primal rings
with the aid of this notion.

Introduction3

Motivated by standard notions like reversible rings and Dedekind finite rings,4

we say that a subset S of a ring R is commutatively closed if for any a, b ∈ R5

such that ab ∈ S, we also have ba ∈ S. In particular, the set {1} (resp. {0}) is6

commutatively closed if and only if R is a Dedekind finite (resp. reversible) ring.7

If Reg(R) = {a ∈ R | ∃x ∈ R such that a = axa} denotes the set of von Neumann8

regular elements, then Reg(R) − 1 is commutatively closed (cf. Example 1.1[5]).9

Many other examples of this kind are given showing the interesting nature of this10

concept. Every subset S of R is contained in a commutatively closed subset S,11

its commutative closure. A natural equivalence relation on R appears related to12

this definition. The equivalence classes are bigger than the usual similarity classes13

and give rise to a topology. These equivalence classes are analyzed in particular14

in the case of elements such as {0}, {1}, units, zero divisors, idempotents and15

regular elements. The set of nilpotent elements is always commutatively closed16

and, in the case of a matrix ring over a field, the nilpotent elements form exactly17

the commutative closure of {0} (cf. Proposition 3.7). We recall that an element c18

in a ring R is clean (resp. strongly clean) if there exist an idempotent e = e2 ∈ R19

and a unit u ∈ R (resp. with eu = ue) such that c = e + u. A ring is clean if all20

its elements are clean. A ring is 2-primal if its set of nilpotent elements coincides21

with the prime radical. The commutatively closed notion naturally appears in the22

context of 2-primal rings (cf. Proposition 3.8) or clean rings (cf. Proposition 3.2).23

The notion of a symmetric subset of a ring is introduced towards the end of the24

paper. The obvious connection of this notion with the one of commutatively closed25

subsets is given in Proposition 3.11. In this proposition it is also shown that a26

subset S is symmetric if any permutation of a factorisation of an element s ∈ S27

is still a factorisation of s. Throughout the text R will be a unital ring, U(R),28

Z(R) and N(R) will stand for the invertible, central and nilpotent elements of R,29

respectively. For an element a ∈ R we denote l(a) (resp. r(a) the set of left (resp.30

right) annihilators of a, i.e. l(a) = {x ∈ R | xa = 0} (resp. r(a) = {x ∈ R | ax = 0}).31
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1. Some definitions, examples and first properties32

The notion of a commutatively closed subset of a ring R defined in the introduc-33

tion will be the center of our concerns in this short note.34

Let us give some commented examples of commutatively closed subsets of a ring35

R.36

Examples 1.1. (1) A ring R is commutative if and only if any subset of R is37

commutatively closed.38

(2) The set {0} is commutatively closed if and only if R is reversible.39

(3) The set {1} is commutatively closed if and only if R is Dedekind finite.40

(4) The ring R is symmetric if and only if for every a, b, c ∈ R, abc = 0 implies41

that acb = 0. This can be translated into asking that for any a ∈ R,42

r(a) := {b ∈ R | ab = 0} is commutatively closed. We refer the reader to43

[4] for more information on this kind of rings.44

(5) U(R) − 1 is always commutatively closed. This is due to the well-known45

fact that, for any a, b ∈ R, 1 − ab ∈ U(R) if and only if 1 − ba ∈ U(R).46

More generally this is true for (von Neumann) regular elements. It is easy47

to check (and well-known) that if 1− ab = (1− ab)x(1− ab) then 1− ba =48

(1− ba)(1 + bxa)(1− ba). This shows that, 1− ab is regular if and only if49

1− ba is also regular. In other words, denoting the set of regular elements50

by Reg(R) = {r ∈ R | ∃x ∈ R such that r = rxr} we have that Reg(R)− 151

is always commutatively closed. A similar result is true for the set of unit52

regular elements and also for the set of strongly π-regular elements. For53

proofs of these facts we refer the reader to [8].54

(6) We consider Zl(R) = {a ∈ R | r(a) 6= 0} the set of left zero divisors. We55

define similarly Zr(R) the set of right zero divisors. Similarly as in the56

item above, we claim that Zr(R) + 1 (resp. Zl(R) + 1) is commutatively57

closed. We must show that for any x, y ∈ R, 1 − yx ∈ Zr(R) implies that58

1 − xy ∈ Zr(R). Let 0 6= r be such that r(1 − yx) = 0. Note that ry 6= 0.59

Since ry(1− xy) = r(1− yx)y = 0, we have that 1− xy ∈ Zr(R).60

(7) The set N(R) of nilpotent elements of a ring R is easily seen to be commu-61

tatively closed.62

(8) Recall that an element r ∈ R is strongly clean if there exist an invertible63

element u ∈ U(R) and an idempotent e2 = e ∈ R such that eu = ue and64

r = e+ u. It is proved in Theorem 2.5 of [4] that the set of strongly clean65

element is commutatively closed. In the same paper the author also shows66

that the set of Drazin (resp. almost, pseudo) invertible elements is also67

commutatively closed.68

(9) A ring is UJ (cf. [6]) if its set of units is exactly the set 1 + J(R) where69

