REMARKS ON THE JACOBSON RADICAL

ANDRÉ LEROY AND JERZY MATCZUK

Abstract

The aim of the paper is to investigate the set $\Delta(R)=:\{r \in R \mid r+U(R) \subseteq$ $U(R)\}$ of a ring R. This set is a ring closely related to the Jacobson radical of R. It is shown that $\Delta(R)$ is the largest Jacobson radical subring of R which is closed with respect to multiplication by units of R. The behavior of Δ under ring constructions is studied, some families of rings for which $\Delta(R)=J(R)$ are presented. Methods of constructing rings with $\Delta(R) \neq J(R)$ are also described.

Introduction

It is well-known that if r is an element of the Jacobson radical $J(R)$ of R, then $r+u \in$ $U(R)$ for every $u \in U(R)$, i.e.

$$
J(R) \subseteq \Delta(R)=:\{r \in R \mid r+U(R) \subseteq U(R)\}
$$

It was already observed in [5, Exercise 4.24] that the above inclusion can be strict and that equality holds in the case of rings of stable range 1 (cf. [5, Exercise 20.10B]).

The aim of this paper is to investigate the set $\Delta(R)$ in details. We offer various characterizations of $\Delta(R)$ and then study the behavior of the operator Δ under some standard ring constructions. We also extend the definition and properties of Δ to rings without unity.

We show, in Theorems 1.3 and 1.12 , that $\Delta(R)$ is the largest Jacobson radical subring of R which is closed with respect to multiplication by all units (quasi-invertible elements) of $R, \Delta(R)=J(T)$, where T is the subring of R generated by units of R, and the equality $\Delta(R)=J(R)$ holds if and only if $\Delta(R)$ is an ideal of R. As a consequence, we obtain that Δ is a closure operator, i.e. $\Delta(\Delta(R))=\Delta(R)$ and that $\Delta\left(M_{n}(R)\right)=J\left(M_{n}(R)\right)=M_{n}(J(R))$, for any ring R and $n \geq 2$. Some further instances of rings for which $\Delta(R)=J(R)$ are presented in Theorem 1.10. Various examples exhibiting the differences in the behavior of Δ and the Jacobson radical are given in Examples 1.16 (including more instances of rings where the inclusion $J(R) \subseteq \Delta(R)$ is strict).

We also investigate Δ of polynomial rings and corners of rings. It appears (cf. Corollary 1.15) that for any ring R with 2 invertible, $\Delta(e R e) \subseteq e \Delta(R) e$, where e is denotes an idempotent of R. Moreover, contrary to the Jacobson radical, this inclusion can be strict. We conclude this short note by showing that, for a polynomial ring $R[x]$ over 2-primal ring R, we have $\Delta(R[x])=\Delta(R)+J(R[x])$.

[^0]In all the text R will stand for a ring usually with identity and $U(R)$ will denote the group of units of $R . J(R)$ and $B(R)$ stand for Jacobson and the prime radicals of R, respectively.

1. Description and properties of $\Delta(R)$

We begin with the following lemma which collects basic properties of

$$
\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r+u \in U(R)\right\} .
$$

Lemma 1.1. For any ring R, we have:
(1) $\Delta(R)=\left\{r \in R \mid \forall_{u \in U(R)} r u+1 \in U(R)\right\}=\left\{r \in R \mid \forall_{u \in U(R)}\right.$ ur $\left.+1 \in U(R)\right\}$;
(2) For any $r \in \Delta(R)$ and $u \in U(R)$, ur, $r u \in \Delta(R)$;
(3) $\Delta(R)$ is a subring of R;
(4) $\Delta(R)$ is an ideal of R iff $\Delta(R)=J(R)$;
(5) For any rings $R_{i}, i \in I, \Delta\left(\prod_{i \in I} R_{i}\right)=\prod_{i \in I} \Delta\left(R_{i}\right)$.

