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Abstract. The aim of the paper is to investigate the set ∆(R) =: {r ∈ R | r + U(R) ⊆
U(R)} of a ring R. This set is a ring closely related to the Jacobson radical of R. It is
shown that ∆(R) is the largest Jacobson radical subring of R which is closed with respect
to multiplication by units of R. The behavior of ∆ under ring constructions is studied,
some families of rings for which ∆(R) = J(R) are presented. Methods of constructing
rings with ∆(R) 6= J(R) are also described.

Introduction

It is well-known that if r is an element of the Jacobson radical J(R) of R, then r + u ∈
U(R) for every u ∈ U(R), i.e.

J(R) ⊆ ∆(R) =: {r ∈ R | r + U(R) ⊆ U(R)}.

It was already observed in [5, Exercise 4.24] that the above inclusion can be strict and that
equality holds in the case of rings of stable range 1 (cf. [5, Exercise 20.10B]).

The aim of this paper is to investigate the set ∆(R) in details. We offer various charac-
terizations of ∆(R) and then study the behavior of the operator ∆ under some standard
ring constructions. We also extend the definition and properties of ∆ to rings without
unity.

We show, in Theorems 1.3 and 1.12, that ∆(R) is the largest Jacobson radical subring
of R which is closed with respect to multiplication by all units (quasi-invertible elements)
of R, ∆(R) = J(T ), where T is the subring of R generated by units of R, and the equality
∆(R) = J(R) holds if and only if ∆(R) is an ideal of R. As a consequence, we obtain that ∆
is a closure operator, i.e. ∆(∆(R)) = ∆(R) and that ∆(Mn(R)) = J(Mn(R)) = Mn(J(R)),
for any ring R and n ≥ 2. Some further instances of rings for which ∆(R) = J(R) are
presented in Theorem 1.10. Various examples exhibiting the differences in the behavior of
∆ and the Jacobson radical are given in Examples 1.16 (including more instances of rings
where the inclusion J(R) ⊆ ∆(R) is strict).

We also investigate ∆ of polynomial rings and corners of rings. It appears (cf. Corollary
1.15) that for any ring R with 2 invertible, ∆(eRe) ⊆ e∆(R)e, where e is denotes an
idempotent of R. Moreover, contrary to the Jacobson radical, this inclusion can be strict.
We conclude this short note by showing that, for a polynomial ring R[x] over 2-primal ring
R, we have ∆(R[x]) = ∆(R) + J(R[x]).
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In all the text R will stand for a ring usually with identity and U(R) will denote the
group of units of R. J(R) and B(R) stand for Jacobson and the prime radicals of R,
respectively.

1. Description and properties of ∆(R)

We begin with the following lemma which collects basic properties of

∆(R) = {r ∈ R | ∀u∈U(R) r + u ∈ U(R)}.

Lemma 1.1. For any ring R, we have:

(1) ∆(R) = {r ∈ R | ∀u∈U(R) ru + 1 ∈ U(R)} = {r ∈ R | ∀u∈U(R) ur + 1 ∈ U(R)};
(2) For any r ∈ ∆(R) and u ∈ U(R), ur, ru ∈ ∆(R);
(3) ∆(R) is a subring of R;
(4) ∆(R) is an ideal of R iff ∆(R) = J(R);
(5) For any rings Ri, i ∈ I, ∆(

∏
i∈I Ri) =

∏
i∈I ∆(Ri).

Proof. Notice that, for any u ∈ U(R) and r ∈ R, ru−1 + 1 ∈ U(R) iff r + u ∈ U(R) iff
u−1r + 1 ∈ U(R). This yields (1). The statement (2) is an easy consequence of (1).

(3) Let r, s ∈ ∆(R). Then −r + s + U(R) ⊆ −r + U(R) = −r − U(R) ⊆ U(R), i.e.
∆ is a subgroup of the additive group of R. Then also rs = r(s + 1) − r ∈ ∆(R), as
r(s + 1) ∈ ∆(R) by (2).

(4) Clearly J(R) ⊆ ∆(R). Suppose that ∆(R) is an ideal and r ∈ R. Then rx+1 ∈ U(R),
for any x ∈ R and ∆(R) ⊆ J(R) follows, i.e. ∆(R) = J(R). The reverse implication is
clear.

We leave the easy proof of (5) to the reader. �

When e is an idempotent of a ring R, then the element 1 − 2e is a unit of R. This
observation and Lemma 1.1(2) give immediately the following corollary.