J(R) is the Jacobson radical of R. If R is UJ then J(R) is commutatively70

closed.71

(10) If the center of a ring is commutatively closed then the ring is Dedekind72

finite. Indeed if a, b ∈ R are such that ab = 1 then ba is in the center of R73

and hence a = aba = ba2. This gives 1 = ab = ba2b = ba.74

(11) A pair (α, β) is a Jacobson pair if there exist a, b ∈ R such that α = 1− ab75

and β = 1 − ba. One can easily obtain that a subset S is commutatively76

closed if and only if for any Jacobson pair (α, β), if α ∈ 1 − S, then also77

β ∈ 1 − S. For the definition and properties of Jacobson pairs the reader78

may consult [8].79
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(12) Although we have ab ∈ J implies 1 + ab ∈ U , we don’t have that J(R) is80

always commutatively closed since R/J is not always reversible. Consider81

M2(D), with D a division ring, as a counter example.82

(13) Let us mention another source of commutatively closed sets. We say that83

a multiplicatively closed subset of a ring R is saturated if for any element84

s ∈ S, the factors of s are also in S. Any saturated multiplicatively closed85

set is also commutatively closed.86

Definition 1.2. For a subset S ⊆ R we define recursively a collection of subsets
Si ⊆ R, i ≥ 0, containing S as follows:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}.

We denote S =
⋃
i≥0 Si. This set is called the commutative closure of S. Clearly a87

set S is commutatively closed if and only if S = S.88

Let us notice that this definition makes sense for subsets of a semigroup and89

might be interesting for people working in this area.90

With the above notations we have the following lemma.91

Lemma 1.3. Let S be a non-empty subset of a ring R. The subset S constructed92

above has the following properties:93

(a) The chain Sn, n ≥ 0 is ascending.94

(b) For n,m ∈ N and S ⊆ R, we have (Sn)m = Sn+m. Moreover, if Sn = Sn+195

then Sn = Sn+k for any k ≥ 0 and Sn = S.96

Proof. (a) Since 1 ∈ R, we immediately get, for any i ∈ N, Si ⊆ Si+1.97

(b) The definition shows that Sn is in fact (. . . ((S1)1 . . . )1 where there are n sub-98

scripts 1. The additional statements follow. �99

Associating S to a subset S of R is a (finitary) closure operation. We state this100

more explicitly in the next proposition.101

Proposition 1.4. Let S be a non-empty subset of a ring R. The subset S has the102

following properties:103

(a) S is commutatively closed i.e. S = S.104

(b) S =
⋃
s∈S {s}.105

Proof. (a) We must show that if a = bc ∈ S then cb ∈ S. Since a ∈ S, there exists106

n ∈ N such that a = bc ∈ Sn, but then cb ∈ Sn+1 ⊆ S.107

The proof of Statement (b) is left to the reader. �108

Let us remark that for any subset A,B ⊆ R such that A ⊆ B we have that109

A ⊆ B. It might be worth pointing out that the notion of commutative closure110

leads to a topology on R as follows from the next result.111

Proposition 1.5. Let A be a subset of a ring R.112

(a) If A is commutatively closed then its complement R\A is also commutatively113

closed.114
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(b) A union (resp. an intersection) of commutatively closed sets is commuta-115

tively closed.116

(c) The collection of commutatively closed subsets defines a topology on the ring117

R. For this topology the open sets are also closed.118

(d) If Sλ ⊆ R with λ ∈ Λ are subsets of a ring R then119

• ∪Sλ = ∪Sλ.120

• ∩Sλ ⊆ ∩Sλ.121

Proof. (a) If x = ab ∈ R \ A and ba /∈ R \ A, then ba ∈ A and, since A is122

commutatively closed, x = ab ∈ A, a contradiction. This shows that (R\A)1 ⊆ R\A123

and hence R \A is commutatively closed.124

(b) Let Sλ be a collection of commutatively closed sets (λ ∈ Λ). If x ∈ ∪λ∈ΛSλ125

and x = ab for some a, b ∈ R, then, since each Sλ is commutatively closed, we get126

that ba ∈ ∪λ∈ΛSλ and hence (∪λ∈ΛSλ)1 ⊆ ∪λ∈ΛSλ. This implies that ∪λ∈ΛSλ is127

indeed commutatively closed. This shows that a union of commutatively closed sets128

is commutatively closed and the analogue statement for the intersection follows by129

using the item (a).130

(c) First notice that the empty set is commutatively closed (its complement is the131

ring R itself). The statement (c) is then a direct consequence of the items (a) and132

(b).133

(d) Statement (b) implies that ∪Sλ is closed and hence ∪Sλ ⊆ ∪Sλ. On the other134

hand, for any λ ∈ Λ, we have Sλ ⊆ ∪Sλ and this leads to ∪Sλ ⊆ ∪Sλ.135

Since Statement (b) implies that ∩Sλ is commutatively closed, it is clear that136

∩λSλ ⊆ ∩Sλ leads to the required inclusion. �137

Remark 1.6. If two elements a, b ∈ R are in the same class but are different then138

{a} ∩ {b} = ∅ but {a} ∩ {b} = {a}. This shows that in Proposition [1.5 (d)] the139

containment can be strict.140

Let us now look at the behavior of the commutatively closed notion with respect141

to morphisms of rings.142

Theorem 1.7. Let ϕ : R −→ S be a ring homomorphism, then143

(a) For any X ⊆ R, ϕ
(
X
)
⊆ ϕ(X).144

(b) If ϕ is a ring isomorphism, then for any X ⊆ R, ϕ
(
X
)

