REMARKS ON THE JACOBSON RADICAL

ANDRÉ LEROY AND JERZY MATCZUK

ABSTRACT. The aim of the paper is to investigate the set $\Delta(R) =: \{r \in R \mid r + U(R) \subseteq U(R)\}$ of a ring R. This set is a ring closely related to the Jacobson radical of R. It is shown that $\Delta(R)$ is the largest Jacobson radical subring of R which is closed with respect to multiplication by units of R. The behavior of Δ under ring constructions is studied, some families of rings for which $\Delta(R) = J(R)$ are presented. Methods of constructing rings with $\Delta(R) \neq J(R)$ are also described.

INTRODUCTION

It is well-known that if r is an element of the Jacobson radical J(R) of R, then $r + u \in U(R)$ for every $u \in U(R)$, i.e.

$$J(R) \subseteq \Delta(R) =: \{ r \in R \mid r + U(R) \subseteq U(R) \}.$$

It was already observed in [5, Exercise 4.24] that the above inclusion can be strict and that equality holds in the case of rings of stable range 1 (cf. [5, Exercise 20.10B]).

The aim of this paper is to investigate the set $\Delta(R)$ in details. We offer various characterizations of $\Delta(R)$ and then study the behavior of the operator Δ under some standard ring constructions. We also extend the definition and properties of Δ to rings without unity.

We show, in Theorems 1.3 and 1.12, that $\Delta(R)$ is the largest Jacobson radical subring of R which is closed with respect to multiplication by all units (quasi-invertible elements) of R, $\Delta(R) = J(T)$, where T is the subring of R generated by units of R, and the equality $\Delta(R) = J(R)$ holds if and only if $\Delta(R)$ is an ideal of R. As a consequence, we obtain that Δ is a closure operator, i.e. $\Delta(\Delta(R)) = \Delta(R)$ and that $\Delta(M_n(R)) = J(M_n(R)) = M_n(J(R))$, for any ring R and $n \geq 2$. Some further instances of rings for which $\Delta(R) = J(R)$ are presented in Theorem 1.10. Various examples exhibiting the differences in the behavior of Δ and the Jacobson radical are given in Examples 1.16 (including more instances of rings where the inclusion $J(R) \subseteq \Delta(R)$ is strict).

We also investigate Δ of polynomial rings and corners of rings. It appears (cf. Corollary 1.15) that for any ring R with 2 invertible, $\Delta(eRe) \subseteq e\Delta(R)e$, where e is denotes an idempotent of R. Moreover, contrary to the Jacobson radical, this inclusion can be strict. We conclude this short note by showing that, for a polynomial ring R[x] over 2-primal ring R, we have $\Delta(R[x]) = \Delta(R) + J(R[x])$.

Key words and phrases. Jacobson radical.

In all the text R will stand for a ring usually with identity and U(R) will denote the group of units of R. J(R) and B(R) stand for Jacobson and the prime radicals of R, respectively.

1. Description and properties of $\Delta(R)$

We begin with the following lemma which collects basic properties of

 $\Delta(R) = \{ r \in R \mid \forall_{u \in U(R)} \ r + u \in U(R) \}.$

Lemma 1.1. For any ring R, we have:

(1) $\Delta(R) = \{r \in R \mid \forall_{u \in U(R)} \ ru + 1 \in U(R)\} = \{r \in R \mid \forall_{u \in U(R)} \ ur + 1 \in U(R)\};$

- (2) For any $r \in \Delta(R)$ and $u \in U(R)$, $ur, ru \in \Delta(R)$;
- (3) $\Delta(R)$ is a subring of R;
- (4) $\Delta(R)$ is an ideal of R iff $\Delta(R) = J(R)$;
- (5) For any rings R_i , $i \in I$, $\Delta(\prod_{i \in I} R_i) = \prod_{i \in I} \Delta(R_i)$.

Proof. Notice that, for any $u \in U(R)$ and $r \in R$, $ru^{-1} + 1 \in U(R)$ iff $r + u \in U(R)$ iff $u^{-1}r + 1 \in U(R)$. This yields (1). The statement (2) is an easy consequence of (1).

(3) Let $r, s \in \Delta(R)$. Then $-r + s + U(R) \subseteq -r + U(R) = -r - U(R) \subseteq U(R)$, i.e. Δ is a subgroup of the additive group of R. Then also $rs = r(s+1) - r \in \Delta(R)$, as $r(s+1) \in \Delta(R)$ by (2).