Corollary 1.2. For any ring R:

(1) ∆(R) is closed by multiplication by nilpotent elements;
(2) If 2 ∈ U(R), then ∆(R) is closed by multiplication by idempotents.

Recall that if R is a ring (not necessarily with 1), then the circle monoid R◦ = (R, ◦)
of R is the set R with the circle operation ◦ defined by x ◦ y = x + y − xy. If R is a
unital ring, then the monoid R◦ is isomorphic to the multiplicative monoid (R, ·) of R, the
isomorphism is given by assigning to every x of R◦ the element 1 − x. Moreover y ∈ R
is invertible as an element of the monoid R◦ (such elements are called quasi-invertible or
quasi-regular) if and only if 1 + y is invertible as an element of the ring R and its inverse
in R◦ is called the quasi-inverse of y. Thus the group of units U(R) of R is isomorphic to
the group U◦(R) of quasi-invertible elements of R. It is known that I = J(R) is the largest
ideal of R such that U◦(I) = I.

Theorem 1.3. Let R be a unital ring and T be the subring of R generated by U(R). Then:

(1) ∆(R) = J(T ) and ∆(S) = ∆(R), for any subring S of R such that T ⊆ S;
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(2) ∆(R) is the largest Jacobson radical ring contained in R which is closed with respect
to multiplication by units of R.

Proof. (1) Notice that the subring T consists of all finite sums of units of R. Thus the
statements (2) and (4) of Lemma 1.1 imply that ∆(T ) is an ideal of T and ∆(T ) = J(T ),
respectively.

If r ∈ ∆(R), then r + U(R) ⊆ U(R). This means that r can be presented as a sum of
two units. In particular, r ∈ T and ∆(R) ⊆ T follows.

Let S be a subring of R such that T ⊆ S. Then U(S) = U(R), so ∆(S) = {r ∈ S |
r + U(S) ⊆ U(S)} = {r ∈ S | r + U(R) ⊆ U(R)} = S ∩∆(R) = ∆(R), as ∆(R) ⊆ T ⊆ S.

(2) By (1), ∆(R) is a Jacobson radical subring of R and Lemma 1.1(2) shows that ∆(R)
is closed by left and right multiplication by units of R.

Now let S be a Jacobson radical ring contained in R which is closed by multiplication
by units. If s ∈ S and u ∈ U(R), then su ∈ S = J(S). Thus su is quasi-regular in S and
hence 1 + su ∈ U(R). Now, Lemma 1.1(1) shows that s ∈ ∆(R), i.e. S ⊆ ∆(R), for any
Jacobson radical subring of R. This proves (2). �

The characterization of ∆(R) given in Theorem 1.3(2) gives immediately:

Corollary 1.4. Let R be a ring such that every element of R is a sum of units. Then
∆(R) = J(R).

The classical theorem of Amitsur states that the Jacobson radical of an F -algebra R
over a field F is nil, provided dimF R < |F |. Applying statement (1) of Theorem 1.3 we
get the following corollary.

Corollary 1.5. Let R be an algebra over a field F . If dimF R < |F |, then ∆(R) is a nil
ring.

One can also apply directly the Amitsur’s argument to prove the above corollary. In
particular, when R is an algebra over a field F , Amitsur’s argument shows that algebraic
elements from ∆(R) are nilpotent.

For a unital ring R and its, not necessary unital, subring S, Ŝ will denote the subring
of R generated by S ∪ {1}. For further applications we will need the following

Proposition 1.6. Let R be a unital ring. Then:

(1) Let S be a subring of R such that U(S) = U(R) ∩ S. Then ∆(R) ∩ S ⊆ ∆(S).

(2) U(∆̂(R)) = U(R) ∩ ∆̂(R);
(3) Let I be an ideal of R such that I ⊆ J(R). Then ∆(R/I) = ∆(R)/I.

Proof. The statement (1) is an easy consequence of the definition of ∆.
(2) Let us notice that if r ∈ ∆(R), then v = 1 + r ∈ U(R) and v−1 = 1 − rv−1 ∈

∆̂(R) ∩ U(R), as by Lemma 1.1, −rv−1 ∈ ∆(R).