= ϕ(X)145

(c) If T ⊆ S is commutatively closed in S, then ϕ−1(T ) is closed in R.146

(d) If S is reversible, ker(ϕ) is commutatively closed.147

(e) If S is Dedekind finite then ϕ−1({1}) is commutatively closed.148

Proof. (a) It is enough to check that ϕ(X1) ⊆ ϕ(X)1. For x ∈ ϕ(X1) there exists149

y ∈ X1 such that x = ϕ(y). Hence there exists a, b ∈ R such that y = ab and150

ba ∈ X. We then have x = ϕ(y) = ϕ(a)ϕ(b) and ϕ(b)ϕ(a) = ϕ(ba) ∈ ϕ(X). This151

shows that x ∈ ϕ(X)1, as desired.152

(b) It is enough to prove that ϕ(X)1 ⊆ ϕ(X1). Now, if y ∈ ϕ(X)1, then there153

exist a, b ∈ S such that y = ab and ba ∈ ϕ(X). So there exists x ∈ X such that154

ba = ϕ(x). Since ϕ is onto we obtain a′, b′ ∈ R such that a = ϕ(a′) and b = ϕ(b′).155

This gives that ϕ(x) = ba = ϕ(b′a′) and hence x = b′a′ ∈ X since ϕ is injective.156

We thus conclude that a′b′ ∈ X1, so that y = ab = ϕ(a′b′) ∈ ϕ(X1).157

(c) Let a, b ∈ R be such that ab ∈ ϕ−1(T ) Then ϕ(a)ϕ(b) = ϕ(ab) ∈ T . Since T is158

commutatively closed, we get ϕ(b)ϕ(a) ∈ T and this yields ba ∈ ϕ−1(T ), as desired.159

(d) and (e) are immedaite consequences of (c). �160
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Remarks 1.8. (a) Let R and S be two rings endowed with the topology defined161

in Proposition 1.5 (c), then any ring morphism ϕ : R −→ S is continuous. This is162

a consequence of Statement (c) in Theorem 1.7.163

(b) Let us remark that Theorem 1.7 remains true if ϕ is a map from the ring R164

to the ring S that respects the products of the rings and is such that ϕ(1) = 1.165

Proposition 1.9. Let S be a subset of a ring R.166

(1) SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.167

(2) For any n ≥ 1 we have (1 + r(S))nS ∪ S(1 + l(S))n ⊆ Sn, where r(S) =168

{x ∈ R | Sx = 0} and l(S) = {x ∈ R | xS = 0}.169

Proof. (1) It is clear that if s ∈ S and u ∈ U(R), then s = u−1us and hence170

usu−1 ∈ S1 ⊆ S.171

(2) Since S(1+r(S)) ⊆ S we immediately get that (1+r(S))S ⊆ S1. This gives that172

(1+r(S))S(1+r(S)) ⊆ (1+r(S))S ⊆ S1 and hence we also have (1+r(S))2S ⊆ S2.173

Continuing this process we get that, for any n ≥ 1, (1 + r(S))nS ⊆ Sn. A similar174

argument leads to S(1 + l(S))n ⊆ Sn and combining these two inclusions leads to175

the desired conclusion. �176

Proposition 1.10. (1) For two idempotents e = e2 ∈ R and f = f2 ∈ R we177

have eR ∼= fR if and only if f ∈ {e}1.178

(2) For any a, x ∈ R for any i, n ∈ N \ {0}, if x ∈ {a}i then xn ∈ {an}i.179

(3) If a ∈ R is such that {a} is commutatively closed, then its left and right180

annihilators coincide, i.e. l(a) = r(a).181

(4) If {a, b} ⊆ R is commutatively closed then r(a) ∪ l(b) = r(b) ∪ l(a).182

Proof.183

(1) This is a direct consequence of Statement (1) in Proposition 21.20 in [9].184

(2) Fix n ∈ N\{0}. We prove the result by induction on the index i. Let x, c, d ∈ R185

be such that a = cd and x = dc ∈ {a}1. Then xn = (dc)n = d(cd)n−1c ∈ {(cd)n}1 =186

{an}1. This proves the statement (2) in case i = 1. Assume the statement holds187

for every integer i < l and let x ∈ {a}l. There exists u, v ∈ R such that x = uv188

and vu ∈ {a}l−1. The induction shows that (vu)n ∈ {an}l−1 and hence we have189

xn = (uv)n = u(vu)n−1v ∈ {(vu)n}1 ⊆ {{an}l−1}1 = {an}l190

(3) This is in fact a simple consequence of the statement (2) of Proposition 1.9,191

indeed we have for every x ∈ r(a), a = a(1 + x) hence a = (1 + x)a. This leads to192

r(a)a = {0} and hence r(a) ⊆ l(a). The reverse inclusion is obtained similarly.193

(4) Since {a, b} is commutatively closed, we have that for any x ∈ r(a), (1 + x)a ∈194

{a, b}. Hence either xa = 0, i.e. x ∈ l(a) or (1 + x)a = b and hence br(a) = 0,195

so that r(a) ⊆ r(b). This shows that r(a) ⊆ l(a) ∪ r(b). Similarly we also obtain196

l(b) ⊆ r(b) ∪ l(a) and the other two necessary inclusions. �197

Remark 1.11. In terms of reversible sets as defined in [1] the statement (3) of198

Proposition 1.10 says that every element a ∈ R such that {a} is commutatively199

closed is in fact a reversible element.200
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2. The closure of an element201

Definitions 2.1. An element a ∈ R is said to be commutatively closed when {a} =202

{a}. If a, b ∈ R we say that b is a factor of a if there exist elements c, d ∈ R such203

that a = cbd.204

For instance any central element whose factors are nonzerodivisors is commuta-205

tively closed. In the next lemmas we analyze the properties of the factorization of206

commutatively closed elements.207

Proposition 2.2. Let R be a unital ring and a ∈ R a commutatively closed element.208