(4) Clearly $J(R) \subseteq \Delta(R)$. Suppose that $\Delta(R)$ is an ideal and $r \in R$. Then $rx+1 \in U(R)$, for any $x \in R$ and $\Delta(R) \subseteq J(R)$ follows, i.e. $\Delta(R) = J(R)$. The reverse implication is clear.

We leave the easy proof of (5) to the reader.

When e is an idempotent of a ring R, then the element 1 - 2e is a unit of R. This observation and Lemma 1.1(2) give immediately the following corollary.

Corollary 1.2. For any ring R:

- (1) $\Delta(R)$ is closed by multiplication by nilpotent elements;
- (2) If $2 \in U(R)$, then $\Delta(R)$ is closed by multiplication by idempotents.

Recall that if R is a ring (not necessarily with 1), then the circle monoid $R_{\circ} = (R, \circ)$ of R is the set R with the circle operation \circ defined by $x \circ y = x + y - xy$. If R is a unital ring, then the monoid R_{\circ} is isomorphic to the multiplicative monoid (R, \cdot) of R, the isomorphism is given by assigning to every x of R_{\circ} the element 1 - x. Moreover $y \in R$ is invertible as an element of the monoid R_{\circ} (such elements are called quasi-invertible or quasi-regular) if and only if 1 + y is invertible as an element of the ring R and its inverse in R_{\circ} is called the quasi-inverse of y. Thus the group of units U(R) of R is isomorphic to the group $U_{\circ}(R)$ of quasi-invertible elements of R. It is known that I = J(R) is the largest ideal of R such that $U_{\circ}(I) = I$.

Theorem 1.3. Let R be a unital ring and T be the subring of R generated by U(R). Then: (1) $\Delta(R) = J(T)$ and $\Delta(S) = \Delta(R)$, for any subring S of R such that $T \subseteq S$; (2) $\Delta(R)$ is the largest Jacobson radical ring contained in R which is closed with respect to multiplication by units of R.

Proof. (1) Notice that the subring T consists of all finite sums of units of R. Thus the statements (2) and (4) of Lemma 1.1 imply that $\Delta(T)$ is an ideal of T and $\Delta(T) = J(T)$, respectively.

If $r \in \Delta(R)$, then $r + U(R) \subseteq U(R)$. This means that r can be presented as a sum of two units. In particular, $r \in T$ and $\Delta(R) \subseteq T$ follows.

Let S be a subring of R such that $T \subseteq S$. Then U(S) = U(R), so $\Delta(S) = \{r \in S \mid r + U(S) \subseteq U(S)\} = \{r \in S \mid r + U(R) \subseteq U(R)\} = S \cap \Delta(R) = \Delta(R)$, as $\Delta(R) \subseteq T \subseteq S$. (2) By (1), $\Delta(R)$ is a Jacobson radical subring of R and Lemma 1.1(2) shows that $\Delta(R)$ is closed by left and right multiplication by units of R.

Now let S be a Jacobson radical ring contained in R which is closed by multiplication by units. If $s \in S$ and $u \in U(R)$, then $su \in S = J(S)$. Thus su is quasi-regular in S and hence $1 + su \in U(R)$. Now, Lemma 1.1(1) shows that $s \in \Delta(R)$, i.e. $S \subseteq \Delta(R)$, for any Jacobson radical subring of R. This proves (2).

The characterization of $\Delta(R)$ given in Theorem 1.3(2) gives immediately:

Corollary 1.4. Let R be a ring such that every element of R is a sum of units. Then $\Delta(R) = J(R)$.

The classical theorem of Amitsur states that the Jacobson radical of an F-algebra R over a field F is nil, provided $\dim_F R < |F|$. Applying statement (1) of Theorem 1.3 we get the following corollary.

Corollary 1.5. Let R be an algebra over a field F. If $\dim_F R < |F|$, then $\Delta(R)$ is a nil ring.

One can also apply directly the Amitsur's argument to prove the above corollary. In particular, when R is an algebra over a field F, Amitsur's argument shows that algebraic elements from $\Delta(R)$ are nilpotent.