Let u = r + k · 1 ∈ ∆̂(R) ∩ U(R), where r ∈ ∆(R) and k ∈ Z. We claim that
k̄ = k · 1 ∈ U(R). We have u− k̄ = r ∈ ∆(R) and using Lemma 1.1, we obtain 1− k̄u−1 =
(u − k̄)u−1 = ru−1 ∈ ∆(R). Therefore k̄u−1 = 1 − (1 − k̄u−1) ∈ U(R) and k̄ ∈ U(R)
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follows. As ∆(R) is closed by multiplications by units we can apply the first part of the

proof to v = uk̄−1 = 1 + rk̄−1 to obtain u−1k̄ = v−1 ∈ ∆̂(R), i.e. u−1k̄ = s + l̄, for some

s ∈ ∆(R) and l ∈ Z. This implies, as sk̄−1 ∈ ∆(R), u−1 = sk̄−1 + k̄−1l̄ ∈ ∆̂(R) and shows

that U(R) ∩ ∆̂(R) ⊆ U(∆̂(R)). The reverse inclusion U(∆̂(R)) ⊆ U(R) ∩ ∆̂(R) is clear
and (2) follows.

(3) Let¯denote the canonical epimorphism of R onto R/I. Notice that, as I ⊆ J(R),

U(R̄) = U(R).
Let r̄ ∈ ∆(R̄) and u ∈ U(R). Then r̄ + ū ∈ U(R̄) and there are elements v ∈ U(R)

and j ∈ I such that r + u = v + j. Moreover v + j ∈ U(R), as I ⊆ J(R). This implies

that ∆(R̄) ⊆ ∆(R). Due to equality U(R̄) = U(R), the reverse inclusion is clear, i.e. (3)
holds. �

As an application of the above proposition we get the following

Corollary 1.7. For any unital ring R, ∆(∆̂(R)) = ∆(R), i.e. ∆ is a closure operator.

Proof. Notice that ∆(R) is a Jacobson radical ideal of T = ∆̂(R). Hence, ∆(R) ⊆ T .
Since ∆(R) contains all central nilpotent elements, T/∆(R) is either isomorphic to Z or

to Zn := Z /nZ , for some n > 1 which is square free. Therefore, by Proposition 1.6(3)
and Corollary 1.4 we have ∆(T )/∆(R) = ∆(T/∆(R)) = J(T/∆(R)) = 0. This means that
∆(T ) = ∆(R), as required. �

Proposition 1.6(1) applies to S = Z(R) - the center of R. Therefore, as for the Jacobson
radical, we have:

Corollary 1.8. ∆(R) ∩ Z(R) ⊆ ∆(Z(R)).

We will see in Example 1.16(4) that the inclusion from the above corollary can be strict
even when J(R) = J(Z(R)) = 0.

For a ring R, let Tn(R) denote the ring of all n by n upper triangular matrices over R,
Jn(R) the ideal of Tn(R) consisting of all strictly upper triangular matrices and Dn(R) the
subring of diagonal matrices. As a direct consequence of Proposition 1.6(3) we get

Corollary 1.9. For any ring R:

(1) ∆(Tn(R)) = Dn(∆(R)) + Jn(R);
(2) ∆(R[x]/(xn)) = ∆(R)[x]/(xn);
(3) ∆(R[[x]]) = ∆(R)[[x]].

The following theorem indicates a few classes of rings in which ∆(R) = J(R).

Theorem 1.10. ∆(R) = J(R) if R is a ring satisfying one of the following conditions:

(1) R/J(R) is isomorphic to a product of matrix rings and division rings.
(2) R is a semilocal ring.
(3) R is a clean ring such that 2 ∈ U(R).
(4) R is a UJ-ring, i.e. when U(R) = 1 + J(R).
(5) R has stable range 1.



5

(6) R = FG is a group algebra over a field F .

Proof. (1). Let R be as in (1). In virtue of Proposition 1.6(3) it is enough to show that
∆(R/J(R)) = 0. For doing this, we may assume that J(R) = 0, i.e. R is a product of
matrix rings and division rings. If R is a matrix ring Mn(S), for some unital ring S and
n ≥ 2 then, by Theorem of M. Henriksen [3], every element of R is a sum of three units
so by Corollary 1.4 ∆(R) = J(R) = 0. When S is a division ring, then clearly ∆(S) = 0.
Now (1) is a direct consequence of Lemma 1.1(5).

The statement (2) is a special case of (1).
(3). Suppose R is a clean ring such that 2 ∈ U(R). If e ∈ R is an idempotent, then

1−2e ∈ U(R) and e = (1
2
− 1

2
(1−2e)) is a sum of two units. This shows that every element

of R is a sum of three units, so the thesis is a consequence of Corollary 1.4.
(4). Suppose U(R) = 1 +U(R). Let us now suppose that the ring R is a UJ-ring. Then

if r ∈ ∆(R) we have r + U(R) ⊆ U(R) i.e. r + 1 + J(R) ⊆ 1 + J(R). This immediately
shows that r ∈ J(R) and ∆(R) = J(R) follows.

