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HILBERT 90 THEOREMS OVER DIVISION RINGS

T. Y. LAM AND A. LEROY

Abstract. Hubert's Satz 90 is well-known for cyclic extensions of fields, but
attempts at generalizations to the case of division rings have only been partly
successful. Jacobson's criterion for logarithmic derivatives for fields equipped
with derivations is formally an analogue of Satz 90, but the exact relationship
between the two was apparently not known. In this paper, we study triples
(K,S, D) where S is an endomorphism of the division ring K, and D is
an S-derivation. Using the technique of Ore extensions K [t, S, D]. we char-
acterize the notion of (5, D)-algebraicity for elements a e K, and give an
effective criterion for two elements a, b € K to be {S, £>)-conjugate, in the
case when the (S, Z>)-conjugacy class of a is algebraic. This criterion amounts
to a general Hubert 90 Theorem for division rings in the (K ,S, Z))-setting, sub-
suming and extending all known forms of Hubert 90 in the literature, including
the aforementioned Jacobson Criterion. Two of the working tools used in the
paper, the Conjugation Theorem (2.2) and the Composite Function Theorem
(2.3), are of independent interest in the theory of Ore extensions.

1. Introduction

Few theorems in mathematics are universally known by a number Hilbert's
celebrated Theorem 90 enjoys this almost unique distinction. "90", however,
is a pure numerological accident, for Hilbert's theorem on cyclic extensions got
its name for no better reason than that it appeared between Satz 89 and Satz
91 in his Zahlbericht [H], a report on the state-of-the-art of algebraic number
theory to the Deutsche Mathematikervereinigung, c. 1897. Anyway, the number
"90" has since stuck with this Uttle gem of a theorem, which has come to be
viewed by many as exemplary of the quality of Hilbert's creative contributions

in Zahlbericht (cf. [Re, p. 55]).
For a finite cycüc field extension K/F with Galois group (S), Hubert's Satz

90 states the foUowing:

(1.1) An element b e K has norm 1 (with respect to the extension K/F) iff
b = S(c)c~x for some ceK*.

In view of the multiplicativity of the norm, one has also the following equiv-

alent formulation:

(1.2) Two elements a, b e K have the same norm iff b = S(c)ac~x for some

ceK*.
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Here, of course, the norm of an element b e K is just NK/F(b) := Sk~x(b) • ■ ■

S(b)b e F, where k = \(S)\ = [K : F]. One usuaUy thinks of (1.1) as giving a
characterization of the elements of norm 1 in the field K, but one may equaUy
weU think of it as giving a description of the elements in K expressible in the
form S(c)c~x for some ceK*. Similarly, one may interpret (1.2) as giving
an effective description, in terms of the norm, of the equivalence relation " ~ "
on K given by a~b<&b = S(c)ac~x for some ceK*.

Some generalizations and analogues of the Hubert 90 Theorem are known in
the literature. One natural generalization is to try to replace fields by division
rings. Consider a division ring K and an automorphism S of K such that
Sk = I and none of S, S2,..., Sk~x is an inner automorphism of K. Then,
for F = Ks (the division subring consisting of fixed points of S), K/F is
an "outer cyclic extension" with Galois group (S). In this case, Jacobson has
shown [J3, CoroUary, p. 47] that (1.1) stiU holds, if we understand by NK/F(b)

the expression Sk~x(b)--S(b)b. Since K need not be commutative, however,
the norm function may fail to be multiplicative, so it is no longer possible to
derive (1.2) (which we might caU the "strong form" of Hubert 90) from the
"weak form" (1.1). The only "strong form" known in the literature seems to be
Jacobson's Theorem 27 in [J3]. But, in proving this "strong form", Jacobson
had to assume that the norm of a is a central element in K fixed by S. Also,
nothing seems to be known if the automorphism S has infinite (instead of
finite) order.

Another interesting analogue of the Hubert 90 Theorem in the setting of
derivations on fields was obtained by Jacobson in [Ji]. Let D be a derivation
on a field K of characteristic p > 0, and let KD be the subfield of constants
of D. It is weU-known that [K : Kd] < 00 iff D is an algebraic derivation,
and if this is the case, then the minimal polynomial of D has the special form

g(t) = YflLodtP' where dm = 1 and d¡ e Kd- In this setting, Jacobson has
obtained an analogue of the Hubert 90 Theorem by giving a characterization
for the set of "logarithmic derivatives" {D(c)c~x : ceK*} in K, as foUows
[J,, Theorem 15], [J2, p. 191]):

(1.3) An element b e K is a logarithmic derivative with respect to D iffY,d¡b^
= 0, where

¿,iVl := bp' + (DP-\b))p"i + (Dp2-X(b))p'~2 + ■■■ + DP'~x(b).

For instance, in the simplest case when g(t) = f (i.e. when D is a nilpotent
derivation with index of mlpotency p), b e K is a logarithmic derivative iff
0 = ¿W = V + DP~x(b). Notice that, although the derivation setting here
looks different from the cyclic extension setting of (1.1), there are some strong
analogies. First, it is known that D is cyclic as a A'o-linear operator on K
[Ji, §3]. Secondly, since D(a") = pa"~xD(a) = 0 for every a e K, we have
K" ç Kd , so K/Kd is a purely inseparable field extension of exponent < 1. In
this case, there exists a good substitute for a Galois theory for K/Kp, in which
the role of the Galois group in the classical theory is taken by the restricted Lie
algebra of derivations on K which are constant on KD (see [Ji], [J2, Chapter
4, §8]). In view of these analogies, it seems reasonable to think of (1.3) as a
result of the same genre as (1.1).

In this paper, we seek a uniform generalization of the Hubert 90 Theorem to
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division rings which will, in particular, subsume and strengthen all the versions
mentioned above. This generalization is inspired by Ore's formation [O] of the
skew polynomial ring (or Ore extension) K[t,S,D]. Here, AT is an arbitrary
division ring, S is an endomorphism of K, and D is an S-derivation of K,
that is, D: K -> K is an additive map such that D(ab) = S(a)D(b) + D(a)b
for all a, b eK. By definition, K[t ,S,D] consists of left polynomials Y, bit'
(bi € K) which are added in the usual way and multiplied according to the rule
ta — S(a)t + D(a) for all aeK. By working with the polynomials in the ring
R := K[t, S, D], we have an effective means of analyzing the triple (K, S, D).
In particular, when D = 0, we wiU be dealing with the pair (K,S), and when
S = I, we wiU be dealing with the pair (K, D).

Given the triple (K,S, D), there is a natural notion of (S, Z))-conjugacy,
denned as foUows. For aeK and c e K*, we write ac := S(c)ac~x +D(c)c~x,
and we say that b e K is (S, D)-conjugate to a if b = tzc for some c e
K*. A direct calculation shows that (ac)d = adc, and this impUes easüy that
(S, D)-conjugacy is an equivalence relation on K. More conceptually, one can
check that b is (S, D)-conjugate to a iff the left /{-modules R/R(t - a) and
R/R(t - b) are isomorphic. Assuming this, of course, the fact that (S, D)-
conjugacy is an equivalence relation becomes obvious. In this general context,
a Hubert 90 Theorem (in the "strong form") wiU be simply any effective criterion
for the (S, D)-conjugacy of a pair of elements a,b e K. In this paper, we
shall formulate such a theorem, in the case when the (S, D)-conjugacy class
As<D(a) := {ac:ceK*} is algebraic, in a sense to be explained below.

In our earlier work [Li], we have introduced the basic technique of "eval-
uating" a skew polynomial f(t) = £ b¡t' e R at the constants aeK. Con-
ceptually, f(a) is the unique constant ("remainder") r e K such that f(t) =
q(t)(t -a) + r for some q(t) e K[t ,S,D]. ComputationaUy, f(a) is given by
£ b¡Ni(a), where the "power functions" N¡ are denned inductively as foUows:
N0(a) = 1, Ni+x(a) = S(N¡(a))a + D(N¡(a)). With these definitions of f(a),
we can define the notion of algebraic subsets of K [L2] : a set A ç K is said
to be (S, D)-algebraic if f(A) = 0 for some nonzero / e K[t ,S,D]. In this
case the monic / of the least degree with /(A).= 0 is caUed the minimal poly-

nomial of A, and deg/* is called the rank of A. The most important case for
studying the notion of algebraicity is the case when A is the (S, £>)-conjugacy

class AStD(a) of some element aeK. In the classical case when S = I and
D = 0, Al'°(a) is just the usual conjugacy class {cac~x : c eK*} of a, and, as
is well-known (see e.g. [La, p. 207]), this is (/, 0)-algebraic in the above sense iff
a is an algebraic element over Z(K), the center of K. Therefore, the notion
of algebraicity of As*D(a) is in direct generalization of the notion of algebraic
elements over the center of a division ring.

Another tool needed from our recent work [L4] is the notion of a "change-
of-variable" polynomial (or a cv-polynomial for short). Let R = K[t, S, D]
and R' = K[t', S', D'\ be two Ore extensions of K. By definition, p(t) e R
is a cv-polynomial with respect to (S', D1) if p(t)a = S'(a)p(t) + ¿'(a) for
every aeK. Such a polynomial p(t) determines a unique A-homomorphism
tp: R' - R by tp(t') = p(t). For g(t') = ¿c^ € R', the image (¡>(g) =
53c,p(Z)' e R is the "composite function" g(p(t)), which will also be denoted
by (g °p)(t). Following [L4], we shall say that p(t) e R is a cv-polynomial if
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it is a cv-polynomial with respect to some pair (S' ,£>')• The basic theory of
cv-polynomials and their applications to the study of homomorphisms between
Ore extensions are given in [L4]. We shaU not need the deeper results of [L4]
here; however, the idea of using a change of variables to "transfer" information
from one Ore extension to another turns out to be crucial for this work.

Let us now give a summary of the results in this paper. In §2, we prove two
basic formulas for cv-polynomials, in the form of the "Conjugation Theorem"
and the "Composite Function Theorem". The detailed statements are given in
(2.2) and (2.3) below. These theorems are easy to prove once they are put in
the right context, and they provide the computational basis for the rest of this
work. In §3, we study the " A-transform" associated to a polynomial h(t) e R
and an element aeK. This is a self-map AAjfl from K to K defined by:
h,a(0) = 0 and kf,ia(c) = h(ac)c for ceK*. The significance of kkta Ues
in the fact that it amounts to the action of a certain "differential operator"
on AT. In §3, we study the "exponential space" E(h, a) := ker(A/iifl) and the

"co-exponential space" E(h, a) := coker(AAa), and the relationship between
these. This gives information on the solutions of both polynomial equations and
differential equations on K, continuing the earlier work of Amitsur [Ai]. In
general, E(h ,a) is a right vector space over the (S, Z))-centralizer Cs<D(a) :=
{0} U {c e K* : ac = a), of dimension < deg h(t). One of the main results in §3
is (3.19) which characterizes the polynomials h(t) for which the upper bound
above becomes an actual equality. Aside from their appUcations to the rest of
the paper, the results in §3 should be of interest in their own right in the study
of polynomial and differential equations over division rings.