Then:209

(1) The element a commutes with units.210

(2) If 2 is not a zero divisor in R then a commutes with idempotent elements.211

(3) The element a commutes with its factors.212

Proof. (1) This is clear since if u ∈ U(R) then a = u−1ua and hence, since a is213

closed, we also have a = uau−1. This gives au = ua.214

(2) This statement is due to the fact that, if e is an idempotent, (2e − 1)2 = 1 so215

that 2e − 1 is a unit. Statement (1) leads to the equality 2(ea − ae) = 0 and this216

gives the proof of (2).217

(3) Let b, c, d ∈ R be such that a = bcd. We then also have a = dbc = cdb and218

hence ca = c(dbc) = (cdb)c = ac. �219

Let us mention the following obvious consequence of Statement (3) in Corollary220

1.10.221

Corollary 2.3. Let a ∈ R be a commutatively closed element.222

(1) If a is nilpotent then RaR is a nilpotent ideal.223

(2) If a is not a right (or left) zero divisor then R is Dedekind finite.224

Proof. (1) This statement is an easy consequence of the fact that for a commuta-225

tively closed element a, l(a) = r(a) (cf. Proposition 1.10).226

Let us prove (2). Since a is commutatively closed it commutes with its factors and227

l(a) = r(a) (cf. loc.cit.). If x, y ∈ R are such that xy = 1 we have a = axy = xay =228

yxa. Since l(a) = 0, we get 1 = yx. �229

Remark 2.4. Let us observe that if R is a domain, and a commutes with its factors230

then {a} = {a}. This gives a partial converse of the statement (3) of Proposition231

2.2.232

While considering factorizations of an element it might be of some interest to233

consider only factorizations using a specific subset. This is the case in the following234

lemma. This will be used in the proof of Theorem 2.7.235

Lemma 2.5. Let S and T be multiplicatively closed subsets of R such that S∩T =236

{0} and T ⊆ r(S) ∩ l(S). If, for s ∈ S and t ∈ T , s + t is commutatively closed237

then s is commutatively closed in S and t is commutatively closed in T .238

Proof. Let us suppose that s+ t ∈ S + T is commutatively closed in R. If s = s1s2239

and t = t1t2 with s1, s2 ∈ S and t1, t2 ∈ T . Then s + t = (s1 + t1)(s2 + t2) and240
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hence we also have s+ t = (s2 + t2)(s1 + t1). Our hypothesis leads to s = s2s1 and241

t = t1t2, as required. �242

Let us examine the case of Dedekind finite rings separately.243

Proposition 2.6. (1) If R is Dedekind finite and a ∈ U(R), then {a} =244

{uau−1 | u ∈ U(R)}.245

(2) The set of units U(R) of a ring R is commutatively closed if and only if R246

is Dedekind finite.247

Proof. (1) If R is Dedekind finite and a ∈ U(R) then any factor of a will also be248

a unit. In particular, if a = bc then cb = b−1bcb = b−1ab. Denoting aU the set249

{xax−1 | x ∈ U(R)} we then get that {a}1 ⊆ aU ⊆ U . So that we have aU = {a}1.250

Hence {a}2 = (aU )1 = aU = {a}1. Lemma 1.3 (b) finishes the proof.251

(2) If U = U and a, b ∈ R are such that ab = 1 then ba = u ∈ U and a = (ab)a =252

a(ba) = au so that a(1−u) = 0 left multiplying by b we get u(1−u) = 0 and hence253

u = 1, as desired.254

The converse is easy and left to the reader. �255

In the next theorem we characterize the regular elements that are closed.256

Theorem 2.7. Let a = axa ∈ Reg(R) be a regular element of a ring R. Then a is257

commutatively closed if and only if the following conditions are satisfied:258

(1) e = ax = xa is a central idempotent.259

(2) a ∈ U(eRe) commutes with all units in eRe.260

(3) eRe is a Dedekind finite ring.261

(4) (1− e)R(1− e) is a reversible ring.262

In particular, a is strongly regular and the idempotent ax is central.263

Proof. Let us first show that the conditions are necessary. We thus suppose that264

a = axa is a regular commutatively closed element of R. Since x is a factor of a,265

Proposition 2.2 (3) gives that e = ax = xa. Since xR(1−ax)a = 0 Proposition 1.10266

(3) implies that axR(1− ax) = 0 and hence er = ere for every r ∈ R. Similarly we267

also get re = ere for every r ∈ R. This gives (1).268

Let us first remark that a = ex = xe ∈ eRe and that aexe = axe = e2 = e. This269

shows that a is a unit in eRe. Since a is also commutatively closed in eRe, we get,270

by Proposition 2.2, that a commutes with the units of eRe.271

Let us now show that eRe is Dedekind finite. Let u, v ∈ eRe be such that uv = e.272

Proposition 2.2 (3) implies a = uva = uav = vua. Thus e = ax = vuax = vue =273

vu, as required.274

The fact that (1−e)R(1−e) is a reversible ring is a direct consequence of Lemma275