(5) This statement is Exercise 20.10b in the book [5]. We repeat the short argument for
the convenience of the reader. Let us assume the ring R has stable range 1. We only have
to show that if r ∈ R is such that r + U(R) ⊆ U(R) then r ∈ J(R). Now, for any s ∈ R
we have, Rr +R(1− sr) = R. Hence, by the stable range 1 condition, we know that there
exists x ∈ R such that r +x(1− sr) ∈ U(R). This gives x(1− sr) ∈ r +U(R) ⊆ U(R) and
shows that r ∈ J(R).

If R = FG is as in (6), then clearly every element of R is a sum of units, so (6) follows
as above. �

It is known that semilocal rings have stable range 1, thus the statement (2) of the above
proposition is also a consequence of (5).

Let us record the following easy observation.

Lemma 1.11. Let G be a subgroup of the additive group of a unital ring R. Then G is
closed with respect to multiplication by invertible elements if and only if it is closed with
respect to multiplication of quasi-invertible elements of R.

Proof. Let r ∈ R. As G is an additive group, rG ⊆ G if and only if (1 − r)G ⊆ G. This
observation yields the lemma. �

Therefore, using the above we have:

Theorem 1.12. Let R be a unital ring and G a subgroup of the additive group of R. Then
the following conditions are equivalent:

(1) G = ∆(R)
(2) G is the largest Jacobson radical subring of R which is closed with respect to mul-

tiplication by quasi-invertible elements of R
(3) G is the largest additive subgroup of R consisting of quasi-invertible elements and

closed with respect to multiplication by quasi-invertible elements of R.

Proof. Theorem 1.3 (2) and Lemma 1.11 show that ∆(R) is Jacobson radical subring of
R which is closed by multiplication by quasi-invertible elements. Let G be an additive
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subgroup consisting of quasi-invertible elements and closed with respect to multiplication
by quasi-invertible elements of R. In particular G is a Jacobson radical non unital subring
of R and, by Lemma 1.11, G is closed by multiplication by units of R. Therefore Theorem
1.3 (2) gives G ⊆ ∆(R). This yields the theorem. �

One can modify the definition of ∆ to work for rings without unity. Namely, let us
set ∆◦(R) = {r ∈ R | r + U◦(R) ⊆ U◦(R)}. Then it is clear that if R is a unital ring,
then ∆◦(R) = ∆(R). For any ring R, not necessary containing 1, let R1 denote the ring
obtained from R by adjoining unity with the help of Z. Then, making use of the fact that
U◦(Z) = 0, it is easy to check that

Lemma 1.13. For any, not necessary unital, ring R, one has ∆◦(R) = ∆◦(R
1) = ∆(R1).

The above lemma says that we can extend the definition of ∆ to all, not necessary,
unital rings and all statements from Theorem 1.12 remain equivalent for arbitrary rings.
Moreover, if one of the equivalent conditions holds, then ∆(∆(R)) = ∆(R)

A well-known classical result about the Jacobson radical J(R) of a ring R states that
J(eRe) = eJ(R)e, for any idempotent e of R. We will show that such equality is not
satisfied in general for ∆(R). However the inclusion e∆(R)e ⊆ ∆(eRe) always holds under
the mild assumptions that e∆(R)e ⊆ ∆(R). We have seen in Corollary 1.2 that this
assumption holds automatically provided 2 ∈ U(R).

Proposition 1.14. For any ring R, the following conditions hold:
(1) Let e2 = e be such that e∆(R)e ⊆ ∆(R). Then e∆(R)e ⊆ ∆(eRe).
(2) ∆(R) does not contain nonzero idempotents.
(3) ∆(R) does not contain nonzero unit regular elements.