For a unital ring R and its, not necessary unital, subring S, \hat{S} will denote the subring of R generated by $S \cup \{1\}$. For further applications we will need the following

Proposition 1.6. Let R be a unital ring. Then:

(1) Let S be a subring of R such that $U(S) = U(R) \cap S$. Then $\Delta(R) \cap S \subseteq \Delta(S)$.

(2)
$$U(\widehat{\Delta(R)}) = U(R) \cap \widehat{\Delta(R)};$$

(3) Let I be an ideal of R such that $I \subseteq J(R)$. Then $\Delta(R/I) = \Delta(R)/I$.

Proof. The statement (1) is an easy consequence of the definition of Δ .

(2) Let us notice that if $r \in \Delta(R)$, then $v = 1 + r \in U(R)$ and $v^{-1} = 1 - rv^{-1} \in \widehat{\Delta(R)} \cap U(R)$, as by Lemma 1.1, $-rv^{-1} \in \Delta(R)$.

Let $u = r + k \cdot 1 \in \widehat{\Delta(R)} \cap U(R)$, where $r \in \Delta(R)$ and $k \in \mathbb{Z}$. We claim that $\bar{k} = k \cdot 1 \in U(R)$. We have $u - \bar{k} = r \in \Delta(R)$ and using Lemma 1.1, we obtain $1 - \bar{k}u^{-1} = (u - \bar{k})u^{-1} = ru^{-1} \in \Delta(R)$. Therefore $\bar{k}u^{-1} = 1 - (1 - \bar{k}u^{-1}) \in U(R)$ and $\bar{k} \in U(R)$

follows. As $\Delta(R)$ is closed by multiplications by units we can apply the first part of the proof to $v = u\bar{k}^{-1} = 1 + r\bar{k}^{-1}$ to obtain $u^{-1}\bar{k} = v^{-1} \in \widehat{\Delta(R)}$, i.e. $u^{-1}\bar{k} = s + \bar{l}$, for some $s \in \Delta(R)$ and $l \in \mathbb{Z}$. This implies, as $s\bar{k}^{-1} \in \Delta(R)$, $u^{-1} = s\bar{k}^{-1} + \bar{k}^{-1}\bar{l} \in \widehat{\Delta(R)}$ and shows that $U(R) \cap \widehat{\Delta(R)} \subseteq U(\widehat{\Delta(R)})$. The reverse inclusion $U(\widehat{\Delta(R)}) \subseteq U(R) \cap \widehat{\Delta(R)}$ is clear and (2) follows.

(3) Let $\overline{}$ denote the canonical epimorphism of R onto R/I. Notice that, as $I \subseteq J(R)$, $U(\overline{R}) = \overline{U(R)}$.

Let $\bar{r} \in \Delta(\bar{R})$ and $u \in U(R)$. Then $\bar{r} + \bar{u} \in U(\bar{R})$ and there are elements $v \in U(R)$ and $j \in I$ such that r + u = v + j. Moreover $v + j \in U(R)$, as $I \subseteq J(R)$. This implies that $\Delta(\bar{R}) \subseteq \overline{\Delta(R)}$. Due to equality $U(\bar{R}) = \overline{U(R)}$, the reverse inclusion is clear, i.e. (3) holds.

As an application of the above proposition we get the following

Corollary 1.7. For any unital ring R, $\Delta(\overline{\Delta}(R)) = \Delta(R)$, i.e. Δ is a closure operator.

Proof. Notice that $\Delta(R)$ is a Jacobson radical ideal of $T = \widehat{\Delta}(R)$. Hence, $\Delta(R) \subseteq T$.

Since $\Delta(R)$ contains all central nilpotent elements, $T/\Delta(R)$ is either isomorphic to \mathbb{Z} or to $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, for some n > 1 which is square free. Therefore, by Proposition 1.6(3) and Corollary 1.4 we have $\Delta(T)/\Delta(R) = \Delta(T/\Delta(R)) = J(T/\Delta(R)) = 0$. This means that $\Delta(T) = \Delta(R)$, as required.

Proposition 1.6(1) applies to S = Z(R) - the center of R. Therefore, as for the Jacobson radical, we have:

Corollary 1.8. $\Delta(R) \cap Z(R) \subseteq \Delta(Z(R))$.

We will see in Example 1.16(4) that the inclusion from the above corollary can be strict even when J(R) = J(Z(R)) = 0.