Proof. Notice that, for any $u \in U(R)$ and $r \in R, r u^{-1}+1 \in U(R)$ iff $r+u \in U(R)$ iff $u^{-1} r+1 \in U(R)$. This yields (1). The statement (2) is an easy consequence of (1).
(3) Let $r, s \in \Delta(R)$. Then $-r+s+U(R) \subseteq-r+U(R)=-r-U(R) \subseteq U(R)$, i.e. Δ is a subgroup of the additive group of R. Then also $r s=r(s+1)-r \in \Delta(R)$, as $r(s+1) \in \Delta(R)$ by (2).
(4) Clearly $J(R) \subseteq \Delta(R)$. Suppose that $\Delta(R)$ is an ideal and $r \in R$. Then $r x+1 \in U(R)$, for any $x \in R$ and $\Delta(R) \subseteq J(R)$ follows, i.e. $\Delta(R)=J(R)$. The reverse implication is clear.

We leave the easy proof of (5) to the reader.
When e is an idempotent of a ring R, then the element $1-2 e$ is a unit of R. This observation and Lemma 1.1(2) give immediately the following corollary.
Corollary 1.2. For any ring R :
(1) $\Delta(R)$ is closed by multiplication by nilpotent elements;
(2) If $2 \in U(R)$, then $\Delta(R)$ is closed by multiplication by idempotents.

Recall that if R is a ring (not necessarily with 1), then the circle monoid $R_{\circ}=(R, \circ)$ of R is the set R with the circle operation \circ defined by $x \circ y=x+y-x y$. If R is a unital ring, then the monoid R_{\circ} is isomorphic to the multiplicative monoid (R, \cdot) of R, the isomorphism is given by assigning to every x of R_{\circ} the element $1-x$. Moreover $y \in R$ is invertible as an element of the monoid R_{\circ} (such elements are called quasi-invertible or quasi-regular) if and only if $1+y$ is invertible as an element of the ring R and its inverse in R_{\circ} is called the quasi-inverse of y. Thus the group of units $U(R)$ of R is isomorphic to the group $U_{\mathrm{o}}(R)$ of quasi-invertible elements of R. It is known that $I=J(R)$ is the largest ideal of R such that $U_{\circ}(I)=I$.

Theorem 1.3. Let R be a unital ring and T be the subring of R generated by $U(R)$. Then:
(1) $\Delta(R)=J(T)$ and $\Delta(S)=\Delta(R)$, for any subring S of R such that $T \subseteq S$;
(2) $\Delta(R)$ is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.
Proof. (1) Notice that the subring T consists of all finite sums of units of R. Thus the statements (2) and (4) of Lemma 1.1 imply that $\Delta(T)$ is an ideal of T and $\Delta(T)=J(T)$, respectively.

If $r \in \Delta(R)$, then $r+U(R) \subseteq U(R)$. This means that r can be presented as a sum of two units. In particular, $r \in T$ and $\Delta(R) \subseteq T$ follows.

Let S be a subring of R such that $T \subseteq S$. Then $U(S)=U(R)$, so $\Delta(S)=\{r \in S \mid$ $r+U(S) \subseteq U(S)\}=\{r \in S \mid r+U(R) \subseteq U(R)\}=S \cap \Delta(R)=\Delta(R)$, as $\Delta(R) \subseteq T \subseteq S$.
(2) By (1), $\Delta(R)$ is a Jacobson radical subring of R and Lemma 1.1(2) shows that $\Delta(R)$ is closed by left and right multiplication by units of R.

Now let S be a Jacobson radical ring contained in R which is closed by multiplication by units. If $s \in S$ and $u \in U(R)$, then $s u \in S=J(S)$. Thus $s u$ is quasi-regular in S and hence $1+s u \in U(R)$. Now, Lemma 1.1(1) shows that $s \in \Delta(R)$, i.e. $S \subseteq \Delta(R)$, for any Jacobson radical subring of R. This proves (2).

The characterization of $\Delta(R)$ given in Theorem 1.3(2) gives immediately:
Corollary 1.4. Let R be a ring such that every element of R is a sum of units. Then $\Delta(R)=J(R)$.

The classical theorem of Amitsur states that the Jacobson radical of an F-algebra R over a field F is nil, provided $\operatorname{dim}_{F} R<|F|$. Applying statement (1) of Theorem 1.3 we get the following corollary.
Corollary 1.5. Let R be an algebra over a field F. If $\operatorname{dim}_{F} R<|F|$, then $\Delta(R)$ is a nil ring.

One can also apply directly the Amitsur's argument to prove the above corollary. In particular, when R is an algebra over a field F, Amitsur's argument shows that algebraic elements from $\Delta(R)$ are nilpotent.