Wim the tools developed in §2—§3 at our disposal, we proceed in §4 to study
the behavior of algebraic sets and conjugacy classes under a change of vari-
ables. This study results in certain general transfer principles relating (S, D)-
algebraicity and conjugacy to (S', D')-algebraicity and conjugacy, as foUows.
Let p(t) be a nonconstant cv-polynomial with respect to (S', D') and let
<t>: K[t', S', D'] — K[t,S,D] be the AT-homomorphism associated with p(t)
(denned by <j>(t') = p(t)). Then we have:

(1.4) A subset AC K is (S, D)-algebraic iff p(A) is (S', Wyalgebraic.

(1.5) Let As'D(a) be an algebraic class, and assume that its minimal polynomial
lies in im((t>). Then an element b e K is (S, D)-conjugate to a iff p(b) is
(S', U)-conjugate to p(a).

AU of the above results come to a head in §5, where we try to find the gen-
eral criterion for (S, £>)-algebraicity and (S, Z))-conjugacy. To accomplish this
goal, we just need one more idea from the standard theory of division rings,
namely, the criterion for usual conjugacy and the algebraicity of an ordinary
conjugacy class, as given in the classical Wedderburn-Dickson Theorem. Ac-
cording to this theorem (see, e.g. [La, p. 207]), a class A(a) = {cac~x : c e K*}
is algebraic iff a is algebraic over Z(K) (the center of K), and in this case,
b e K is conjugate to a iff a, b have the same minimal polynomial over
Z(K). In the case of a general triple (K, S,D),-we proceed as foUows. First
we can easily dispose of the case when no (positive) power of S is an inner
automorphism: in this case there is at most one (S, D)-algebraic class, and
this class is easüy described (see (5.3)). The more interesting case is then when
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S has finite "inner order" (i.e. some power of S is an inner automorphism).
Also, we may restrict ourselves to the case when R = K[t,S,D] is not a sim-
ple ring (for otherwise there wiU not be any algebraic classes). Under these
assumptions, it is easy to see that R has nonconstant polynomials commuting
with all scalars, i.e. cv-polynomials with respect to (1,0). By choosing such
a polynomial p(t) suitably, we can then apply the general results (1.4), (1.5)
with (S', D') = (1,0). The net effect of this is that we can transfer questions
concerning (S, Z))-algebraicity and (S, D)-conjugacy back to similar questions
in the classical case. By applying the Wedderburn-Dickson Theorem in the clas-
sical case, we then obtain the Hubert 90 Theorem we want, with the polynomial
p(t) mentioned above playing the role of the "norm". The detaüed statement
of this theorem is given in (5.4).

In the final section (§6) of the paper, we make the necessary notational trans-
lations to show that the general Hubert 90 Theorem derived in (5.4) subsumes
(and extends) all known forms of the theorem in the literature. For instance, in
the case D = 0, we obtain a strengthening of the aforementioned Theorem 27
of Jacobson [J3, p. 47], with considerably relaxed hypotheses on the elements
a, b and on the automorphism S (see (6.2)(B)). Similarly, Jacobson's "Hubert
90" results in [Ji, Theorem 15], [J2, p. 191] are extended from usual deriva-
tions to S-derivations, and from fields to division rings. Note, however, that
the criterion given for (S, Z))-conjugacy in (5.4) is valid only for an algebraic
(S, Z))-class. Counterexamples are given in §6 to show that this criterion may
fail to guarantee (S, £>)-conjugacy in general.

Throughout this paper, the notations and terminology introduced above will
remain in force. At this point, let us also recall a few other standard notations.
If D = 0, we write K[t,S] for K[t, S, 0],and if S = I, wewrite K[t,D] for
K[t, I, D\. The same conventions shall be used for (S, Z))-conjugacy classes
and (S, D)-centraUzers. For u e K*, /„ denotes the inner automorphism of
K associated with zz, defined by Iu(x) = uxu~x. An S-derivation D is said
to be S-inner if D = DCts for some ceK, where DCts(x) := ex - S(x)c
for all x e K. On the other hand, D is said to be algebraic if g(D) = 0 for
some nonzero polynomial g(t) = £ d¡t' e K[t, S ,D]. (Note that, although the
evaluation of g(t) at elements of K has to be defined in a nontrivial way, g(D)
here is simply denned to be the differential operator ¿^d¡D'.) For an algebraic
5-derivation D, the minimal polynomial of D is the monic polynomial g(t)
of the least degree such that g(D) = 0. In the same vein, an endomorphism
S of K is said to be algebraic if g(S) = 0 for some nonzero polynomial g,
and the minimal polynomial of 5 is defined accordingly. A polynomial f(t) e
K[t,S, D] is said to be right invariant1 if /(Z)A[Z, S, D] ç K[t, S, D]f(t),
and right-semi-invariant2 if f(t)K C Kf(t). These polynomials arise naturally
in the study of the ideals of K[t, S, D], the minimal polynomials of (S, D)-
conjugacy classes of K, and the algebraicity of D and S (see [ A2, Ca, Le, L2
and L3]). (Note that semi-invariant polynomials are exactly the cv-polynomials
with respect to (5", 0) for some S'.) Other standard ring-theoretic notations
and terminology follow [Co, Mc and Ro].

'To simplify language, we shall suppress the adjective "right" in the following and simply speak
of invariant and semi-invariant polynomials.

2See footnote 1.
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2. The main formulas

The two main results in this section are: the Conjugation Theorem (2.2) and
the Composite Function Theorem (2.3). Before we come to these theorems,
let us first recall a key fact from [Li] about the evaluation of a product of
two (skew) polynomials. Throughout this paper, R denotes the Ore extension
K[t, S, D], and R' denotes another Ore extension K[f, S', D1].

Product Theorem 2.1. Let f(t), g(t) e R and a e K. If g(a) = 0, then
(fg)(a) = 0.If g(a) * 0, then (fg)(a) = f(a*W)g(a).

Here, "exponentiation" is the notation used for (S, D)-conjugacy: for a e K
and c 6 K*, the (5, D)-conjugate of a by c is by definition a° := S(c)ac~x +
D(c)c~x. Note that, with this notation, (ac)d = adc for any aeK and
c,deK* . In this case when we are dealing with two pairs (S, D) and (S', D1)

simultaneously, we have to be a bit careful in using the exponential notation,
since it could mean (5", Z>')-conjugation as weU as (S, D)-conjugation. We
would need to specify which conjugation is intended if this is not entirely clear
from the context.

Concerning the evaluation of skew polynomials, we should also make the
foUowing remark on the composite function notation. For any homomorphism
tf> : R' = K[t' ,S',D']^R = K[t,S,D] defined by the cv-polynomial tb(t') =
p(t)eR,vte have agreed to write g(p(t)) (or (gop)(t)) for the image of g e R'
under the map </>. In the special case when p(t) is actually a constant, say a, we
need to be a little careful with this notation, since g (a) has already a meaning,
namely, the evaluation of the (S', ¿^-polynomial g(f) at aeK. Fortunately,
there is no conflict between the two notations. To see this, we need to verify
that, if p(t) = aeK, then for any g(f) = £ bit'' e R', tj>(g) is indeed g(a).
Now tj>(g) = </>(£ bitn) = ¿Z bi<t>(fy = ¿Z ha1. Therefore, it suffices to show
that N\(a) = a', where N¡ is the zth power function with respect to (5", T?),
for then <¡>(g) = X)biN¡(a) = g(a). To see this, we induct on z, the case
z = 1 being automatic. Assume that N-(a) = a'. Then, since p(t) = a is a cv-
polynomial with respect to (S', D'), we have ac = S'(c)a-\-D'(c) for aU c. For
c = N'((a) = of, we have in particular zzi+1 = S'(N'i(a))a+D'(N'i(a)) = N'i+i(a),
as desired.

Conjugation Theorem 2.2. Let p(t) e R = K[t, S, D] be a cv-polynomial with
respect to (S', D1). Then, for any aeK and c e K*, we have p(ac) = p(a)c.
Here, on the LHS, the conjugation of a by c is with respect to (S, D), while
on the RHS, the conjugation of p(a) by c is with respect to (S', D1). In other
words, the following diagram commutes:

j.     (5,0)-con)ug.byc     ^

4 I«
„    (S',P')-conjug.byc    „
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where the two vertical maps are given by evaluation of the polynomial p(t).

Proof. Since p(t) is a cv-polynomial with respect to (S', LV), we have p(t)c =
S'(c)p(t) + D'(c) for every ceK. Evaluating the two sides of this equation on
a and applying the Product Theorem, we get p(ac)c = S'(c)p(a)+LV(c), where
ac denotes (S, D)-conjugation. Right multiplying by c~x, we get p(ac) =
S'(c)p(a)c~x + iy(c)c-x = p(a)c ((S', £>')-conjugation), as desired.   Q.E.D.

Composite Function Theorem 23. Let p(t) eR be a cv-polynomial with respect
to (S', LV). For any polynomial g(t') e R' = K[t', S', £>'] and any aeK,
we have (g ° p)(a) = g(p(a)). (Here, the LHS denotes the evaluation of the
composite polynomial gop e R on a, while the RHS denotes the evaluation of
the (S', D')-polynomial g(t') on p(a).) In other words, the following diagram

commutes:
R!-*R

K

where the horizontal map is the K-homomorphism defined by t' *-+ p(t), and
EP(a) and Ea are the evaluation maps at p(a) and a respectively.

Proof. There are two possible ways of proving this fundamental result. The
first way is to prove, by induction on i (and using (2.1), (2.2)), that the
evaluation of p(t)' at a is given by N'¡(p(a)), where N- denotes the z'th

power function with respect to (S', LV). This impUes that, if g(f) = £ bit'',
then (g o p)(a) = 2ZbiN¡(p(a)) = g(p(a)). We shaU leave the detaüs of this
inductive proof to the reader, and present instead a more conceptual proof
based on the characterization of the evaluation of a polynomial at a as the
remainder of its division by t - a (see [Li, (2.4)]). Using this character-
ization, we can write p(t) = qx(t)(t - a) + p(a) for some qx(t) e R and
g(f) = q2(t')(t' - P(a)) + g(p(a)) for some q2(t) e R'. Applying to the latter
the AT-homomorphism <f>: R' -* R denned by $(?) = p(t), we have

(¿? °P)(t) = qi(p(t))(p(t) -P(a)) + g(p(a))

= qi(p(t))qi(t)(t - a) + g(p(a)).

This impUes immediately that (g°p)(a) = g(p(a)).    Q.E.D.