For a ring R, let $T_n(R)$ denote the ring of all n by n upper triangular matrices over R, $J_n(R)$ the ideal of $T_n(R)$ consisting of all strictly upper triangular matrices and $D_n(R)$ the subring of diagonal matrices. As a direct consequence of Proposition 1.6(3) we get

Corollary 1.9. For any ring R:

- (1) $\Delta(T_n(R)) = D_n(\Delta(R)) + J_n(R);$
- (2) $\Delta(R[x]/(x^n)) = \Delta(R)[x]/(x^n);$
- (3) $\Delta(R[[x]]) = \Delta(R)[[x]].$

The following theorem indicates a few classes of rings in which $\Delta(R) = J(R)$.

Theorem 1.10. $\Delta(R) = J(R)$ if R is a ring satisfying one of the following conditions:

- (1) R/J(R) is isomorphic to a product of matrix rings and division rings.
- (2) R is a semilocal ring.
- (3) R is a clean ring such that $2 \in U(R)$.
- (4) R is a UJ-ring, i.e. when U(R) = 1 + J(R).
- (5) R has stable range 1.

(6) R = FG is a group algebra over a field F.

Proof. (1). Let R be as in (1). In virtue of Proposition 1.6(3) it is enough to show that $\Delta(R/J(R)) = 0$. For doing this, we may assume that J(R) = 0, i.e. R is a product of matrix rings and division rings. If R is a matrix ring $M_n(S)$, for some unital ring S and $n \geq 2$ then, by Theorem of M. Henriksen [3], every element of R is a sum of three units so by Corollary 1.4 $\Delta(R) = J(R) = 0$. When S is a division ring, then clearly $\Delta(S) = 0$. Now (1) is a direct consequence of Lemma 1.1(5).

The statement (2) is a special case of (1).

(3). Suppose R is a clean ring such that $2 \in U(R)$. If $e \in R$ is an idempotent, then $1-2e \in U(R)$ and $e = (\frac{1}{2} - \frac{1}{2}(1-2e))$ is a sum of two units. This shows that every element of R is a sum of three units, so the thesis is a consequence of Corollary 1.4.

(4). Suppose U(R) = 1 + U(R). Let us now suppose that the ring R is a UJ-ring. Then if $r \in \Delta(R)$ we have $r + U(R) \subseteq U(R)$ i.e. $r + 1 + J(R) \subseteq 1 + J(R)$. This immediately shows that $r \in J(R)$ and $\Delta(R) = J(R)$ follows.

(5) This statement is Exercise 20.10b in the book [5]. We repeat the short argument for the convenience of the reader. Let us assume the ring R has stable range 1. We only have to show that if $r \in R$ is such that $r + U(R) \subseteq U(R)$ then $r \in J(R)$. Now, for any $s \in R$ we have, Rr + R(1 - sr) = R. Hence, by the stable range 1 condition, we know that there exists $x \in R$ such that $r + x(1 - sr) \in U(R)$. This gives $x(1 - sr) \in r + U(R) \subseteq U(R)$ and shows that $r \in J(R)$.

If R = FG is as in (6), then clearly every element of R is a sum of units, so (6) follows as above.

It is known that semilocal rings have stable range 1, thus the statement (2) of the above proposition is also a consequence of (5).

Let us record the following easy observation.

Lemma 1.11. Let G be a subgroup of the additive group of a unital ring R. Then G is closed with respect to multiplication by invertible elements if and only if it is closed with respect to multiplication of quasi-invertible elements of R.

Proof. Let $r \in R$. As G is an additive group, $rG \subseteq G$ if and only if $(1-r)G \subseteq G$. This observation yields the lemma.

Therefore, using the above we have:

Theorem 1.12. Let R be a unital ring and G a subgroup of the additive group of R. Then the following conditions are equivalent:

- (1) $G = \Delta(R)$
- (2) G is the largest Jacobson radical subring of R which is closed with respect to multiplication by quasi-invertible elements of R
- (3) G is the largest additive subgroup of R consisting of quasi-invertible elements and closed with respect to multiplication by quasi-invertible elements of R.

Proof. Theorem 1.3 (2) and Lemma 1.11 show that $\Delta(R)$ is Jacobson radical subring of R which is closed by multiplication by quasi-invertible elements. Let G be an additive

subgroup consisting of quasi-invertible elements and closed with respect to multiplication by quasi-invertible elements of R. In particular G is a Jacobson radical non unital subring of R and, by Lemma 1.11, G is closed by multiplication by units of R. Therefore Theorem 1.3 (2) gives $G \subseteq \Delta(R)$. This yields the theorem.