2.5 obtained by considering a ∈ S = eRe and 0 ∈ T = (1− e)R(1− e).276

Let us now prove the converse. Since e is central, we can write R = eRe× (1−277

e)R(1− e). Suppose a = pq for some p, q ∈ R and write p = p1 +p2 and q = q1 + q2278

with p1, q1 ∈ eRe and p2, q2 ∈ (1 − e)R(1 − e). From a = pq we then have both279

a = p1q1 and p2q2 = 0. Let y ∈ eRe by the inverse of a ∈ U(eRe). We then280

have e = ay = p1q1y. The Dedekind finite assumption gives e = q1yp1. Since a281

commutes with the units of eRe, we have a = ea = q1yp1a = q1yap1 = q1ep1 =282

q1p1. Also, note that the reversible condition guarantees that q2p2 = 0. Thus,283

qp = (q1 + q2)(p1 + p2) = q1p1 + q2p2 = a. This shows that a is commutatively284

closed. �285
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Corollary 2.8. An idempotent e is commutatively closed if and only if e is central,286

eRe is Dedekind finite and (1− e)R(1− e) is reversible.287

Proposition 2.9. Let a ∈ R be a commutatively closed element. Then:288

(1) If a = 0 then R is reversible and hence Dedekind finite (i.e. {1} = {1}). In289

this case, R is abelian and we have, for any idempotent e2 = e ∈ R, that290

{e} = {e}.291

(2) If a is a right (or left) invertible element then a and all of its factors are292

units.293

Proof. (1) As is well-known, a reversible ring is also Dedekind finite and abelian.294

Indeed, suppose that R is reversible and let a, b ∈ R be such that ab = 1 then295

a(ba − 1) = 0 and hence also (ba − 1)a = 0. Multiplying on the right by b we get296

baab = ab = 1 i.e. ba = ab = 1, showing that R is Dedekind finite. To show that297

R is abelian consider e2 = e ∈ R and x any element in R, since R is reversible298

we have ex(1 − e) = 0 = (1 − e)xe so that ex = exe = xe. This shows that the299

idempotent e is central. Assume that e2 = e = ab then ab(1 − ab) = 0. Since R300

is reversible, we get 0 = b(1 − ab)a = ba − baba. So ba is an idempotent. Now we301

have ba = baba = b(ab)a = (ab)ba = ab(ba) = a(ba)b = abab = ab.302

(2) If ab = 1, right multiplying by a, gives aba = a and the fact that a is commu-303

tatively closed gives ba2 = a. Multiplying this equality on the right by b we get304

ba = 1, as desired. �305

Remarks 2.10. (a) In relation with Theorem 2.7, let us notice that there306

are strongly regular elements in a von Neumann regular ring that are not307

commutatively closed e.g. the zero element in a 2 × 2 matrix ring over a308

division ring.309

(b) In general the closure of the class of 1 is not contained in U(R). Indeed if310

R is not Dedekind finite, then there exist a, b ∈ R such that ab = 1 and311

ba 6= 1 but then ba is a nontrivial idempotent contained in {1}.312

Let us mention some more results in the form of a proposition:313

Proposition 2.11. (1) If a one sided ideal is commutatively closed then it is314

a two sided ideal. In particular, if the right (left) ideals are all closed then315

R is right (left) duo.316

(2) A two sided ideal I of a ring R is commutatively closed if and only if the317

quotient ring R/I is reversible.318

(3) A prime ideal is commutatively closed if and only if it is completely prime.319

(4) A ring is 2-primal if and only if every minimal prime ideal is commutatively320

closed.321

Proof. (1) If the right ideal I is commutatively closed then, since for any el-322

ement a ∈ I and r ∈ R we have ar ∈ I, we get that also ra ∈ I. The323

definition of a right (left) duo ring gives immediately the second statement.324

(2) This is clear.325

(3) If P is a prime ideal and is commutatively closed then for any a, b ∈ R such326

that ab ∈ P we get abR ⊆ P and hence also bRa ⊆ P which gives that327

either a ∈ P or b ∈ P .328
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(4) This is a direct consequence of the fact that a ring is 2-primal if and only329

if its minimal prime ideals are completely prime ([12]).330

�331

We now introduce an equivalence relation on the elements of any ring.332

Definitions 2.12. (1) We define a relation between elements in a ring R as
follows:

x ∼ y if and only if y ∈ {x}
(2) For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.333

We give, without proofs, the first easy observations related to these definitions334

in the form of a lemma.335

Lemma 2.13. (1) The relation ∼ is an equivalence relation, it is the transitive336

closure of ∼1.337

(2) For any a ∈ R and u ∈ U(R), uau−1 ∼1 a. More generally: if b, c ∈ R are338

such that bc = 1 then cab ∈ {a}1, for any a ∈ R.339

(3) If a ∈ R and b, c ∈ {a}, we put d(b, c) = n if n ∈ N is minimal such that340

b ∼n c. The map d defines a distance on {a}.341

Example 2.14. Consider the algebra k〈X1, X2, . . . , Xn, Y1, . . . , Yn〉/I where k is342

a field and I is the ideal generated by the elements Y1X1 −X2Y2, . . . , Yn−1Xn−1 −343

XnYn. As usual we write xi, yi for Xi + I, Yi + I. We work in x1y1 and we have344

that d(x1y1, ynxn) = n.345

Theorem 2.15. (1) For any n ≥ 1 and a, b ∈ R, we have a ∼n b if and only if346

there exist two sequences of elements in R x1, x2, . . . , xn and y1, y2, . . . , yn347

such that a = x1y1, y1x1 = x2y2, y2x2 = x3y3, . . . , ynxn = b.348

(2) If a ∼n b, then a− b is a sum of n additive commutators.349

(3) If a ∼n b then there exist x, y ∈ R such that ax = xb and ya = by.350

Moreover, for l ∈ N, we also have bn+l = yalx and an+l = xbly. In351

particular, bn = yx and an = xy.352

Proof. (1) We prove the assertion by induction on n ∈ N. If n = 1 the asser-353

tion is clear: b ∼1 a means that there exists a factorisation a = x1y1 of a such354