At this point, it is convenient to recaU a result from [L2] relating the evalua-
tion of polynomials at constants and evaluation of polynomials at derivations.
Let g(t') be any polynomial in R' = K[t', S', Z>'], and b eK be any con-
stant. Under the isomorphism Rl -+ K[t, S', LY-Dbs-] defined by t' >-> ï+b,
g maps to the polynomial g(t) := g(t + b). According to [L2, (5.8)], we have

the relation

(2.4) g(D'-Db,s')(c) = g(bc)c   (Vc€A-*),

where bc denotes (of course) (S', D')-c°nJugati(m. It turns out that we can
combine the three basic formulas (2.2), (2.3) and (2.4) into a single formula.
For, if p(t) e R is any cv-polynomial with respect to (S', D'), then, letting
b = p(a), the RHS of (2.4) is g(p(a)c)c = g(p(ac))c by (2.2), and this is in
turn (g°p)(ac)c by (2.3). Therefore, we have proved (Vzz e K) :

(2.5) g(D'-DpiahS>)(c) = (gop)(ac)c,

/E"
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where ac denotes (S, D)-conjugation. Conversely, it can be seen easdy that
(2.5) subsumes the three formulas (2.2), (2.3) and (2.4). In fact:

(1) Letting p(t) = t, we get back (2.4).
(2) Letting c = 1, we get back (2.3), since in this case g(D' - Dp^)tS')(c) is

just |(0) = g(p(a)).
(3) Letting g(f) = t', we get back (2.2), since in this case g(D'-Dp(a) s,)(c)

is just (D' - Dp(a)<S')(c)+p(a)c = D'(c) + S'(c)p(a) = p(a)cc.
In passing, it is worth observing a special case of (2.5) which is much easier

to remember. Namely, if we assume that p(a) = 0, then g is just the same
polynomial as g, and (2.5) takes on the much simpler form:

(2.5') g(D')(c) = (gop)(ac)c   (yaeK, ceK*).

3. The A-transform and exponential spaces

In this section, we shall focus our attention on a single (S, £>)-conjugacy
class AStD(a) = {ac:c e K*}, where a is a fixed element of AT. In order
to study the set of roots of a polynomial h(t) e R = K[t,S,D] in As'D(a),
we introduce the foUowing important self-map of K caUed the ¿-transform
(associated with the pair (h, a)).

Definition 3.1. Fot heR and a e K, we define kh>a: K -+ K by: kh>a(0) = 0,
and AA,a(c) = h(ac)c for every ceK*.

Using the formula (2.4) (in the (S, Z))-setting), we see that A/i>a may be

thought of as a "differential operator" on K, namely, h(D - D0is), where

h e K[t, S,D- Da¡s\ is denned by h(t) = h(t + a). (For instance, kf,t0 is
just the operator h(D).) In particular, kh.a is an additive endomorphism3 of
K. The zeros of the differential operator constitute exactly the kernel of k¡,ya,
which we shaU denote by

(3.2) E(h, a) := {0} II {ceK*: h(ac) = 0}.

This has been called the "exponential space" in our earlier work \LX, (4.2)];
[L2, (4.1)]. The cokernel of kh,a is also of interest; we shaU call it the co-

exponential space, and denote it by E(h, a).
RecaU that Cs-D(a) := {0} U {c e K*:ac = a} is a subdivision ring of K.

(For instance, CS'D(0) is just Kd, the subdivision ring of constants of the
derivation D. If (S, D) = (I, 0), Cs<D(a) is just the usual centralizer Ck(o)
of zz.) For any ceK* and any nonzero Cq e Cs'D(a), we have

h,a(cc0) = h(acc°)cco = h((a^)c)ccQ = h(ac)cc0 = kh¡a(c)c0,

so kh,a is a right C5,°(<z)-vector space endomorphism of A. In particular,

E(h, a) and E(h, a) are both right vector spaces over Cs-D(a).

Examples 33. ( 1 ) In the classical case when (S, D) = (1,0), for the polyno-
ffda! h(t) = iZbit', AAa is simply the map c ^ ¿Zb¡ca'. The fact that kh<a
is right linear over C*(a) is particularly clear from this representation.

3 The additivity of AA „ can also be seen more directly by using the formula (2.9)( 1 ) from

IL,].
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(2) If A is a constant polynomial h(t) = b, k/, >fl is just left multiplication by
b (independentiy of a). If b ^ 0, then kh,a is an isomorphism, so E(h, zz) =

E(h,a) = 0.
(3) If h(t) = t - b, the map kh>a sends c to D(c) + S(c)a -be. If b $

As>D(a), then E(h, a) = 0 ; if b e As-D(a), say b = ad, then E(h, a) =
d-Cs>D(a).

(A) In general, kh>a is injective iff A(Z) has no root in As'D(a).
(5) In the case when D = 0, there is also another interpretation of A¿>a. In

fact, if we let 5" := Ia-x o S, and h'(t') := h(at') e K[t',S'], then, according

to [L2, (5.16)], kkta(c) = h(ac)c = h'(S')(c) for every c e K*, so AA>a is
given by the operator h'(S'). In particular, in the case zz = 1, kht i is just the
operator h(S).

If h(t) e R happens to be a cv-polynomial with respect to (S', LV), then
using the conventions of (2.2) we have h(ac)c = h(a)cc = S'(c)h(a)+D'(c) (Ve e

K*), so kk,a has the explicit form: kf,<a(c) = S'(c)h(a)+LV(c) for every ceK.
In particular, if h(t) is a semi-invariant polynomial, we have the foUowing
interpretation for the exponential and co-exponential spaces to be zero.

Proposition 3.4. Let h(t) be a semi-invariant polynomial with degree n > 1 and

let aeK. Then E(h,a) = 0 iff h(a) ¿0, and E(h,a) = 0 iffh(a)¿0 and
S is an automorphism.

Proof. Let b be the leading coefficient of h. Then A is a cv-polynomial with
respect to (S', 0) where S'(c) = bSn(c)b~x for every ceK. By the remark

preceding the proposition, we have then kh>a(c) = bSn(c)b~xh(a) for every
c. If h(a) = 0, kh.a is the zero map, and therefore neither injective nor
surjective. If h(a) ^0, then k¡,,a is clearly injective, and is surjective iff 5 is
surjective.   Q.E.D.

Some more properties of the maps kh¡a are obtained in the theorem below.
The properties in (2) are especiaUy crucial in understanding the behavior of the
exponential and co-exponential spaces.

Theorem 3.5. (1) Pd°kh gd =khytlopd, where pd denotes right multiplication by

d on K. In particular, for any d e K* ,p¿ induces additive group isomorphisms

E(h, ad) * E(h, a), and E(h, ad) -^ E(h, a).
(2)Forany h,h' eR, wehave kh,ha = A/,',a°*A,a > and there is a long exact

sequence of right vector spaces over the division ring C := Cs'D(a) :

0^E(h,a)-* E(h'h, a) -► E(h',a) -+ E(h,a) -+ E(h'h,a) -+ E(h', a) -* 0.

In particular, we have the following cardinal inequalities for the right dimensions:

(3.6) [E(h'h, a) : C]r < [E(h', a) : C]r + [E(h, a) : C]r ;

(3.7) [Ë(h'h, zz) : C], < [E(h', a) : C]r + [E(h, zz) : C]r.

Proof. (1) For any c e K*, we have

(Pd °h,a<)(c) = Pdih((ad)c)c) = h(acd)cd = kh,a(cd) = khtttpd(c).

This proves the first equation in (1). From the commutative diagram of ad-
ditive endomorphisms of A associated with this equation, it foUows that p¿
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induces additive isomorphisms from E(h, ad) to E(h, zz), and from E(h, ad)

to E(h, a).
(2) It suffices to show that kh,hta(c) = k¡,<>a(AA>a(c)) for every ceK*. We

may assume that h(ac) # 0, for otherwise both sides are zero. Under this
assumption, we have by the Product Theorem (2.1):

h'hAc) = [h'h)(ac)c = h'((ac)W)h(ac)c

= h'(ah^ch(ac)c = kh,,a(h(ac)c) = kh,,a(kh<a(c)),

as desired. Now from the commutative triangle:

A"

A"

we derive by a standard argument the kernel-cokernel exact sequence for the
three maps ki¡>,a>h',a and kf,,a [Ba, p. 25], and this translates into the long
exact sequence in (2). The two cardinal inequalities (3.6), (3.7) now foUow
immediately from this long exact sequence.   Q.E.D.

Remark 3.8. If the calculation in the proof of (2) above looks a bit mysterious,
we can give a perfectly good explanation for its raison d'etre. For a given aeK,
consider the left simple R-module M = R/R • (t - a), which we shaU identify

with K using the correspondence f(t) •-> /(zz). Under this identification, the
action of a polynomial h(t) e R on an element ceK* is given by A(Z)#c =
A(zzc)c (see [L2, (5.21)]). Therefore, the map AA>a: A" -> A" is exactly the
action of h(t) on the /{-module M = K (and E(h, a) is just the annihilator
of h(t) on this module). From this perspective, the calculation in (2) above
simply amounts to the module law (A'A)#c = A'#(A#c) in M = K. Note that
since kh,a is right C-Unear for any h, M = K is an (R, C)-bimodule.4 In
particular, the A-action on the left of M = K gives a ring homomorphism
form R to End(AJc) sending each heR to khta.

CoroUary 3.9. (1) If AA,a is an isomorphism, then E(h'h, a) = E(h', zz).5 (2)

If ¿h'h.a ù an isomorphism, then E(h', a) = E(h, a). (3) If k^,a is an
isomorphism, then E(h, a) = E(h'h, a).

For the rest of this section, we shaU continue to write C = Cs~D(a), for a
fixed element aeK.

CoroUary 3.10. Suppose h(t) has no root in As>D(a). Then f(t):=(t-a)h(t)
has at most one root in A5,D(zz).

Proof. By (3.6), (3.3)(3) and (3.3)(4), we have

dimeE(f, a) < dimeE(t-a,a) + dimeE(h, a) = 1.

Let ad,ad' be roots of /(/)in As<D(a). Then zz, zz" e E(f, a)\{0}, so we

must have d' = dc for some nonzero c e C. But then ad> = adc = (ac)d =
ad.   Q.E.D.

4 In fact, as we have pointed out in the paragraph after [L2, (5.23)], C is naturally isomorphic

to EndflAf . Here,  R-homomorphisms of M are composed on the right.

3 For instance, this conclusion would hold if S is an automorphism and h is a semi-invariant
polynomial not vanishing on a (see (3.4)). Similar remarks can be made about cases (2) and (3).
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Theorem 3.11. For any nonzero h e R, [E(h, a) : C]r < degA(Z). If the class

As'^(a) is (S, D)-algebraic with minimal polynomial f(t), then [E(h, a) : C]r

= [E(h, a) : C]r < degA0(f). where ho(t) is the remainder of h(t) upon right
division by f(t).