Proof. (1) Let us first remark that if y ∈ U(eRe), then y1 = y+(1−e) ∈ U(R) is such that
y = ey1e. Now, let r ∈ e∆(R)e ⊆ ∆(R), we want to show that for any unit y ∈ U(eRe) we
have that e−yr ∈ U(eRe). As above, let y1 := y+1−e ∈ U(R). Since r ∈ e∆(R)e ⊆ ∆(R),
we know that 1 − y1r ∈ U(R). Hence there exists b ∈ R such that b(1 − y1r) = 1 and so
e = eb(1 − y1r)e = eb(e − y1re)e = eb(e − (y + 1 − e)re = eb(e − yre) + eb(1 − e)re =
ebe(e − yre), where the last equality comes from the fact that r ∈ eRe. This gives that
e− yre = e− yr is left invertible in eRe. Since 1− y1r ∈ U(R) we also have (1− y1r)b = 1
and hence 1 = (1 − (y + 1 − e)r)b = (1 − yr)b. Multiplying on both sides by e we get
e = e(1− yr)be = (e− yr)be = (e− yr)ebe. This shows that ebe is a right and left inverse
of e− yr, as required.

(2) If e2 = e ∈ ∆(R) then 1− e = e + (1− 2e) ∈ U(R), as 1− 2e is a unit. This forces
e = 0, i.e. (2) holds.

(3) if a ∈ ∆(R) is a unit regular element, then there exists an invertible element u ∈ U(R)
such that au is an idempotent. Statement (2) above shows that a must then be zero. �

Corollary 1.2 and Proposition 1.14(1) yield the following:

Corollary 1.15. Suppose 2 ∈ U(R). Then e∆(R)e ⊆ ∆(eRe), for any idempotent e of R.

The following examples show instances where ∆(R) 6= J(R) and indicate limits for
obtained results.
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Examples 1.16. (1) Let us observe that Theorem 1.12 implies that if A be a subring
of a ring R such that U(R) = U(A), then J(A) ⊆ ∆(R). In particular taking A
to be a commutative domain with J(A) 6= 0 and R = A[x], we obtain 0 = J(R) ⊂
J(A) ⊆ ∆(R). (see also [5, Exercise 4.24])

(2) ( cf. [2, Example 2.5]) Let R = F2 < x, y > / < x2 >. Then J(R) = 0 and
U(R) = 1+F2x+xRx. In particular F2x+xRx is contained in ∆(R) but J(R) = 0.

(3) Let S be any ring such that J(S) = 0 and ∆(S) 6= 0 and let R = M2(S). Then,
by Theorem 1.10(1), ∆(R) = J(R) = 0. Therefore, if e = e11 ∈ R, then e∆(R)e =
eJ(R)e = J(eRe) = 0. and ∆(eRe) ' ∆(S) 6= 0. This shows that the inclusion
e∆(R)e ⊆ ∆(eRe) from Proposition 1.14 can be strict, in general.

(4) Let A be a commutative domain with J(A) 6= 0 and S = A[x]. Then, by (1),
0 6= J(A) ⊆ ∆(S) and clearly J(S) = 0. R = M2(S), where A is a commutative
local domain. By Theorem 1.10, ∆(R) = J(R) = 0. Notice that the center
Z = Z(R) of R = M2(S) is isomorphic to S and U(Z) = U(R) ∩ Z. Therefore
0 = ∆(R) ∩ Z ⊆ ∆(Z) ' J(A) 6= 0. Thus the inclusion from Corollary 1.8 can be
strict even when J(R) = 0 = J(Z(R)).

The Example 1.16(2) was attributed to Bergman in [2]. Let us mention that this example
appeared earlier in [1, Example 6], where prime rings with commuting nilpotent elements
were considered.

Recall that a 2-primal ring is a ring such that the set of all nilpotent elements N(R) of
R coincides with the prime radical B(R), i.e. R/B(R) is a reduced ring. The following
proposition can be considered as a generalization of Example 1.16(1).

Proposition 1.17. Let R be 2- primal ring. Then ∆(R[x]) = ∆(R) + J(R[x]).

Proof. Suppose first that R is a reduced ring. Then U(R[x]) = U(R) (cf. [4]). Thus, by
definition of ∆(R[x]), we have ∆(R) ⊆ ∆(R[x]). Let a + a0 ∈ ∆(R[x]), where a ∈ R[x]x
and a0 ∈ R. Then, for any u ∈ U(R), a + a0 + u ∈ U(R). This forces a0 + u ∈ U(R) and
a = 0 and ∆(R) = ∆(R[x]) follows in this case.

Suppose now that R is 2-primal. Clearly B(R[x]) = B(R)[x] ⊆ J(R[x]). As R is 2-
primal, R/B(R) is reduced, so J(R[x]) = B(R[x]) = B(R)[x]. By the first part of the
proof applied to R/B(R) and Proposition 1.6(2), we have

∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]).

The above yields the desired equality. �
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