One can modify the definition of Δ to work for rings without unity. Namely, let us set $\Delta_{\circ}(R) = \{r \in R \mid r + U_{\circ}(R) \subseteq U_{\circ}(R)\}$. Then it is clear that if R is a unital ring, then $\Delta_{\circ}(R) = \Delta(R)$. For any ring R, not necessary containing 1, let R^1 denote the ring obtained from R by adjoining unity with the help of \mathbb{Z} . Then, making use of the fact that $U_{\circ}(\mathbb{Z}) = 0$, it is easy to check that

Lemma 1.13. For any, not necessary unital, ring R, one has $\Delta_{\circ}(R) = \Delta_{\circ}(R^1) = \Delta(R^1)$.

The above lemma says that we can extend the definition of Δ to all, not necessary, unital rings and all statements from Theorem 1.12 remain equivalent for arbitrary rings. Moreover, if one of the equivalent conditions holds, then $\Delta(\Delta(R)) = \Delta(R)$

A well-known classical result about the Jacobson radical J(R) of a ring R states that J(eRe) = eJ(R)e, for any idempotent e of R. We will show that such equality is not satisfied in general for $\Delta(R)$. However the inclusion $e\Delta(R)e \subseteq \Delta(eRe)$ always holds under the mild assumptions that $e\Delta(R)e \subseteq \Delta(R)$. We have seen in Corollary 1.2 that this assumption holds automatically provided $2 \in U(R)$.

Proposition 1.14. For any ring R, the following conditions hold:

- (1) Let $e^2 = e$ be such that $e\Delta(R)e \subseteq \Delta(R)$. Then $e\Delta(R)e \subseteq \Delta(eRe)$.
- (2) $\Delta(R)$ does not contain nonzero idempotents.
- (3) $\Delta(R)$ does not contain nonzero unit regular elements.

Proof. (1) Let us first remark that if $y \in U(eRe)$, then $y_1 = y + (1-e) \in U(R)$ is such that $y = ey_1e$. Now, let $r \in e\Delta(R)e \subseteq \Delta(R)$, we want to show that for any unit $y \in U(eRe)$ we have that $e - yr \in U(eRe)$. As above, let $y_1 := y + 1 - e \in U(R)$. Since $r \in e\Delta(R)e \subseteq \Delta(R)$, we know that $1 - y_1r \in U(R)$. Hence there exists $b \in R$ such that $b(1 - y_1r) = 1$ and so $e = eb(1 - y_1r)e = eb(e - y_1re)e = eb(e - (y + 1 - e)re = eb(e - yre) + eb(1 - e)re = ebe(e - yre)$, where the last equality comes from the fact that $r \in eRe$. This gives that e - yre = e - yr is left invertible in eRe. Since $1 - y_1r \in U(R)$ we also have $(1 - y_1r)b = 1$ and hence 1 = (1 - (y + 1 - e)r)b = (1 - yr)b. Multiplying on both sides by e we get e = e(1 - yr)be = (e - yr)be = (e - yr)ebe. This shows that ebe is a right and left inverse of e - yr, as required.

(2) If $e^2 = e \in \Delta(R)$ then $1 - e = e + (1 - 2e) \in U(R)$, as 1 - 2e is a unit. This forces e = 0, i.e. (2) holds.

(3) if $a \in \Delta(R)$ is a unit regular element, then there exists an invertible element $u \in U(R)$ such that au is an idempotent. Statement (2) above shows that a must then be zero. \Box

Corollary 1.2 and Proposition 1.14(1) yield the following:

Corollary 1.15. Suppose $2 \in U(R)$. Then $e\Delta(R)e \subseteq \Delta(eRe)$, for any idempotent e of R.

The following examples show instances where $\Delta(R) \neq J(R)$ and indicate limits for obtained results.