Proof. The first part of the theorem has appeared before in [Li, (4.2)]. Here we
offer a shorter, and perhaps also more natural proof, by induction on degA(Z).
If this degree is zero, the desired conclusion foUows from (3.3)(2). In the general
case, we may assume the existence of a nonzero element d e E(h, zz) (for
otherwise [E(h, a) : C]r = 0). Then h(ad) = 0, so we have a factorization

h(t) = q(t)(t-ad), where q(t) e R has degree = degA(Z)-1. By (3.6), (3.3)(3)
and the inductive hypothesis (in that order), we have

[E(h, a) : C]r < [E(t -0a, a): C]r + [E(q, zz) : C]r

= l+[E(q,a):C]r

< 1+deg zj(f)

= degA(z),

as desired. If As<D(a) happens to be algebraic, then K is finite dimensional
as a right C-vector space [L2, (5.10)]. Taking C-dimensions of the spaces in
the exact sequence

0 -* E(h, a) -+ K -+ K -» E(h, zz) -* 0,

we see immediately that [E(h, a) : C]r = [E(h, a) : C]r. Since any left multiple
of /(/) vanishes on As<D(a), we have A(zzc) = Ao(zzc) for any ceK*, and
hence AA>a = k^^. From this, it foUows that

[E(h, zz) : C]r = [E(h0, a) : C]r < degAn(0-   Q-E.D.

To Ulustrate the meaning of the second part of the theorem, let us re-state
it in more explicit terms in the special case when h(t) is a linear polynomial
t - b. Using the computation of E(h, a) in (3.3)(3) in this case, we arrive at
the foUowing statement:

CoroUary 3.12. Let As'D(a) be an algebraic class, and let b eK.
(1) If b & As'D(a), then the additive endomorphism of K sending ceK

to D(c) + S(c)a -be eK is an isomorphism. In other words, for every d eK,
there exists a unique ceK solving the equation D(c) + S(c)a -be = d.

(2) If b e As'D(a), then the image of the above additive endomorphism of
K is a right Cs-D(a)-subspaceofcodimension 1 in K.

In the classical case when (S, D) = (I, 0), for instance, (1) above says the
foUowing: If aeK is algebraic over the center of K, and b is not a conjugate
of a, then for any d e K, there is a unique ceK solving the equation
ca-bc = d. But if b is conjugate to a, then there exists d eK for which
ca-bc = d is unsolvable in K. These statements are to be compared with
similar ones made by P. M. Cohn in [Co, p. 222].

Some more useful consequences of (3.5) and (3.11) are noted below.

Corollary 3.13. Let As'D(a) be an algebraic conjugacy class, and let A, A' e R.
If A Azzs no root in As-D(a), then kha is an isomorphism, and dime £(A'A, zz)
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= dime E{h', a). (Similar statements can be made in the cases when h! or h'h
has no root in As~D(a) ; see (3.9).)

Proof. The assumption on A means that E(h, a) = 0, and by (3.11) this

impUes that E(h,a) = 0, so k^>a is an isomorphism. From (3.9)(1), we
deduce that E(h'h, zz) = E(h', zz), so these spaces have the same dimension
over C.   Q.E.D.

Corollary 3.14. Supposes is not an automorphism, and AS'D (a) is an algebraic
class. Then every nonconstant semi-invariant polynomial h(t) e R vanishes on
As<D(a).

Proof. Since As'D(ad) = As'D(a), it is sufficient to show that A(zz) = 0. But if

A(zz) / 0, then E(h, a) = 0 by (3.4), and so E(h, a) = 0 by (3.11). By (3.4)
again, S must be an automorphism, contradicting the hypothesis.   Q.E.D.

Although we have used parallel notation for the exponential and co-exponen-
tial spaces, in general they have considerably different behavior. For instance,
unlike E(h, zz), E(h, a) may have infinite right dimension over C = Cs,D(a)
(necessarily in the case when As'D(a) is not algebraic). We shaU give two ex-

amples below in which dime E(h ,a)< 1, but dime E(h ,a) = oo. In both
examples, AT is a field and D = 0 ; in such a situation, the a priori condition that
As'D(a) is not algebraic bous down simply to S not being an algebraic endo-
morphism, independently of a (see [L2, (5.17)]). In fact, the endomorphisms
S used below are among the simplest examples of nonalgebraic endomorphisms
of fields.

Examples 3.15. (A) Let A be a rational function field k(x) over a field k, D =
0, and S be the k-endomorphism of K with S(x) = x2. For zz := x, it is
easy to see that C := Cs(zz) = k. For the invariant polynomial h(t) := t, we

have kf,ta(c) = S(c)a for every c e K, so E(h, a) = 0 ; however, E(h, a) =

K/S(K)a = k(x)/k(x2)x = k(x2) is clearly infinite dimensional over C = k.
(B) One might think that the above example is pathological since S there

is not an automorphism of K. However, a slight variation of the construc-
tion will yield a new example in which S is an automorphism. Let K = k(x)
as before, where A: is a field of characteristic zero; let D = 0, and let S be
the k-automorphism of K denned by S(x) = x + 1. Here, we let zz := 1,

and h(t) = t - I. For these choices, C := Cs(a) is the fixed field Ks = k,
and by (3.3)(5), AA,a = A(5) = S-I. Therefore, £(A,zz) = A"5 has C-
dimension 1, and imk^t(l consists of functions f(x + 1) - f(x), where /
ranges over k(x). Using the unique factorization of polynomials in k[x],
and the fact that char k = 0, it is not difficult to show that no nontriv-
ial k-linear combination of {x~x, x~2,...} can be expressed in the form
f(x + 1) - f(x). This shows that the set {x~^_, x~2,...} is A;-linearly in-

dependent over imkf,ta, and therefore dimc^(A, zz) = oo.6 Note that the
assumption char A: = 0 is essential for this example, for if char A: = p > 0,
then Sp - I, so S is an algebraic automorphism. In the case, A is a cyclic
extension of degree p over C := Cs(l) = Ks = k(xp - x), and Theorem
3.11 would apply to show that imkhA = {f(x + 1) - f(x): f e k(x)} has
C-codimension 1 in K.

6 This is all the more remarkable in view of the (easily established) fact that the restriction
¿A_ i : k[x] —» k[x] is actually onto.
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Concerning the question of finite dimensionality of E(h, a), we can only
offer some partial results, because of the difficulties suggested by the above ex-
amples. First of all, for a product of two polynomials, we do have the foUowing:

(3.16)   dimc¿T(A'A, a) < oo <*• dimcE(h, zz) < oo and dimc£(A', zz) < oo.

To obtain a more quantitative result, we shall need more assumptions.

Proposition 3.17. Assume that S is an automorphism, and that f_= h'h is a
nonconstant semi-invariant polynomial. Then dime E(h, a) and E(h', a) are
both bounded by m := max{degA(f), degA'(Z)}. If, moreover, h'h = hh!, then
dimcE~(h, zz) < degA(Z), and dimcË~(h', a) < degA'(Z).

Proof. We go into the foUowing two cases.
Czz5e(i). /(zz) = 0. By the proof of (3.4), we havein fact f(As'D(a)) = 0,so

As'D(a) is algebraic. In this case, (3.11 ) gives dime E(g, a) = dime E(g, zz) <
degg(f) for every g(t), so aU desired conclusions foUow.

Case (ii). /(zz) ^ 0. Since S is an automorphism, (3.4) impUes that A/>a is

an isomorphism. By (3.9)(2), we have E(h', a) = Ë(h, a), so dimc£(A, a) =
dvncE(h',a)^ < degA'(Z) < m. Also, by (3.5) there is a surjection from

E(f, a) to Ë~(h',a),sowe have E(h',a) = 0 in this case. If A'A = AA',
then we wiU have E(h ,a) = 0 as weU.   Q.E.D.

Now let us return to the study of exponential spaces. In general, the inequality
[E(h, a) : C]r < degA(Z) in (3.11) may be strict, so it is useful to introduce
the foUowing definition: We say that a nonzero polynomial h(t) e R is full at
zz € AT if [E(h, a) : C]r = degA(i). For instance, if As'D(a) happens to be
(S, D)-algebraic, then its minimal polynomial (the monk polynomial in R of
the least degree vanishing on As'D(a)) is fuU at zz [L2, §4]. An interesting
consequence of (3.6) is the foUowing:

Proposition 3.18. Let f=h'heR. If f is full at a, then h! and A are both
full at a.

Proof. By the fullness of / at zz and by (3.6), we have

deg/ = [£(/, a) : C]r = [E(h'h,a) : C]r

<[E(h',a):C]r + [E(h,a):C]r

< degA' + degA

= deg/.

Therefore, we must have [is (A', a) : C]r = deg A', and [E(h,a) : C], =

deg A.   Q.E.D.

With the help of this coroUary, some alternative characterizations of the fuU-
ness property are given in the proposition below.

Proposition 3.19. Let A = As'D(a) and let h be a nonconstant polynomial in
R. Then the following are equivalent:

(1) A(r) is full at a;
(2) h(t) is, up to a left scalar multiple, the minimal polynomial of some

(S, D)-algebraic subset Ao of A.
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If A is (S, D)-algebraic, these conditions are also equivalent to:
(3) h(t) is a right divisor of f¿, the minimal polynomial of A.

Proof. To facilitate the proof, we shaU use freely the basic properties of P-
dependence, P-basic, rank and minimal polynomial of (S, D)-algebraic sets,
as developed in [La] and [Li]. Let n := degA(Z). If h(t) is fuU at zz, let
{ex,..., cn} be a right C-basis for E(h, a). By [L2, §4], An := {zzc>,..., zzc-}

are P-independent in A, so rank A« = n. Since h(t) vanishes on Ao, and
degA(Z) = rank A), A(Z)must be, up to a left A-multiple, the minimal poly-
nomial of Ao. Conversely, suppose h(t) is a left A-multiple of the min-
imal polynomial of an (5, D)-algebraic subset Ao ç A. Then rankAo =
degA(Z) = n, so Ao has a P-basis of n elements, say {a01,..., zz*"}. By
[L2 » §4], {Ci,..., c} Ç E(h, a) are right linearly independent over C. Since
[E(h, a) : C]r < degA(Z) = n, it foUows that {ex,..., c„} form a C-basis for
E(h, a), so h(t) is full at zz. We have now completed the proof of (1) <=>■ (2).

Now suppose A is (S, Z))-algebraic, with minimal polynomial f¿. If h(t) =
b • ho(t) where Ao is the minimal polynomial of some (S, Z7)-algebraic subset
Ao ç A, then, since fA vanishes on Ao, it is a left multiple of Ao, and hence
also of A. Conversely, if f¿ is a left multiple of A, then, since fa is fuU at
a, (3.18) implies that A is also fuU at zz.   Q.E.D.