For a unital ring R and its, not necessary unital, subring S, \hat{S} will denote the subring of R generated by $S \cup\{1\}$. For further applications we will need the following
Proposition 1.6. Let R be a unital ring. Then:
(1) Let S be a subring of R such that $U(S)=U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.
(2) $U(\widehat{\Delta(R)})=U(R) \cap \widehat{\Delta(R)}$;
(3) Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R / I)=\Delta(R) / I$.

Proof. The statement (1) is an easy consequence of the definition of Δ.
(2) Let us notice that if $r \in \Delta(R)$, then $v=1+r \in U(R)$ and $v^{-1}=1-r v^{-1} \in$ $\widehat{\Delta(R)} \cap U(R)$, as by Lemma 1.1, $-r v^{-1} \in \Delta(R)$.

Let $u=r+k \cdot 1 \in \widehat{\Delta(R)} \cap U(R)$, where $r \in \Delta(R)$ and $k \in \mathbb{Z}$. We claim that $\bar{k}=k \cdot 1 \in U(R)$. We have $u-\bar{k}=r \in \Delta(R)$ and using Lemma 1.1, we obtain $1-\bar{k} u^{-1}=$ $(u-\bar{k}) u^{-1}=r u^{-1} \in \Delta(R)$. Therefore $\bar{k} u^{-1}=1-\left(1-\bar{k} u^{-1}\right) \in U(R)$ and $\bar{k} \in U(R)$
follows. As $\Delta(R)$ is closed by multiplications by units we can apply the first part of the proof to $v=u \bar{k}^{-1}=1+r \bar{k}^{-1}$ to obtain $u^{-1} \bar{k}=v^{-1} \in \widehat{\Delta(R)}$, i.e. $u^{-1} \bar{k}=s+\bar{l}$, for some $s \in \Delta(R)$ and $l \in \mathbb{Z}$. This implies, as $s \bar{k}^{-1} \in \Delta(R), u^{-1}=s \bar{k}^{-1}+\bar{k}^{-1} \bar{l} \in \widehat{\Delta(R)}$ and shows that $U(R) \cap \widehat{\Delta(R)} \subseteq U(\widehat{\Delta(R)})$. The reverse inclusion $U(\widehat{\Delta(R)}) \subseteq U(R) \cap \widehat{\Delta(R)}$ is clear and (2) follows.
(3) Let ${ }^{-}$denote the canonical epimorphism of R onto R / I. Notice that, as $I \subseteq J(R)$, $U(\bar{R})=\overline{U(R)}$.

Let $\bar{r} \in \Delta(\bar{R})$ and $u \in U(R)$. Then $\bar{r}+\bar{u} \in U(\bar{R})$ and there are elements $v \in U(R)$ and $j \in I$ such that $r+u=v+j$. Moreover $v+j \in U(R)$, as $I \subseteq J(R)$. This implies that $\Delta(\bar{R}) \subseteq \overline{\Delta(R)}$. Due to equality $U(\bar{R})=\overline{U(R)}$, the reverse inclusion is clear, i.e. (3) holds.

As an application of the above proposition we get the following
Corollary 1.7. For any unital ring $R, \Delta(\widehat{\Delta(R)})=\Delta(R)$, i.e. Δ is a closure operator.
Proof. Notice that $\Delta(R)$ is a Jacobson radical ideal of $T=\widehat{\Delta(R)}$. Hence, $\Delta(R) \subseteq T$.
Since $\Delta(R)$ contains all central nilpotent elements, $T / \Delta(R)$ is either isomorphic to \mathbb{Z} or to $\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$, for some $n>1$ which is square free. Therefore, by Proposition 1.6(3) and Corollary 1.4 we have $\Delta(T) / \Delta(R)=\Delta(T / \Delta(R))=J(T / \Delta(R))=0$. This means that $\Delta(T)=\Delta(R)$, as required.

Proposition 1.6(1) applies to $S=Z(R)$ - the center of R. Therefore, as for the Jacobson radical, we have:
Corollary 1.8. $\Delta(R) \cap Z(R) \subseteq \Delta(Z(R))$.
We will see in Example 1.16(4) that the inclusion from the above corollary can be strict even when $J(R)=J(Z(R))=0$.