- **Examples 1.16.** (1) Let us observe that Theorem 1.12 implies that if A be a subring of a ring R such that U(R) = U(A), then $J(A) \subseteq \Delta(R)$. In particular taking A to be a commutative domain with $J(A) \neq 0$ and R = A[x], we obtain $0 = J(R) \subset J(A) \subseteq \Delta(R)$. (see also [5, Exercise 4.24])
 - (2) (cf. [2, Example 2.5]) Let $R = \mathbb{F}_2 \langle x, y \rangle / \langle x^2 \rangle$. Then J(R) = 0 and $U(R) = 1 + \mathbb{F}_2 x + xRx$. In particular $\mathbb{F}_2 x + xRx$ is contained in $\Delta(R)$ but J(R) = 0.
 - (3) Let S be any ring such that J(S) = 0 and $\Delta(S) \neq 0$ and let $R = M_2(S)$. Then, by Theorem 1.10(1), $\Delta(R) = J(R) = 0$. Therefore, if $e = e_{11} \in R$, then $e\Delta(R)e = eJ(R)e = J(eRe) = 0$. and $\Delta(eRe) \simeq \Delta(S) \neq 0$. This shows that the inclusion $e\Delta(R)e \subseteq \Delta(eRe)$ from Proposition 1.14 can be strict, in general.
 - (4) Let A be a commutative domain with $J(A) \neq 0$ and S = A[x]. Then, by (1), $0 \neq J(A) \subseteq \Delta(S)$ and clearly J(S) = 0. $R = M_2(S)$, where A is a commutative local domain. By Theorem 1.10, $\Delta(R) = J(R) = 0$. Notice that the center Z = Z(R) of $R = M_2(S)$ is isomorphic to S and $U(Z) = U(R) \cap Z$. Therefore $0 = \Delta(R) \cap Z \subseteq \Delta(Z) \simeq J(A) \neq 0$. Thus the inclusion from Corollary 1.8 can be strict even when J(R) = 0 = J(Z(R)).

The Example 1.16(2) was attributed to Bergman in [2]. Let us mention that this example appeared earlier in [1, Example 6], where prime rings with commuting nilpotent elements were considered.

Recall that a 2-primal ring is a ring such that the set of all nilpotent elements N(R) of R coincides with the prime radical B(R), i.e. R/B(R) is a reduced ring. The following proposition can be considered as a generalization of Example 1.16(1).

Proposition 1.17. Let R be 2- primal ring. Then $\Delta(R[x]) = \Delta(R) + J(R[x])$.

Proof. Suppose first that R is a reduced ring. Then U(R[x]) = U(R) (cf. [4]). Thus, by definition of $\Delta(R[x])$, we have $\Delta(R) \subseteq \Delta(R[x])$. Let $a + a_0 \in \Delta(R[x])$, where $a \in R[x]x$ and $a_0 \in R$. Then, for any $u \in U(R)$, $a + a_0 + u \in U(R)$. This forces $a_0 + u \in U(R)$ and a = 0 and $\Delta(R) = \Delta(R[x])$ follows in this case.

Suppose now that R is 2-primal. Clearly $B(R[x]) = B(R)[x] \subseteq J(R[x])$. As R is 2-primal, R/B(R) is reduced, so J(R[x]) = B(R[x]) = B(R)[x]. By the first part of the proof applied to R/B(R) and Proposition 1.6(2), we have

$$\Delta(R) + B(R)[x] = \Delta(R/B(R)[x]) = \Delta(R[x]/J(R[x])) = \Delta(R[x])/J(R[x]).$$

The above yields the desired equality.

References

- M. Chebotar, P.-H. Lee, and E. R. Puczylowski, On prime rings with commuting nilpotent elements, Proc. AMS 137(9) (2009), 2899-2903.
- [2] P. V. Danchev, T. Y Lam, Rings with unipotent units, Publ. Math. Debrecen 88 (2016).
- [3] M. Henriksen, Two classes of rings generated by their units, J. Algebra 31 (1974), 182-193
- [4] P. Kanwar, A. Leroy, J. Matczuk, Clean elements in polynomial rings, Contemporary Math. 634 (2015), 197-204.
- [5] T.Y. Lam, Exercises in classical ring theory, Springer-Verlag, New York (2003), second edition.

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ D'ARTOIS, RUE JEAN SOUVRAZ, 62307 LENS, FRANCE *Email address*: andre.leroy@univ-artois.fr

DEPARTEMENT OF MATHEMATICS, UNIVERSITY OF WARSAW, UL. BANACHA, 2, WARSZAWA, POLAND *Email address:* jmatczuk@mimuw.edu.pl

8