Now let us consider two Ore extensions

R = K[t,S,D]   and   R' = K[t, 5', LV],

connected by a AT-homomorphism <j>: R' -* R. The map tf> is determined
by p(t) := tb(t'), which is a cv-polynomial in R with respect to (S', LV).
For a polynomial g(t') e K[f, S', D'] and any b e K, let us denote the
associated A-transform on K by k'g b, and the corresponding exponential and

co-exponential spaces by E'(g, b) and E (g, b). As a natural consequence of
the Conjugation Theorem and the Composite Function Theorem, we have the
foUowing result.

Proposition 3.20. For any g(t') e R' and any aeK, we have kgop,a = Xg,P(a) •

In particular, E(g op,a) = E'(g, p(a)), and E(g op,a) = T?(g, p(a)).

Proof. For any ceK*, (2.2) and (2.3) give the foUowing

IgopAc) = (gop)(ac)c = g(p(ac))c = g(p(a)c)c = k'gp{a)(c),

where the conjugation notations foUow the conventions in (2.2). This gives
the equation for the A-transforms, and the rest follows by taking kernels and
cokernels of these.   Q.E.D.

In the above proposition, of course, kgop,a is linear over Cs'D(a), while

A' (a) is linear over Cs' ^(p(a)). This fact is reconciled by (1) in the propo-

sition below.

Proposition 3.21. For the cv-polynomial p(t) as above, and for any aeK, we
have.

(1) Cs'D(a)çCs''D'(p(a));

(2) Cs'>D'(p(a)) = E(p-p(a),a);
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(3) The right dimension [Cs>-D'(p(a)) : Cs>D(a)]r is bounded by degp(t).

Proof. (1) Let c e Cs<D(a)\{0}. Then zzc = zz, and hence p(a) = p(ac) = p(a)c

(using the conventions in (2.2)). Since the last conjugation here is an (S', LV)-

conjugation, we see that c e Cs 'D(p(a)). For (2), note that c belongs to
E(p - p(a), zz)\{0} iff 0 = (p - p(a))(ac) = p(ac) - p(a). By (2.2), this means

that p(a)c = p(a), i.e. c e Cs>-D'(p(a)). This proves (2). Using this, it

foUows that [Cs>-D'(p(a)) : Cs-D(a)]r is the right Cs/>(zz)-dimension of E(p-
p(a), a), so by (3.11) it is bounded by deg(p(t) - p(a)) = degp(t).   Q.E.D.

The above proposition leads to some special properties of the exponential
spaces of cv-polynomials. We record these properties in the foUowing coroUary.

CoroUary 3.22. Let aeK, and p(t) be a cv-polynomial as above.
(1) If E(p, a) ¿ {0}, then it is a one-dimensional left vector space over K¡y,

the subdivision ring of constants of the derivation LV.
(2) IfE(p,ax)nE(p, a2) + {0}, then E(p, zz,) = E(p, zz2).
(3) For any nonzero d e E(p, zz), we have dCs'D(a)d~x ç K& ■

Proof. Fix a nonzero element d e E(p, a), so p(ad) = 0. Replacing zz
in (3.21)(2) by ad, we get Cs'-D'(0) = E(p,ad). By (3.5)(1), this gives
Kd- = E(p, a) • d~x. Therefore, E(p, a) = Kd> • zz*. This proves (1), and
(2) foUows immediately from (1). For (3), we use the fact that E(p, a) is
a right vector space over Cs'D(a). For any nonzero d as above, we have
dCs<D(a) ç E(p, a) = KD- • d, so dCs'D(a)d~x ç KD,.   Q.E.D.

Lastly, putting our results together, we derive a characterization for a com-
posite function to be full at a given point.

Proposition 3.23. Let p(t) be as above, aeK, and g(t') e R!. Then g op is
full at a iffp-p(a) is full at a and g is full at p(a).

Proof. We start with the formula E(g °p,a) = E'(g,p(zz)) in (3.20), and

let C = Cs-D(a), C = Cs''D'(p(zz)). Taking right dimensions and using the
transitivity formula, we have

[E(goP,a):C]r = [E'(g,p(a)):C]r

= [E'(g,p(a)):C']r-[C':C]r

= [E'(g, p(a)) : C% - [E(p - p(a), a) : C]r

< degg(f)-dcgp(t)

= deg(gop).

Now, g o p is full at zz iff we have equality above, and this can happen iff
p - p(a) is fuU at zz and g is fuU at p(a).   Q.E.D.

4. Preservation of algebraic subsets

In this section, we shall apply the results obtained in §2 and §3 to the study
of self-maps on K induced by cv-polynomials. The first part of this section (all
material before (4.10)) is independent of §3, and can therefore be read imme-
diately after §2. Again, the notations R = K[t, S, D] and R' = K[t', S', LV]
will remain in force.
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Proposition 4.1. Let p(t) e R be a cv-polynomial with respect to (S', D'). If
aeK is P-dependent on a set A ç K with respect to (S, D), then p(a) is
P-dependent on p(A) with respect to (S', D').

Proof. For any polynomial g(t') e R' such that g(p(A)) = 0, we must show
that g(p(a)) = 0. By (2.3) (the Composite Function Theorem), g(p(A)) = 0
implies that (g o p)(A) = 0. Since a is P-dependent on A with respect to
(S, D), the latter implies that (gop)(a) = 0. Applying the Composite Function
Theorem one more time, we conclude that g(p(a)) = 0.   Q.E.D.

The converse of this proposition is, of course, not true in general. For in-
stance, in the case when (S, D) = (I, 0), {1} is to P-dependent on {0} ; yet
for the cv-polynomial p(t) = t(t - 1), we have p(\) = p(Q) = 0, so (p(l)}
is P-dependent on {p(0)}. Nevertheless we have in general the foUowing re-
sult on the preservation of algebraic sets under the map a >-* p(a) for any
(nonconstant) cv-polynomial p(t).

Theorem 42. Let p(t) e R be a nonconstant cv-polynomial with respect to
(S',D'), and let A ç A". Then A is (S, D)-algebraic iff p(A) is (S',D')-
algebraic. Moreover, in this case,

(4.3) rankp(A) < rank A < degp(Z) • rankp(A).

The second inequality here is an equality iff f¿ (the minimal polynomial of A)
belongs to K\p(t)] (the subring of R generated by p(t) over K).

Proof. Step I. First assume that A is (S, Z))-algebraic. We fix a finite P-
basis for A, say {zz,,..., zz„}. By [Li, (2.10)], we know there exists a
nonzero polynomial q(t') e K[t',S',LV] vanishing on {p(zzi),... ,p(a„)},
with degq(t') < n. Then, by (2.3), (qop)(a¡) = q(p(a¡)) = 0 for z = 1,..., n.
Since {ax,... ,a„} form a P-basis for A, this impUes that qop vanishes on
A. By (2.3) again, we see that q(p(A)) = 0, so p(A) is (S', LV)-algebraic, with

rankp(A) < degqtf) <n = rank A.
Step II. Next, assume that p(A) is (S', JDO-algebraic, and let g(t') e R' be

its (monic) minimal polynomial. Then g(p(a)) = 0 for every zz € A, and so by
(2.3) gap vanishes on A. Since g op ^ 0 (the fact that p(t) is nonconstant
is needed here), this implies that A is (5, D)-algebraic, with

(4.4) rank A < deg(gop)(t) = degp(t) • deggtf) = degp(t) • rankp(A).

Step III. If rank A = degp(t) • rank p(A), then, in Step II above, g op must
already be a left A-multiple of the minimal polynomial f& of A. Therefore,

ÂeK.g(p(t))çK\p(t)].
Step TV. Assume that /A € K[p(t)], say /A = h(p(t)), where h(f) e R!. Ar-

guing by the Composite Function Theorem as before, we see that A(Z') vanishes
on p(A), so degA(Z') > rankp(A). Then we have

(4.5) rankA = deg^ = degp(Z) • degA(Z') > degp(Z) • rankp(A).

Combining this with (4.4), we must have equality in (4.5).   Q.E.D.

In some cases, the condition that fA e K\p(t)] may hold automaticaUy. In
such a situation, we will always get equality in (4.5). to be more specific, we
record the foUowing coroUary of (4.2)
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CoroUary 4.6. Assume that K\p(t)] above is the largest Ore subextension of R
in the sense of [L4, Definition 5.15], and that ACK isa nonsingleton (S, D)-
algebraic set closed under (S, D)-conjugation. Then p(A) is (S', LV)-algebraic,
and rankA = degp(t) • rankp(A). (In particular, rankA must be divisible by

deg/?(*).)

Proof. By [L2, (5.2)], Ja is an invariant polynomial; in particular, it is a cv-
polynomial. Since A is not a singleton set, we have deg .4 > 2. The fact that
K[p(t)] is the largest Ore subextension of R then impUes that fA e K[p(t)].
Therefore, the last part of the above theorem appUes.   Q.E.D.

In general, of course, the equality rankA = degp(t) • rankp(A) need not
hold. In fact, we may not even have the divisibihty relation rankp(A)|rankA
or degj?(r)|rankA. For instance, again in the simple case when (S, D) = (I, 0),
if AT is a field with three different elements a, b,c, then A = {a, b,c} has
rank 3, but for the quadratic cv-rx>lynornial p(t) = (t - a)(t — b), p(A) =
{0, (c - a)(c - b)} has rank 2. In this example, both of the inequalities in
(4.3) are strict inequalities. We shaU see, however, that the divisibiUty relation
rank p (A) | rank A does hold in a special case, namely, when A is a single (S, £>)-
conjugacy class As'D(a) of some element a € AT (cf. (4.10) below). Let us now
specialize to this important case.

Theorem 4.7. Let p(t) be as in (4.2). For any aeK, we have p(As-D(a)) =

AS''D' (p(a)), and the following statements are equivalent.
(1) As-D(a) is (S, D)-algebraic,
(2) The S-derivation D-DütS is algebraic,
(3) As'<D'(p(a)) is (S',LV)-algebraic,
(A) The S'-derivation D'-DP(a)S' is algebraic.

If any of these conditions holds, then we have

(4.8) rankA5'-D'(p(a)) < rankA5'D(zz) < deg(f) -rankA5''D'(p(a)).

Proof. Let A = As'D(a). Then p(A) consists of p(ac), where c ranges over
K*. Since p(ac) = p(a)c (in the sense of (2.2)), we see that p(A) consists of

aU (S', /^-conjugates of p(a), that is, p(As<D(a)) = As'<D'(p(a)). In view of
this equation, (1) •» (3) foUows from (4.2), and (1) <=> (2) and (3) «• (4) both
foUow from (2.4). FinaUy, (4.8) foUows from (4.3).   Q.E.D.

Remark 4.9. The equivalences (1) <=> (2) and (3) ■» (4) have appeared before
in [L2, (5.10)], with essentiaUy the same proofs (using the identity (2.4)).
(2) o (A) has also appeared in [L4, (5.13)]; however, the proof given here is
substantially different from that in [L4].