For a ring R, let $T_{n}(R)$ denote the ring of all n by n upper triangular matrices over R, $J_{n}(R)$ the ideal of $T_{n}(R)$ consisting of all strictly upper triangular matrices and $D_{n}(R)$ the subring of diagonal matrices. As a direct consequence of Proposition 1.6(3) we get
Corollary 1.9. For any ring R :
(1) $\Delta\left(T_{n}(R)\right)=D_{n}(\Delta(R))+J_{n}(R)$;
(2) $\Delta\left(R[x] /\left(x^{n}\right)\right)=\Delta(R)[x] /\left(x^{n}\right)$;
(3) $\Delta(R[[x]])=\Delta(R)[[x]]$.

The following theorem indicates a few classes of rings in which $\Delta(R)=J(R)$.
Theorem 1.10. $\Delta(R)=J(R)$ if R is a ring satisfying one of the following conditions:
(1) $R / J(R)$ is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that $2 \in U(R)$.
(4) R is a UJ-ring, i.e. when $U(R)=1+J(R)$.
(5) R has stable range 1 .
(6) $R=F G$ is a group algebra over a field F.

Proof. (1). Let R be as in (1). In virtue of Proposition 1.6(3) it is enough to show that $\Delta(R / J(R))=0$. For doing this, we may assume that $J(R)=0$, i.e. R is a product of matrix rings and division rings. If R is a matrix ring $M_{n}(S)$, for some unital ring S and $n \geq 2$ then, by Theorem of M. Henriksen [3], every element of R is a sum of three units so by Corollary $1.4 \Delta(R)=J(R)=0$. When S is a division ring, then clearly $\Delta(S)=0$. Now (1) is a direct consequence of Lemma 1.1(5).

The statement (2) is a special case of (1).
(3). Suppose R is a clean ring such that $2 \in U(R)$. If $e \in R$ is an idempotent, then $1-2 e \in U(R)$ and $e=\left(\frac{1}{2}-\frac{1}{2}(1-2 e)\right)$ is a sum of two units. This shows that every element of R is a sum of three units, so the thesis is a consequence of Corollary 1.4.
(4). Suppose $U(R)=1+U(R)$. Let us now suppose that the ring R is a $U J$-ring. Then if $r \in \Delta(R)$ we have $r+U(R) \subseteq U(R)$ i.e. $r+1+J(R) \subseteq 1+J(R)$. This immediately shows that $r \in J(R)$ and $\Delta(R)=J(R)$ follows.
(5) This statement is Exercise $20.10 b$ in the book [5]. We repeat the short argument for the convenience of the reader. Let us assume the ring R has stable range 1 . We only have to show that if $r \in R$ is such that $r+U(R) \subseteq U(R)$ then $r \in J(R)$. Now, for any $s \in R$ we have, $R r+R(1-s r)=R$. Hence, by the stable range 1 condition, we know that there exists $x \in R$ such that $r+x(1-s r) \in U(R)$. This gives $x(1-s r) \in r+U(R) \subseteq U(R)$ and shows that $r \in J(R)$.

If $R=F G$ is as in (6), then clearly every element of R is a sum of units, so (6) follows as above.

It is known that semilocal rings have stable range 1, thus the statement (2) of the above proposition is also a consequence of (5).

Let us record the following easy observation.
Lemma 1.11. Let G be a subgroup of the additive group of a unital ring R. Then G is closed with respect to multiplication by invertible elements if and only if it is closed with respect to multiplication of quasi-invertible elements of R.
Proof. Let $r \in R$. As G is an additive group, $r G \subseteq G$ if and only if $(1-r) G \subseteq G$. This observation yields the lemma.

Therefore, using the above we have:
Theorem 1.12. Let R be a unital ring and G a subgroup of the additive group of R. Then the following conditions are equivalent:
(1) $G=\Delta(R)$
(2) G is the largest Jacobson radical subring of R which is closed with respect to multiplication by quasi-invertible elements of R
(3) G is the largest additive subgroup of R consisting of quasi-invertible elements and closed with respect to multiplication by quasi-invertible elements of R.
Proof. Theorem 1.3 (2) and Lemma 1.11 show that $\Delta(R)$ is Jacobson radical subring of R which is closed by multiplication by quasi-invertible elements. Let G be an additive
subgroup consisting of quasi-invertible elements and closed with respect to multiplication by quasi-invertible elements of R. In particular G is a Jacobson radical non unital subring of R and, by Lemma 1.11, G is closed by multiplication by units of R. Therefore Theorem 1.3 (2) gives $G \subseteq \Delta(R)$. This yields the theorem.