that b = y1x1. If n > 1, we have that b ∼n a so that, for some xn, yn ∈355

R, b = xnyn and b1 := ynxn ∼n−1 a. The induction hypothesis gives a se-356

quence x1, x2, . . . , xn−1, y1, y2, . . . yn−1 such that a = x1y1, y1x1 = x2y2, . . . , b1 =357

yn−1xn−1. This completely describes the desired sequences.358

(2) With the notations we just introduced in the proof of statement (1), we have:359

a = b+
∑n
i=1[xi, yi].360

(3) If b ∈ {a}n there exist sequences of elements x1, . . . , xn ∈ R and y1, . . . , yn ∈ R361

such that a = x1y1 and y1x1 = x2y2, y2x2 = x3y3 and in general for i = 1, . . . , n−1362

we have yixi = xi+1yi+1 and b = ynxn. Let us write x := x1 · · ·xn. We then363

compute ax = ax1x2 · · ·xn = x1(y1x1)x2 · · ·xn = x1x2(y2x2)x3 · · ·xn = · · · =364

x1x2 · · ·xn−1xn(ynxn) = xb. Similarly if we put y = yn · · · y1 we get ya = by. Let us365

compute, for l ∈ N, bn+l = (ynxn)n+l = yn(xnyn)n+l−1xn = yn(yn−1xn−1)n+l−1xn366

and hence we have bn+l = ynyn−1(xn−1yn−1)n+l−2xn−1xn. Continuing this proce-367

dure leads to bn+l = ynyn−1 . . . y1(x1y1)lx1x2 . . . xn. This immediately gives one of368

the the desired equalities. The other one is obtained similarly. �369
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The following is a nice and easy corollary of Theorem 2.15.370

Corollary 2.16. If a, b ∈ R are such that a ∼n b then an ∼1 b
n.371

Proof. This is a direct consequence of the fact that there exist x, y ∈ R such that372

an = xy and bn = yx (cf. statement (3) in Theorem 2.15 ). �373

Corollary 2.17. For idempotents e, f ∈ R we have eR ∼= fR if and only if e ∼ f374

Proof. Since e = e2 and f = f2 are idempotent elements Corollary 2.16 implies375

that e ∼ f if and only if e ∼1 f and thus the statement (1) in Proposition 1.10 also376

gives eR ∼= fR if and only if e ∼ f . �377

Example 2.18. Let k be a field and V = ⊕i≥0kei a vector space over k with378

basis {ei|i ∈ N}. In R = Endk(V ) we consider the identity map 1 ∈ R. We claim379

that {1}1 = {e = e2|dimk(Im(e)) = ∞}. Indeed, if f ∈ {1}1 then there exist380

p, q ∈ R such that f = pq and qp = 1 ,in particular f2 = pqpq = pq = f . Moreover381

since qp = 1, we must have that q is onto and p is injective. This implies that382

dimk(Im(f) =∞.383

On the other hand if f = f2 is such that dimIm(f) =∞ then we can decompose384

V as V = Im(f) ⊕ ker f and we let {v1, . . . , vn . . . } and {w1, w2, . . . } be bases for385

Im(f) and ker(f) respectively. We then have f(vi) = vi and f(wi) = 0. We define386

p, q ∈ R by the following: q(vi) = ei, q(wj) = 0 and p(ei) = vi. We easily conclude387

that f = pq and qp = 1, so we have that f ∈ {1}1, as desired.388

Definition 2.19. Let a ∈ Z(R) be a central element of R. An element x of a389

ring R is said to be a-periodic if there exist nonzero natural numbers n,m ∈ N,390

n 6= m, such that xn = axm. If a = 1 we just say that x is periodic. The 0-periodic391

elements are the nilpotent elements.392

The next lemma offers a quick proof of a characterization of periodic elements.393

There is an analogue more technical characterization for a-periodic elements, but394

this will not be needed.395

Lemma 2.20. An element x of a ring R is periodic if there exists s ∈ N such that396

xs is an idempotent.397

Proof. Let us suppose that x is periodic and let positive integers n and l be such398

that xn+l = xn. Let us write n = lq − r with 0 ≤ r < l. We then have (xn+r)2 =399

x(n+r)+lq = xn+lqxr = xn+r, as desired. The converse is clear. �400

Proposition 2.21. If a ∈ Z(R) and b ∼ a then b is a-periodic. The set of a-401

periodic elements is commutatively closed. The class of 1 (resp. {0}) is contained402

in the set of periodic (resp. nilpotent) elements.403

Proof. There exists n ∈ N ∪ {0} such that b ∼n a. According to Theorem 2.15,404

this implies that there exit sequences x1, x2, . . . , xn and y1, y2 . . . , yn such that,405

for l ∈ N, we have bn+l = yalx. Since a ∈ Z(R), this gives for l = 1 that406

bn+1 = yax = ayx = abn. We thus conclude that b is a-periodic. The proof of the407

other statements are left to the reader. �408
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3. The commutative closure for some particular rings409

In this last section we will examine the commutatively closed property for subsets410

of particular rings. We start with the ring that can be additively generated by their411

units i.e. every element of R is a sum of units. This includes matrix rings Mn(R)412

with n ≥ 2 and the group rings over a division ring. (cf. [13] for more information413

on rings generated by their units). These rings are also strongly related to clean414

rings (cf. Lemma 3.1). Let us recall that a ring is clean if its elements can be written415

as a sum of a unit and an idempotent. Before establishing connections with these416

rings and commutatively closed subsets, let us first state the following easy Lemma417

that is part of folklore (cf. [13])418

Lemma 3.1. A clean ring R such that 2 ∈ U(R) is generated by its units.419

Proof. First remark that any element a ∈ R can be written as a = e+ u = 2e−1
2 +420