Next, we shall bring to bear the basic results on exponential spaces obtained
in §3. These results lead to a much more precise version of (4.2) in the case
when A is a single algebraic (S, Z))-conjugacy class.

Theorem 4.10. Let p(t) e R be any nonconstant cv-polynomial with respect to
(S', D'). Let A := As>D(a) be an algebraic (S, D)-conjugacy class in K, and

let A' :=p(A) = As''D'(p(a)). Then rankp(A) divides rankA, and the following
statements are equivalent.

(1) rankA = degp(Z) • rankp(A) ;
(2) The polynomial p - p(a) is full at a;
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(3) The minimal polynomial f¿ of A belongs to K[p(t)];
(A) p - p(a) is a right divisor of f¿ in R;
(5) p - p(a) is, up to a left K-multiple, the minimal polynomial of some

subset Ao of A.

Proof. Let C := Cs-D(a) and C := Cs'-D'(p(a)). Then, by [L2, (5.10)],
[A" : C]r = rankA, and [A" : C']r = rankA'. But by (3.21)(1), we have
C ç C, so the transitivity formula for vector space dimensions gives [K : C]r =
[K : C']r - [C : C]r. This implies that rankA'|rankA. Furthermore, by

(3.21)(2),

(4.11) ¿^ = [C : C]r = [E(p-p(a), a) : C]r < deg(p-p(a)) = degp(Z).

This gives another proof for the second inequality in (4.8), and from this new
argument, we see immediately that (1) <& (2). The equivalence of (1) and (3)
foUows from (4.2), and finally, the equivalences of (2), (4) and (5) foUow by
applying (3.19) to the polynomial p-p(a) (independently of the fact that p(t)
is a cv-polynomial).   Q.E.D.

Example 4.12. We give here a simple example in the classical case (S,D) =
(1,0) in which the conditions ( 1 ) through (5) in the above theorem are not sat-
isfied. Let A be a central k-division algebra with a maximal subfield L = k(a)
of odd dimension n over k, and take p(t) to be the central quadratic poly-
nomial t2. Here, A := conjugacy class of a and A' := conjugacy class of
p(a) = a2 both have rankn (since L = k(a) = k(a2)), so the divisibüity
relation rankp(A)|rankA holds, but (1) in the theorem does not. The expo-
nential space E(p -p(a), a) here is CK(a2) = L which is 1-dimensional over
C := Ck(a) = L, so p - p(a) is not fuU at a. Lastly, fÁ is the minimal
polynomial of a over k ; since this polynomial has odd degree n, it clearly
cannot belong to K\p(t)\ = K[t2].

We now finish this section by pointing out what is perhaps the most useful
consequence of the condition that f¿ e K[p(t)]. Recall from [L2, §4] that an
(S, Z>)-algebraic set A is said to be full if every root of its minimal polynomial
f¿ belongs to A.

Theorem 4.13. Let A be a full (S, D)-algebraic set, and assume that f¿ e
K[p(t)], where p(t) is a nonconstant cv-polynomial as above. Then for any
beK ,we have teA« p(b) e p(A).

Proof. (" •*= ") Let g(f) be the minimal polynomial for p(A). The given hy-
pothesis implies that gop = d- fA for some scalar d eK* (cf. Step III in the
proof of (4.2)). Suppose p(b) e p(A). Then (gop)(b) = g(p(b)) = 0 since g
vanishes on p(A). But then we have f&(b) = 0, and the fullness of A implies
that be A.   Q.E.D.

Since p(As<D(a)) = As'-D'(p(a)), and A5-D(zz) is full if it is algebraic, we
have in particular

Corollary 4.14. Let A = As'D(a) be an algebraic class, and assume that its
minimal polynomial fA belongs to K\p(t)], where p(t) is a nonconstant cv-
polynomial. Then for any beK, b is (S, D)-conjugate to a iff p(b) is
(S', LV)-conjugate to p(a).
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It is easy to see, by an example, that the hypothesis fA e K[p(t)] in this
coroUary cannot be omitted. For instance, let K be the division ring of the real
quaternions with (S, D) = (1, 0), and let p(t) be the central polynomial t2 in
K[t], so p(t) is a cv-polynomial with respect to (S', D') = (1, 0). For a = i+1

and b = -(i+1), we have p(a) = a2 = b2 = p(b), but the minimal polynomials
of zz and b over Z(K) = R are, respectively, t2 - 2t + 2 and t2 + 2t + 2,
so zz and b are not conjugate in K.' Corollary (4.14) does not apply in this

situation since the above minimal polynomials are not polynomials in t2. In
§6, an example will also be given (see (6.7)) to show that the hypothesis on the
algebraicity of A is crucial for both (4.13) and (4.14).

5. Criterion for (S, D)-algebraicity and (S, £>)-conjugacy

In this section, we shall apply the tools developed in the earlier sections to
derive a general criterion for an (S, D)-conjugacy class As'D(a) to be alge-
braic; then we prove the promised HUbert 90 Theorem for an element beK
to belong to such an algebraic class As'D(a). BasicaUy, our technique is to
translate properties involving (S, D) into analogous properties in the classical
case when (S, D) = (1, 0) ; the material in §2—§4 provides the necessary theo-
retical framework for such a transfer procedure. Once we are reduced to the
case when (S, D) = (/, 0), we can use freely the foUowing classical results of
Wedderburn and Dickson mentioned in the Introduction:

(5.1) A conjugacy class A(a) = {cac~x : c e K*} is algebraic iff a is algebraic
over Z(K) (the center of K) ;

(5.2) An element beK belongs to an algebraic conjugacy class A(a) iff a and
b have the same minimal polynomial over Z(K).

To begin our discussion, we first observe that a necessary condition for R =
K[t ,S,D] to have an algebraic conjugacy class is that R not be a simple ring.
In fact, if As'D(a) is an algebraic class, then the minimal polynomial of As,D(a)
is a nonconstant invariant polynomial which generates a nonzero proper ideal
in R. Since we are interested only in algebraic conjugacy classes in this section,
we shall henceforth assume that R is a nonsimple ring. In particular, R has a
monic nonconstant semi-invariant polynomial of minimal degree. We shall fix
such a polynomial p(t) in this section, and denote its degree by n > 1.

Our first step is to dispose of the case when S has infinite inner order. Recall
from [L4] that the inner order of S, denoted by o(S), is the smaUest positive

integer k such that 5"* is an inner automorphism of K ; if no such k exists,
o(S) is taken to be oo. In particular, if S is not an automorphism, o(S) is
oo according to this definition.

Proposition 53. Suppose o(S) = oo.

(1) If p(t) has no root in K, then K has no algebraic (S, D)-conjugacy
classes.

(2) If p(t) has a root in K, then the roots of p(t) constitute the one and only
algebraic (S, D)-conjugacy class in K.and p(t) is its minimal polynomial. In
particular, p(t) is invariant. If, in addition, S is an automorphism, then in fact
every semi-invariant polynomial in R is invariant.

Proof. (1) Assume p(t) has no root in A. Since p(t)c = Sn(c)p(t) for every

ceK, p(t) is a cv-polynomial in R with respect to (Sn, 0). If there exists
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an algebraic class As'D(a), then by (4.7) As"(p(a)) is (Sn, 0)-algebraic. Since
p(a) ,¿ 0, an argument involving the nonzero constant term of the minimal

polynomial of A5"^^)) shows that o(S") < oo. (See [L2, (5.17)] for the
details.) But then we also have o(S) < oo, a contradiction.

(2) Suppose now that p(t) has a root aeK. Applying the Conjugation
Theorem (2.2) to p(t) (or by [L2, (5.1)]), we see that p(As'D(a)) = 0. There-
fore, As>D(a) is an algebraic class, and p(t) is a left multiple of the minimal
polynomial of As'D(a). Since n = degp(Z) is chosen minimal, p(t) is ex-
actly the minimal polynomial of As-D(a). In particular, p(t) is invariant, and
As'D(a) consists of all of its roots in K. The fact that As'D(a) must be the
unique (S, Z>)-algebraic conjugacy class has been shown earlier in [L2, (5.25)].
(Briefly, an algebraic conjugacy class must have minimal polynomial equal to
p(t) by an application of Cauchon's structure theory of invariant polynomials
[Ca], since the assumption that o(S) = oo impUes that R has no nonconstant
central polynomials.) FinaUy, assume that S is an automorphism. Then, by
[L2, (2.11)(1)], every semi-invariant polynomial is a left scalar multiple of a
power of p(t), and is therefore an invariant polynomial.   Q.E.D.

Since the result above settles all questions concerning algebraic conjugacy
classes in the case when o(S) = oo, we shaU now work in the situation o(S) <
oo. This assumption implies in particular that S is an automorphism of A*,
and by [L2, (2.11)(1)], aU semi-invariant polynomials of R belong to K[p(t)].
Now we are ready to state and prove the main result of this paper.

(5.4) HUbert 90 Theorem for (A", S, D). Let R = A"[Z, S, D] where o(S) <
oo, and let p(t) be a monic semi-invariant polynomial of minimal degree n >
1 in R (we are assuming that such a polynomial exists). Let k = o(Stt) =
o(S)/(n, o(S)), say (Sn)k = I„ (=inner automorphism sending c to ucu~x).
Then:

(A) A conjugacy class AS'D(a) is (S, D)-algebraic iff u~xNktSn(p(a)) is al-
gebraic over Z(K), the center of K. Here, Nk,s* denotes the km power junc-

tion with respect to (S",0), that is, Nk>s*(c) = S^k-x^(c)S^k-2\c)---Sn(c)c
for every ceK.

(B) If As'D(a) is an algebraic class, then for any beK the following are
equivalent.

(1) b is (S, D)-conjugate to a;
(2) p(b) is S"-conjugate to p(a) ;
(3) u~xNk,s*(P(b)) is conjugate (in the classical sense) to u~xNk,s«(P(a))-

(A) u~x Nk ,s*(p(b)) is algebraic over Z(K) and has the same minimal poly-

nomial over Z(K) as u~xNkfS"(p(a)).

Proof. (A) Since p(t)c = Sn(c)p(t) for every ceK and Snk = /„, we get
u~xp(t)kc = u-xSnk(c)p(t)k = cu~xp(t)k . Thus, u~xp(t)k commutes with aU

scalars, i.e. it is a cv-polynomial with respect to (1,0). Applying Theorem 4.7,
we see that As'D(a) is (S, Z>)-algebraic iff

(u-xpk)(As-D(a)) = A7'VV)(a)) = {bu~x(pk)(a)b-x :beK*}

is (/, 0)-algebraic, i.e. iff u~x(pk)(a) is algebraic over Z(K) (by (5.1)). It now

remains to calculate (pk)(a). Thinking of p(t)k as g op where g(t') = t"k e
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K[t', S"], we see by the Composite Function Theorem 2.3 that (pk)(a) is the

evaluation of I* € K[t', Sn] at p(a), that is, Nk<s»(p(a)). This proves (A).