One can modify the definition of Δ to work for rings without unity. Namely, let us set $\Delta_{\circ}(R)=\left\{r \in R \mid r+U_{\circ}(R) \subseteq U_{\circ}(R)\right\}$. Then it is clear that if R is a unital ring, then $\Delta_{\circ}(R)=\Delta(R)$. For any ring R, not necessary containing 1 , let R^{1} denote the ring obtained from R by adjoining unity with the help of \mathbb{Z}. Then, making use of the fact that $U_{\circ}(\mathbb{Z})=0$, it is easy to check that
Lemma 1.13. For any, not necessary unital, ring R, one has $\Delta_{\circ}(R)=\Delta_{\circ}\left(R^{1}\right)=\Delta\left(R^{1}\right)$.
The above lemma says that we can extend the definition of Δ to all, not necessary, unital rings and all statements from Theorem 1.12 remain equivalent for arbitrary rings. Moreover, if one of the equivalent conditions holds, then $\Delta(\Delta(R))=\Delta(R)$

A well-known classical result about the Jacobson radical $J(R)$ of a ring R states that $J(e R e)=e J(R) e$, for any idempotent e of R. We will show that such equality is not satisfied in general for $\Delta(R)$. However the inclusion $e \Delta(R) e \subseteq \Delta(e R e)$ always holds under the mild assumptions that $e \Delta(R) e \subseteq \Delta(R)$. We have seen in Corollary 1.2 that this assumption holds automatically provided $2 \in U(R)$.

Proposition 1.14. For any ring R, the following conditions hold:
(1) Let $e^{2}=e$ be such that $e \Delta(R) e \subseteq \Delta(R)$. Then $e \Delta(R) e \subseteq \Delta(e R e)$.
(2) $\Delta(R)$ does not contain nonzero idempotents.
(3) $\Delta(R)$ does not contain nonzero unit regular elements.

Proof. (1) Let us first remark that if $y \in U(e R e)$, then $y_{1}=y+(1-e) \in U(R)$ is such that $y=e y_{1} e$. Now, let $r \in e \Delta(R) e \subseteq \Delta(R)$, we want to show that for any unit $y \in U(e R e)$ we have that $e-y r \in U(e R e)$. As above, let $y_{1}:=y+1-e \in U(R)$. Since $r \in e \Delta(R) e \subseteq \Delta(R)$, we know that $1-y_{1} r \in U(R)$. Hence there exists $b \in R$ such that $b\left(1-y_{1} r\right)=1$ and so $e=e b\left(1-y_{1} r\right) e=e b\left(e-y_{1} r e\right) e=e b(e-(y+1-e) r e=e b(e-y r e)+e b(1-e) r e=$ $e b e(e-y r e)$, where the last equality comes from the fact that $r \in e R e$. This gives that $e-y r e=e-y r$ is left invertible in $e R e$. Since $1-y_{1} r \in U(R)$ we also have $\left(1-y_{1} r\right) b=1$ and hence $1=(1-(y+1-e) r) b=(1-y r) b$. Multiplying on both sides by e we get $e=e(1-y r) b e=(e-y r) b e=(e-y r) e b e$. This shows that ebe is a right and left inverse of $e-y r$, as required.
(2) If $e^{2}=e \in \Delta(R)$ then $1-e=e+(1-2 e) \in U(R)$, as $1-2 e$ is a unit. This forces $e=0$, i.e. (2) holds.
(3) if $a \in \Delta(R)$ is a unit regular element, then there exists an invertible element $u \in U(R)$ such that $a u$ is an idempotent. Statement (2) above shows that a must then be zero.

Corollary 1.2 and Proposition $1.14(1)$ yield the following:
Corollary 1.15. Suppose $2 \in U(R)$. Then $e \Delta(R) e \subseteq \Delta(e R e)$, for any idempotent e of R.
The following examples show instances where $\Delta(R) \neq J(R)$ and indicate limits for obtained results.