1
2 + u with e2 = e and u ∈ U(R). Since (2e− 1)2 = 1 we have that any element of421

R is a sum of units. �422

Proposition 3.2. In a ring R generated by its units, the commutatively closed423

elements are central. In particular this holds in the case of a clean ring with 2 ∈424

U(R) or for any matrix ring Mn(S) with n ≥ 2 and S is any ring.425

Proof. If {a} = {a} we know that a commutes with units and, since any elements426

of R is a finite sum of units, a commutes with any element of R. �427

Remarks 3.3. (a) As a slight generalization of what is mentioned in Proposi-428

tion 3.2, let us observe that in a clean ring such that 2 is not a zero divisor,429

it is still true that closed elements are central.430

(b) It is easy to check that for a division ring, we always have SU = S.431

(c) If the ring R is generated by its units we might expect, as in the case432

of division rings, stronger relation between SU and S. For instance let433

R = K[X,X−1;σ] be the Laurent skew polynomial ring, where K is a434

field and σ is an automorphism of K. In such a ring the units are the435

nonzero monomials and this ring is generated by its units. It can be checked436

that in this case {X} = {X}U . On the other hand, considering the set437

S = {0} ⊂ R = M2(K), where K is a field, we remark that R is generated438

by its units, but SU = {0} 6= S = N(R) (cf. Proposition 3.7).439

As a concrete example we will decompose the ring M2(F2) into its commutatively440

closed subsets.441

Example 3.4. Let R = M2(F2). We describe the different classes:442

•
(

1 0
0 1

)
=

{(
1 0
0 1

)}
.443

•
(

1 1
0 1

)
=

{(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
.444

•
(

0 1
1 1

)
=

{(
0 1
1 1

)
,

(
1 1
1 0

)}
.445

•
(

0 0
0 0

)
=

{(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 1
1 1

)}
.446
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•
(

1 0
0 0

)
=

{(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 0
1 0

)
,

(
0 1
0 1

)}
.447

We remark that the class of zero consists exactly of nilpotent elements (this will be448

generalized in Proposition 3.7), the units elements are divided in three classes and449

the nontrivial idempotent matrices form a class.450

Let us mention the following easy proposition.451

Proposition 3.5. (1) Let R be a ring and S be a set. If ϕ : R −→ S is a map452

such that ϕ(ab) = ϕ(ba) then ϕ(a) = ϕ(b) whenever a ∼ b.453

(2) Let k be a field and let A,B ∈ R = Mn(k) be two square matrices such454

that A ∼ B, then the two matrices A and B have the same characteristic455

polynomials. In particular det(A) = det(B) and Tr(A) = Tr(B).456

Proof. (1) This is an easy consequence of the point (1) in Theorem 2.15.457

(2) This is now obvious since, denoting ξ(A) the characteristic polynomial of A,458

it is well-known that ξ(AB) = ξ(BA). �459

Remark 3.6. Let k a field and n ≥ 2, since the matrix ring Mn(k) is Dedekind460

finite, the identity matrix is commutatively closed. On the other hand any upper461

triangular matrix with 1 on the diagonal has the same characteristic polynomial462

viz.: (X − 1)n.463

Proposition 3.7. Let k be a commutative field and n ∈ N, the class of {0} in464

Mn(k) is the set of nilpotent matrices.465

Proof. We have seen that, in any ring, {0} ⊆ N(R) (cf. Proposition 2.21). Con-
versely, if A ∈Mn(k) is nilpotent there exsts an invertible matrix P and a strictly
upper triangular matrix U ∈Mn(k) such that PAP−1 = U . Since the class of an el-

ement is the same as the class of any of its conjugate, we conclude that {A} = {U}.
We will show that for any strictly upper triangular matrix U we have {U} = {0}.
Since U is nilpotent we only need to prove that U ∈ {0}. We may assume that
U 6= 0 and we denote the lines of U by L1, L2, . . . , Ln. In fact the last line Ln is
zero, and we define r ∈ {1, . . . , n− 1} to be minimal such that Li is zero for i > r.

We will prove that U ∈ {0} by induction on r. We write

U =

(
Ir,r 0
0 0

)
U and B := U

(
Ir,r 0
0 0

)
∈ {U}1,

where Ir,r denotes the identity matrix of size r × r.466

If r = 1, we get that B = 0 ∈Mn(k) and this yields the thesis.467

If r > 1, write B = (R1, . . . , Rn) where Ri is the ith row of B. The matrix B is468

easily seen to be upper triangular and such that the rows Rr, . . . , Rn are zero. This469

means that this matrix has at least one more zero row than the matrix U . The470

induction hypothesis gives that B ∈ {0}, but then U ∈ {B}1 ⊆ {0}, as required. �471

Proposition 3.8. (a) Let R be a ring such that {0}1 is contained in the center472

Z(R). Then R is 2-primal.473

(b) The prime radical P (R) of a ring R is commutatively closed if and only if474

R is 2-primal.475
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Proof. (a) We must show that every nilpotent element is in fact in the prime radical476

of R. So let n ∈ N and a ∈ R be such that an = 0. We then have anR = 0 and477

hence an−1Ra ⊆ Z(R) which in turns gives an−1RaRa = 0 and an−1(Ra)2R = 0.478

Applying again our hypothesis leads to an−2(Ra)3 ⊆ Z(R) and an−2(Ra)4 = 0.479

Continuing this process we finally get (Ra)2n = 0. This shows that RaR is a480

nilpotent ideal and hence a belongs to the prime radical, as desired.481

(b) If P (R) is commutatively closed then R/P (R) is semiprime and reversible.482