To prove (B), let us now assume that A5°(zz) is algebraic, and let beK.
Noting that (3) •«• (4) foUows form (5.2), we need only prove the equivalence

of (1), (2) and (3). Since the minimal polynomial of A5,Z)(zz) is invariant, it
belongs to K[p(t)] by [L2, (2.9)], so we are in a position to apply CoroUary
4.14. This gives immediately the equivalence (1) -» (2). The proof of (2) <*
(3) is done simüarly, by making a transfer from R' = K[t', Stt] to R" = K[t"],
using the cv-polynomial u~xfk in R' with respect to (1,0). The S"-conjugacy

class in question is now As"(p(a)). Depending on whether p(a) is zero, it is
necessary to go into two cases.

Case (i). p(a) = 0. In this case, p(b) being 5"-conjugate to p(a) simply
means that p(b) = 0. But also u~x Nk tS*(p(b)) being conjugate to

u~xNk,Sn(p(a)) = 0

amounts to p(b) = 0, since S is injective. Therefore, (2) o (3) is clear in this

case.
Case (ii). p(a) # 0. Let g(t') = £'=0 A,/" e R' be the minimal polynomial

of As"(p(a)), where r > 1, and br = 1. We have a complete factorization

g(t') = (t' - Cx) ■ • • (/' - cr), where the c, 's are suitable elements in A5"^^))
(see [La, Lemma 5]). Since p(zz) ̂  0, we have c, #0 for aU i, and therefore

(5.5) Äö«(-l)'ci-<y#0.

We now make the crucial claim that

(5.6) g(t')eK[u-xfk] = K[t'k].

Once we have proved this claim, the transfer argument from A"[zJ, Sn] to K[t"]
indicated above wül go through, and we wiU have (2) <=> (3) by (4.14). To prove
(5.6), we use the fact that g(f) is (semi-)invariant in K[t', Sn], which gives
g(t')c = (S")r(c)g(t') for every ceK. Comparing the left coefficients of /",
we get bi(S")'(c) = (S")r(c)b¡. Upon replacing c by S~ni(c), this transforms

into b¡c = Sn^~'\c)bi, for every c. Therefore, whenever b¡ =£ 0, we have

(S")*'-'' = Ib¡ ; since o(S") = k, this implies that k\(r - i). In particular, by
(5.5), we see that A:|r, and consequently, whenever A, # 0, we must have k\i

also. This shows that g(t') has the form A0 + bkfk + b2kf2k H-; in other
words, g(f) e K[t'k] ;. This proves our claim (5.6).   Q.E.D.

Remark 5.7. Conceptually, the equivalence (1) <*• (3) amounts essentiaUy to a

direct transfer from K[t,S,D] to AT/'] by using the cv-polynomial u~xp(t)k
with respect to (/, 0). However, to justify this transfer procedure, we would

need to know that the minimal polynomial of A5, D(a) belongs to K[u~xp(t)k] =
K[p(t)k], which is not always true. In the proof given above, we have shown
basically that this is true if p(a)^0 (and we provided an easy argument to deal
separately with the case p(a) = 0). But, instead of working with the minimal
polynomial of A5Z)(zz) in K[t, S, D], it is easier and more natural to work
with the minimal polynomial of p(a) in K[t', Stt]. Therefore, we have chosen
to "break up" the transfer (first from K[t, S, D] to A^f', Sn] and then from
K[t',Sn] to AT/']), and prove (1) <* (2) <* (3) instead of proving directly

(1)^(3).
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Remark 5.8. To properly understand (5.4)(B), it is important to say something

about the role of the hypothesis that As-D(a) be an algebraic class. An analysis
of the proof of (5.4) shows that, without assuming the algebraicity of A5,£>(zz),
we can still show that (1) in (5.4)(B) impUes any of the other conditions. How-
ever, the equivalence of all these conditions is, in general, not true without the
assumption on the algebraicity of As,D(a). In the next section, we shaU give
examples of triples (K, S, D) as in (5.4) for which (3) ■&■ (1) fails to hold
for a (necessarily nonalgebraic) (S, Z>)-conjugacy class A5,D(zz). In fact, there
exist such counterexamples both of the automorphism type (with D = 0) and
of the derivation type (with S = I), as we shaU see in §6.

In §6, we shaU also examine in detail the various special forms of the Hubert
90 Theorem obtained above. Here we close this section by applying the Hubert
90 Theorem to prove the foUowing refinement of some theorems in [Lei] and
[L2]. The point of this result is that it gives many examples of (K,S,D) for
which all (S, D)-conjugacy classes are algebraic.

Theorem 53. Let R = K[t,S,D] be such that o(S) < oo and k is algebraic
over its center. Then the following statements are equivalent.

(1) R is nonsimple,
(2) R has a nonconstant central polynomial;
(3) D is an algebraic derivation;
(A) There exists an algebraic (S, D)-conjugacy class;
(5) Every (S, D)-conjugacy class is algebraic,
(6) [A* : Cs-D(a)]r < oo for every aeK.

Proof. The equivalence of (1), (2) and (3) was proved in [Lei, (2.4)], and
(5) «*• (6) was proved in [L2, (5.10)]. (5) =*• (3) and (3) => (4) are both clear
by noting that D is algebraic iff the class A5ß(0) is algebraic [L2, (5.10)].
Thus, the crucial implication we need to prove is (4) => (5). Assume (4). Then
R certainly has a nonconstant monic semi-invariant polynomial, and we can fix
one, say p(t), with minimal degree n. Letting k := o(S") = o(S)/(n, o(S)) <
oo, we can apply the Hubert 90 Theorem (5.4). Since K is algebraic over its
center, it foUows from part (A) of this theorem that all (S, D)-conjugacy classes
in A are algebraic.   Q.E.D.

Remark 5.10. If all (S, D)-conjugacy classes are algebraic, it can be shown that
we must have o(S) < oo. In the case when there are at least two (S, D)-
conjugacy classes, this foUows from [L2, (5.25)]. In the case when K itself
constitutes a single (S, £>)-conjugacy class, we would have a nonzero (S, D)-
polynomial vanishing on K ; in this situation, K. H. Leung has shown that K
must be a finite field, so of course we wiU have o(S) < oo. However, Leung's
result is by no means easy to prove!

CoroUary 5.11. Suppose K is algebraic over Z(K), and S is an automorphism
of K such that o(S) < oo. If D is an algebraic S-derivation, then so is D-Da>s
for every aeK. In particular (as already noted in [Le2, p. 23, Corollary 7]),
every inner S-derivation Da,s is algebraic.

Proof. This foUows from the theorem, in view of (1) *► (2) in (4.7).   Q.E.D.
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6.  "HlLBERT 90" IN SPECIAL CASES, AND COUNTEREXAMPLES

In this section, we shall interpret our general Hubert 90 Theorem (5.4) in
various special cases, and explain why it covers the different known forms of
"Hubert 90" in the Uterature. First, to see why the expression u~xNktSn(p(a))
comes up in (5.4), it is best to begin with the special case when S and D are
both inner.

Example 6.1. Suppose S = Iu and D = Dds. Then t - d is easily seen to
be an invariant polynomial [L2, (2.6)]. Using the notation of (5.4), we can
choose p(t) = t—d so we have n = k = 1 here. The expression u~xNktS„(p(a))

is now simply tz-1(zz - d). Theorem 5.4(A) says in this case that A5,/J(zz) is
algebraic iff zz_1(zz - d) is algebraic over Z(K). (For instance, using (4.7), it
foUows that D¿,s is algebraic iff u~xd is algebraic over Z(K).) If As'D(a) is

algebraic, (5.4)(B) says that A € A" is (S, D)-conjugate to zz iff u~x(b - d) is
conjugate (in the classical sense) to «-1(zz - zz"). The latter statement can be
checked directly as foUows. For A to be in As'D(a), we need the existence of
ceK* such that

b = S(c)ac~l+ D(c)c~x

= ucu~xac~x + [dc - S(c)d]c~x

= ucu~xac~x + d - ucu~xdc~x,

or equivalently, u~x(b-d) = c[u~x(a-d)]c~x. So A is (S, D)-conjugate to a

iff u~x(b-d) is conjugate (in the classical sense) to u~x(a-d), as predicted
by (5.4)(B).

Example 6.2. Here we look at the case when D = 0 and o(S) = k <oo. Since
the polynomial / is obviously invariant, we can choose p(t) = t, so n = 1,
and (S")k = Sk = Iu for some u e K*. The expression u~xNk<s*(p(a)) is

now u~xSk~x(a) • • • S(a)a. So we get from (5.4):

(6.2)(A) A5(zz) is algebraic iff u~xSk~x(a)-■■S(a)a is algebraic over Z(K).
In particular, letting a = 1 and using [L2, (5.17)], we see that S is algebraic

(as an endomorphism of K) iff As(\) is algebraic, iff u is algebraic over Z(K).

(6.2)(B) Assume As(a) is algebraic. Then beK can be written in the form
S(c)ac~x for some ceK* ifandonlyifu~xSk~x(b)---S(b)b is conjugate (in

the classical sense) to u~xSk~x(a)---S(a)a. In particular, if u is algebraic over

Z(K) .then beK has the form S(c)c~x for some ceK* iffSk~x(b) • • -5(A)A
is a commutator of the form udu~xd~x for some d e K*.

If zz = 1 and A is a field, (6.2)(B) gives back the original form of the
Hubert 90 Theorem. If u = 1, A" is a division ring, and Sk~x(a)---S(a)a

is assumed to be in Z(K) n Ks, the first statement of (6.2) (B) was obtained
by Jacobson in [J3, Theorem 27] (see also [Co, p. 68] for the special case
a = 1). Thus, (6.2)(B) improves Jacobson's Theorem 27 in two ways. First,
since u = 1 in Jacobson's Theorem, the S there has finite order k in the
group of automorphisms of K, and it generates the Galois group of the outer
cyclic extension K/Ks. But in (6.2)(B), S is only assumed to have finite
inner order, and it may not have finite order. Secondly, instead of assuming
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5*-' (zz) • • • 5(zz)a € Z(K) n A"5, we need only assume that Sk~x (a) ■ ■ ■ S(a)a is
algebraic over Z(K).

Note that the "necessity' part of the main statement in (6.2)(B) can be easüy
checked directly, without any condition on u. In fact, if A has the form S(c)ac~x
for some c € A"*, then

u-xSk-l(b)---S(b)b

m u-xSk-x(S(c)ac-x)Sk-2(S(c)ac-x) ■ • • S(S(c)ac~x)S(c)ac-x

= u-lSk(c)Sk-i (a)Sk~2(a) ■ ■ ■ S(a)ac~x

= tz-'tzczz-'S*-1^) • ■■S(a)ac~i

= c[zz-l5*-1(zz)---5(zz)zz]c-1.