Examples 1.16. (1) Let us observe that Theorem 1.12 implies that if A be a subring of a ring R such that $U(R)=U(A)$, then $J(A) \subseteq \Delta(R)$. In particular taking A to be a commutative domain with $J(A) \neq 0$ and $R=A[x]$, we obtain $0=J(R) \subset$ $J(A) \subseteq \Delta(R)$. (see also [5, Exercise 4.24])
(2) (cf. [2, Example 2.5]) Let $R=\mathbb{F}_{2}<x, y>/<x^{2}>$. Then $J(R)=0$ and $U(R)=1+\mathbb{F}_{2} x+x R x$. In particular $\mathbb{F}_{2} x+x R x$ is contained in $\Delta(R)$ but $J(R)=0$.
(3) Let S be any ring such that $J(S)=0$ and $\Delta(S) \neq 0$ and let $R=M_{2}(S)$. Then, by Theorem 1.10(1), $\Delta(R)=J(R)=0$. Therefore, if $e=e_{11} \in R$, then $e \Delta(R) e=$ $e J(R) e=J(e R e)=0$. and $\Delta(e R e) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e \Delta(R) e \subseteq \Delta(e R e)$ from Proposition 1.14 can be strict, in general.
(4) Let A be a commutative domain with $J(A) \neq 0$ and $S=A[x]$. Then, by (1), $0 \neq J(A) \subseteq \Delta(S)$ and clearly $J(S)=0 . \quad R=M_{2}(S)$, where A is a commutative local domain. By Theorem 1.10, $\Delta(R)=J(R)=0$. Notice that the center $Z=Z(R)$ of $R=M_{2}(S)$ is isomorphic to S and $U(Z)=U(R) \cap Z$. Therefore $0=\Delta(R) \cap Z \subseteq \Delta(Z) \simeq J(A) \neq 0$. Thus the inclusion from Corollary 1.8 can be strict even when $J(R)=0=J(Z(R))$.

The Example 1.16(2) was attributed to Bergman in [2]. Let us mention that this example appeared earlier in [1, Example 6], where prime rings with commuting nilpotent elements were considered.

Recall that a 2-primal ring is a ring such that the set of all nilpotent elements $N(R)$ of R coincides with the prime radical $B(R)$, i.e. $R / B(R)$ is a reduced ring. The following proposition can be considered as a generalization of Example 1.16(1).
Proposition 1.17. Let R be 2- primal ring. Then $\Delta(R[x])=\Delta(R)+J(R[x])$.
Proof. Suppose first that R is a reduced ring. Then $U(R[x])=U(R)$ (cf. [4]). Thus, by definition of $\Delta(R[x])$, we have $\Delta(R) \subseteq \Delta(R[x])$. Let $a+a_{0} \in \Delta(R[x])$, where $a \in R[x] x$ and $a_{0} \in R$. Then, for any $u \in U(R), a+a_{0}+u \in U(R)$. This forces $a_{0}+u \in U(R)$ and $a=0$ and $\Delta(R)=\Delta(R[x])$ follows in this case.

Suppose now that R is 2-primal. Clearly $B(R[x])=B(R)[x] \subseteq J(R[x])$. As R is 2primal, $R / B(R)$ is reduced, so $J(R[x])=B(R[x])=B(R)[x]$. By the first part of the proof applied to $R / B(R)$ and Proposition 1.6(2), we have

$$
\Delta(R)+B(R)[x]=\Delta(R / B(R)[x])=\Delta(R[x] / J(R[x]))=\Delta(R[x]) / J(R[x])
$$

The above yields the desired equality.

References

[1] M. Chebotar, P.-H. Lee, and E. R. Puczylowski, On prime rings with commuting nilpotent elements, Proc. AMS 137(9) (2009), 2899-2903.
[2] P. V. Danchev, T. Y Lam, Rings with unipotent units, Publ. Math. Debrecen 88 (2016).
[3] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182-193
[4] P. Kanwar, A. Leroy, J. Matczuk, Clean elements in polynomial rings, Contemporary Math. 634 (2015), 197-204.
[5] T.Y. Lam, Exercises in classical ring theory, Springer-Verlag, New York (2003), second edition.

Department of Mathematics, Université D'Artois, Rue Jean Souvraz, 62307 Lens, France Email address: andre.leroy@univ-artois.fr

Departement of Mathematics, University of Warsaw, Ul. Banacha, 2, Warszawa, Poland
Email address: jmatczuk@mimuw.edu.pl

[^0]: Key words and phrases. Jacobson radical.