If an element a ∈ R/P (R) is nilpotent, say an = 0 with n ∈ N, the reversibility of483

R = R/P (R) implies that an−1Ra = 0 and continuing this process we finally get484

that (RaR)n = 0. Since R is semiprime, we conclude that a = 0. This shows that485

R/P (R) is reduced and hence P (R) = N(R), showing that R is 2-primal.486

Conversely, if R is 2-primal, then P (R) = N(R) and hence P (R) is commuta-487

tively closed, as desired. �488

Example 3.9. The converse of statement (a) of Proposition 3.8 is not true. Indeed489

if k is a commutative field, the ring R = k[x][t;σ]/(t2), where σ is the k-algebra490

map defined by σ(x) = 0, is easily seen to be 2-primal but xt + (t2) ∈ {0}1 and is491

not central.492

We have seen many instances of factorisation properties that are related to our493

commutatively closed sets. In the commutative case the order of factors appearing494

in a factorisation is irrelevant and in this sense looking at factorisations modulo495

commutatively closed classes generalizes the commutative case.496

Classically besides the reversible rings another notion is also studied: the sym-497

metric rings. This leads to the following definition.498

Definition 3.10. We say that a subset S ⊆ R is symmetric if for any a, b, c ∈ R499

we have that abc ∈ S implies that acb ∈ S. In particular, S = {0} is symmetric if500

and only if R is a symmetric ring.501

Since our rings all have unity, it is clear that a symmetric subset is commutatively502

closed. The next proposition generalizes classical facts obtained in the case when503

S = {0}. We write Sn for the symmetric group of permutations of a set of cardinal504

n.505

Proposition 3.11. Let S ⊆ R be a subset in a unital ring. The following are506

equivalent507

(1) S is symmetric.508

(2) For any a ∈ R, the set {x ∈ R | ax ∈ S} is commutatively closed.509

(3) For any n ∈ N and for any elements a1, . . . , an ∈ R and any π ∈ Sn,510

a1 · · · an ∈ S implies that aπ(1) · · · aπ(n) ∈ S.511

(4) For any n ∈ N and i ∈ {1, 2, . . . , n} and for any elements a1, . . . , an ∈ R,512

we have that a1 · · · an ∈ S implies that a1 · · · ai+1aiai+2 . . . an ∈ S.513

(5) For any a ∈ R, the set {x ∈ R | xa ∈ S} is commutatively closed.514

Proof. (1) ⇒ (2). This is a direct consequence of the definitions.515

(2)⇒(3). Since the transpositions generate Sn, we only have to show that a1 . . . an ∈516

S then for any 1 ≤ i < j ≤ n, a1 . . . ajai+1 . . . aj−1aiaj+1 . . . an ∈ S We write517

successively (when i = 1, we use the fact that S is also commutatively closed)518

(a1 . . . ai−1)(ajaj+1 . . . an)(aiai+1 . . . aj−1) ∈ S regrouping the factors this gives519
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(a1 . . . ai−1aj)(ai+1 . . . aj−1)(aj+1 . . . anai) ∈ S and hence regrouping again leads520

to a1 . . . ai−1ajai+1 . . . aj−1aiaj+1 . . . an ∈ S. This shows that the action of the521

transposition (i, j) keeps the words of S in S.522

(3) ⇒(4) This is clear.523

(4) ⇒(1) This is also clear since a1a2a3 ∈ S implies, by (4), that a1a3a2 ∈ S.524

(4)⇔(5). Since (2) is equivalent to (3) and the statement (3) is left right symmetric,525

we conclude that the left right symmetric statement of (2) is also equivalent to (4).526

The left right symmetric statement corresponding to (2) is obviously the statement527

(5). This concludes the proof. �528

As with the commutatively closed notion, we may construct for any subset S ⊆529

R, a sequence of subsets of R leading to the closure of S, denoted Ŝ, which is the530

smallest symmetric set containing S. We define S(1) to be the set of all elements531

of R obtained by permuting the factors of any factorisation of an element of S.532

We then repeat this procedure i.e. we define inductively S(n+1) = (S(n))(1). These533

subsets form an increasing sequence and we put Ŝ =
⋃
n S(n). Since 1 ∈ R, it is534

easy to check that for any subset S ⊆ R, we have S1 ⊆ S(1) and hence we always535

have S ⊆ Ŝ.536

One advantage of this construction is that it behaves nicely with respect to537

products:538

Proposition 3.12. Let a, b ∈ R then {̂a}{̂b} ⊆ {̂ab}539

Proof. It is enough to show that {̂a}(1){̂b}(1) ⊆ {̂ab}(1). Let x1x2 . . . xn ∈ {̂a}(1)540

and y1y2 . . . yl ∈ {̂b}(1), then there exist two permutations σ ∈ Sn and τ ∈ Sl such541

that a = xσ(1)xσ(2) . . . xσ(n) and b = yτ(1)yτ(2) . . . yτ(l). This gives a factorisation542

of ab and it is clear that u := x1x2 . . . xny1y2 . . . yl can be obtained by permuting543

this factorisation. This shows that u ∈ {ab}(1), as desired. �544

We also have an equivalence relation: a ≡ b ⇔ b ∈ {̂a}. We intend to ana-545

lyze further this equivalence relation and its connections with factorisations in a546

forthcoming paper.547
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