However, for the converses of the two statements in (6.2)(B) to be true, the
assumption that A* (a) is an algebraic class turns out to be essential. To see
this, let us first record the foUowing consequence of (6.2) (B) which is a familiar
result in the field case.

Corollary 63. Let S be an algebraic automorphism of a division ring K with
inner order k := o(S) < oo. then, for any kth root of unity co e K fixed by
S, there exists ceK* such that S(c) = coc. In particular, if k is even, there
exists cq e K* such that S(co) = -co ■

Proof. As we have already pointed out, the algebraicity of S means that A5(l)
is an algebraic class. Since Sk~x(ct))---S(co)co = ty* = 1, (6.2)(B) appUed to
a = 1 implies the existence of c € A"* such that co = S(c)c~x. In the case when
k is even, the last statement of the coroUary follows by applying the above to
co = -\.   Q.E.D.

The assumption that 5 is an algebraic automorphism is essential in (6.3).

To see this, let us construct a pair (K, S) where S has inner order k = 2
(but is not algebraic), and S(c) ^ — c for every ceK*. For such a pair
(K, S), the element co = -1 satisfies S(co)co = 1, but co cannot be written
in the form S(c)c~x for any c e K* , so co g A5(l). This wiU then provide
a counterexample to (6.2) (B) in the case where zz = 1 and A5(l) is not an
algebraic class. The foUowing construction of (K, S) is adapted from the last
example given in §5 of [L»]. Let L be any field of characteristic not two, and
let F = L({x¡ : i e Z}). Let a be the ¿-automorphism of F defined by
o(Xi) = xi+x for any i e Z. Then let A" be the division ring of twisted Laurent
series F((u, a2)) (in which ux¡ = a2(x¡)u = jc,+2zz) . We can extend a to an
automorphism S of AT by defining 5(zz) = zz. Then S2(x¡) = x,+2 = zzjc,zz_1 ,
and 52(tz) = zz = zzizzz-1. This gives S2 = Iu, and we have shown in [L4, end
of §6] that S is not inner, so k = o(S) = 2. To show that S(c) ¿ -c for every
ceK* is reduced easüy to showing that o(f) ^ -/ for every f e F*. Since o
shifts the subscripts of aU the variables {x¡ : z e Z} by one, clearly S(f) = -f
is possible only when / is a constant in L. However, a is the identity on L
and char L ^ 2, so indeed S(f) = f / -/ for every f e L*. This shows that
co = -1 cannot be expressed in the form S(c)c~x for any ceK*. Here, the
element u e K* is (necessarily) transcendental over Z(A) = L, and so S is
not an algebraic automorphism of A* by (6.2)(A).
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Example 6.4. Let us now look at the case when S — I. Here we have k = 1
and zz = 1. We still need to assume that R is nonsimple so that the polynomial
p(t) in (5.4) exists. The expression u~xNk>s*(p(a)) now simplifies to p(a), so
we have:

(6.4)(A) AD(a) is algebraic iff p(a) is algebraic over Z(K); and

(6.4)(B) If AD(a) is algebraic, then beK can be written in the form cac~x +
D(c)c~x for some ceK* iff p(b) is conjugate (in the classical sense) to p(a).

Recalling that D is algebraic iff A^O) is algebraic, we have in particular the
foUowing special case of (6.4)(A):

(6.4)(A') D is algebraic iff the constant term of p(t) is algebraic over Z(K).

This may seem a Uttle surprising at first sight, but we can "explain" it as
foUows. Let p(t) = £ Cit'. The semi-invariance of p(t) means here that p(t)c =
cp(t) for every c e K, so we have an operator equation p(D)kc - kcp(D),
where kc means left multiplication by c on K. Applying this to the element
1, we get £,>i c¡D'(c) + coc = ccq , so £f>, c¡D' = D-^.i ■ This shows that D
is a quasi-algebraic derivation (see [Le], [L2, §3] ), and, from this equation, it
is no longer surprising that D is algebraic iff c0 is algebraic over Z(A~).

Of course, the particular form of the polynomial p(t) used above wiU depend
on the specific pair (A", D) we are working with. In the case when char A = 0,
we know that p(t) must have the form t - d (if it exists), since R can be
nonsimple only if D is inner [A2]. This takes us back to the situation of Ex-
ample (6.1), so we need not consider this case further. Let us now consider the
case when char A = p > 0. In this case, we know that, up to an additive con-

stant, p(t) is a so-called p-polynomial, i.e. p(t) has the form zZT=odit"' -d,
with dm = 1 (see [L2, (3.11)(2)]). Writing N¡ for the y'th power function
with respect to (I,D), (6.4)(B) is then vaüd with p(a) = ¿Zd¡Np¡(a) - d and
P(b) = ¿ZdiNp¡(b) - d. In particular, for a = 0, we have the foUowing charac-

terization for the class A^O) consisting of the so-called logarithmic derivatives
{D(c)c~x : c e K*} :

(6.4)(B') For an algebraic derivation D, an element b e K is a logarithmic
derivative iff Y,diNp¡(b) - d is conjugate (in the classical sense) to -d.

Note that here the semi-invariant polynomial p(t) may have degree less than
that of the minimal polynomial of D, so the criterion for the logarithmic deriva-
tives obtained in (6.4)(B') is not the same as that in [Le3, Proposition 1] (or
in [L2, (5.11)]). To compare (6.4)(B') with the known results, it is best to

assume now that K is afield. In this case, J^T=odiLV = A/,/ = 0, so D is
automatically an algebraic derivation. In fact, trie minimal polynomial g(t) of

D is exactly £™0z/(y (see, e.g. [L4, (3.13)]). so (6.4)(B') gives back the
characterization in the references cited above:

(6.4)(B") beK isa logarithmic derivative iff g(b) := ££0 d¡Npl(b) = 0.

This turns out to be just the same as Jacobson's characterization of logarith-
mic derivatives quoted in (1.3), since Jacobson has shown in [JJ that A^¡(A)

in this case is just A^'l as defined in (1.3). However, this fact does not seem
to be weU-known, so it behooves us to give a direct explanation here. In [J2,
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p. 190], it is shown that, in K[t, D], one has the foUowing noncommutative
analogue of the F roben ius formula:

(t + bY = t" + bp + Dp-x(b)   (VACA-).

By a suitable induction (using, for instance, the fact that t" e K[t, D] is a
cv-polynomial with respect to (/ ,■£>")), one can further show that

(f + by' = tpi + A1"'!,    where

Afe'l := W' + (Z)"-1 (A))*'"' + (^-'(A)^"2 + • • • + LV'-1^).

From this definition and the usual Frobenius formula, it foUows that

(6.6) (A + c)^ = A^)-r-c^   (VA.cgA-);

in particular, one has (-A)1*'1 = -b^. Replacing A by -A in (6.5), we obtain
then

(6.5)' (t - by' = tpi + (-b)W = tpi - A"'1.

Evaluating this polynomial at A and transposing, we arrive at the desired ex-

plicit computation of the p'th power functions in this case: Np>(b) = A^'1.
Therefore, (6.4)1 B") boils down to Jacobson's classical criterion for logarith-
mic derivatives given in (1.3). Also, since A € A^zz) <=> (A - zz) e Aß(0), and
g(b -a) = g(b) - g(a), (6.4)(B) gives nothing more beyond (6.4)(B").

We close this example by computing the minimal polynomial of any class
AD(a)  (aeK). By [L2, (5.10)], this minimal polynomial is seen to be

g(t -a) = Y, di(t - ay' = Y, di(tp> - a*') = g(t) - g(a).

In particular, all D-conjugacy classes have the same rank pm . For instance, if D
is nilpotent with minimal polynomial g(t) = t"m , then the minimal polynomial

of AD(a) for any zz is just tp" - zz^'"! = (t - af. In this case, A is D-
conjugate to zz iff Alp",J = fll**"!. If m = 1, for example, this boüs down to
(b-ay+DP-x(b-a) = 0.

Example 6.7. Sti 11 assuming S = I, we shall construct here a concrete example
of a division ring K with an algebraic derivation D such that the (B) part of
the Hubert 90 Theorem (as weU as the result (4.14)) fails for a nonalgebraic
D-conjugacy class. Let L be a field of characteristic p, and let a be the L-
endomorphism of L(x) defined by a(x) = x". Then let K = L(x)((u, a)) be
the division ring of twisted Laurent series in u over L(x). It is easy to check
that there is a unique (usual) derivation D on K such that D(L(x)) = 0 and
£>(tz) = zz. Since D(um) = mum~xD(u) = mum (for aU m), we have Dp(um) =

m"um = mum = D(um). From this, it is easy to see that D has minimal

equation LV - D = 0. Using [L,, (3.11)], we further see that p(t) := tp - t
is a (nonconstant) semi-invariant polynomial of the least degree in K[t, D].
Since D is algebraic, (6.4)(B") implies that A € A is a logarithmic derivative
iff A'p(A) = A. (For instance, any m e Fp satisfies this equation, so m is a
logarithmic derivative; in fact, as we saw above, m = D(um)(um)~x.) While the

class AD(0) is algebraic, the classes AD(x + m) (me Fp) are not, since

p(x + m) = Np(x + m)-(x + m) = (x + my - (x + m) = xp - x
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is obviously not algebraic over Z(K) = L for any m e¥p. While the equa-
tion above shows that p(x) = p(x +1) = ••• = p(x + (p - 1)), we claim
that x,x+l,...,x + (p-l) determine p distinct D-conjugacy classes. In-
deed, if AD(x + m) = AD(x + m'), there would exist an equation (x + m)c =

c(x + m') + D(c), where c = Y0Í„ fu', with / e L(x), f„ ± 0. Comparing

the left coefficients of u" yields the equation (x + m)f„ = fnix** + m' + n),
which can hold only when n = 0 and m = m' e¥p.

Some other interesting remarks may be made about the Z)-conjugacy classes
{AD(x + m): m e ¥p}. Since q(t) := t" is a cv-polynomial with respect
to (I,LV) = (I, D) (see [U, (2.20)]), the Conjugation Theorem (2.2) im-
pUes that zz <-* q(a) = Np(a) induces a map from Z)-conjugacy classes to
D-conjugacy classes. As it turns out, this map permutes the p classes
{AD(x + m): meFp} cyclicaUy. In fact, since

q(x + m)u = (x + myu = xpu + mu = u(x + (m - l)) + Du,

we see that q(x + m) is ¿»-conjugate to x + (m - 1), so q(AD(x + m)) =
AD(x+(m-\)) for all m. The fact that x+(m-l) and xp+m axe D-conjugate
should imply that p(x + (m- 1)) and p(xp + m) are conjugate in the classical
sense, since we know that ( 1 ) =*• (2) in (5.4)(B) is true without any condition on
the algebraicity of the classes. Indeed, we nave here p(x + (m - 1)) = xp - x,

p(xp + m) = (xp + my - (xp + m) = xpl - xp, and these two elements are

conjugate in K since u(xp - x) = (xp2 - xp)u.
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