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Abstract

The aim of the paper is to study idempotents of ring extensions R ⊆ S where S stands
for one of the rings R[x1, x2, . . . , xn], R[x

±1
1 , x±1

2 , . . . , x±1
n ], R[[x1, x2, . . . , xn]]. We give

criteria for an idempotent of S to be conjugate to an idempotent of R. Using them we
show, in particular, that idempotents of the power series ring are conjugate to idempotents
of the base ring and we apply this to get a new proof of the result of P.M. Cohn (Theorem
7, [5]) that the ring of power series over a projective-free ring is also projective-free. We
also get a short proof of the more general fact that if the quotient ring R/J of a ring R
by its Jacobson radical J is projective-free then so is the ring R.

Introduction

By the ring extension S of an associative unital ring R we mean, in this article, one of the
following rings: the polynomial ring R[x1, . . . xn] in finite number of commuting indetermi-
nates x1, . . . , xn, the Laurent polynomial ring R[x±1

1 , x±1
2 , . . . , x±1

n ] and the power series ring
R[[x1, . . . xn]]. The aim of the paper is to study relations between idempotents of R and
those of S. One of the motivations of our study is the Quillen and Suslin’s solution of Serre’s
problem which says that every finitely generated projective module over a polynomial ring
K[x1, . . . , xn], where K is a field, is free (cf. [9] for more details). Since any finitely generated
projective module is associated with an idempotent of a matrix ring, the above result can be
translated in terms of idempotents as follows: every idempotent e2 = e ∈ Ml(K)[x1, . . . , xn]
is conjugate to an idempotent in the base ring Ml(K).

E(R) will denote the set of all idempotents of a ring R. At the beginning, we present
necessary and sufficient conditions for the equality E(S) = E(R) (Corollary 6). As a byprod-
uct of our investigations we obtain a short proof of a result of H. Bass on idempotents in
commutative group rings.

∗This research was supported by the Polish National Center of Science Grant No. DEC-
2011/03/B/ST1/04893.
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Two elements a, b in a ring R are said to be conjugate if there exists an invertible element
u ∈ R such that b = uau−1. We provide, in Corollary 11, a sufficient condition for two
idempotents in a ring to be conjugate. With the help of this condition we show, in Theorem
13, that any idempotent of R[[x1, . . . , xn]] is conjugate to an idempotent of R. We also study
situations when a similar result holds for a polynomial ring.

Let us recall a few definitions: a ring R is 2-primal if the set of its nilpotent elements is
exactly the prime radical. A ring R is abelian if all idempotents of R belong to its center R.
It is well-known that reduced rings are abelian (cf. [7]) . We show that every idempotent
of a polynomial ring R[x] is conjugate to an idempotent of R in the following cases: R is
abelian, R is the matrix ring Mn(A), where A is either a division ring or a polynomial ring
K[x1, . . . , xm] over a field K. It is also shown that any idempotent of degree one in R[x]
is conjugate to an idempotent of R. Based on a result of Ojanguren-Sridharan we give an
explicit example of a polynomial e of degree two with coefficients in R = M2(H[y]), which is
an idempotent of R[x] not conjugate to any idempotent of R. In fact, there are uncountably
many non conjugate such idempotents.

We also show that, for any ring R, the semicentral idempotents of R[x] are conjugate to
idempotents of R (Theorem 18).

A ring R is projective free if every finitely generated left (equivalently right) R-module is
free of unique rank. As a consequence of our investigations, we give new short proofs of a
series of classical results. a theorem of P.M. Cohn saying that the projective-free property lifts
up from R/J to R, where J is the Jacobson radical of R (Theorem 21(a)); a particular case
of a result of I. Kaplansky which says that local rings are projective-free (Theorem 21(b));
another theorem of P.M. Cohn stating that if R is projective-free then so is R[[x]] (Theorem
22) and a theorem of G. Song and X. Guo saying that two idempotents in a ring are equivalent
if and only if they are conjugate (Corollary 20).

Idempotents

We begin with the following elementary result (cf. [1], Proposition 2.5) .

Lemma 1. Let R be a ring and e(x) =
∑∞

i=0 eix
i ∈ R[[x]] be an idempotent. If e0ei = eie0, for

every i ≥ 1, then e(x) = e0. In particular, if R is abelian, then E(R[[x]]) = E(R[x]) = E(R).

Proof. It is clear that e0 is an idempotent of R. Assume that e(x) ̸= e0 and let k > 0 be the
least index such that ek ̸= 0. Comparing the degree k coefficients of e(x)2 and e(x) we get
2e0ek = ek. Multiplying this equality by e0 we obtain e0ek = 0 and hence also ek = 0. This
contradiction yields the result.

The above observation is also contained in Lemma 8 of [6]. As a first application we prove
the following result which can also be obtained by combining Propositions 2.4 and 2.5 in [1]
and Lemma 1.7 in [2].

Proposition 2. Let Sn denote one of the following rings R[x1, . . . , xn], R[[x1, . . . , xn]] and
R[x±1

1 , x±1
2 , . . . , x±1

n ]. If e is a central idempotent of Sn, then e ∈ R.

Proof. Lemma 1 gives the result for rings R[x] and R[[x]]. Since the element 1−x is invertible
in R[[x]], the R-monomorphism ϕ : R[x] → R[[x]] which sends x onto 1 − x has a natural
extension to an R-monomorphism ϕ : R[x±1] → R[[x]] given by ϕ(x−1) = (1 − x)−1. Let
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e ∈ R[x, x−1] be a central idempotent. Since e commutes with elements of R the same
property holds for the idempotent ϕ(e) ∈ R[[x]]. This implies that ϕ(e) ∈ R and e ∈ R
follows. Hence the result holds for R[x±1]. Now it is standard to complete the proof by
induction on n.

Remark 3. As in the above proposition, let S1 denote either R[x], R[x, x−1] or R[x]. It is
easy to check that if δ is a derivation of a ring R then, for any central idempotent e ∈ R, we
have δ(e) = 0. Thus, if the additive group of R is torsion-free, taking the standard derivation
δ = δ/δx of the ring S1 we directly get e ∈ R, for any central idempotent e ∈ S1.

Let R be a ring and G a group.

If G is a finitely generated abelian group an R is a ring, we can write RG ∼= (RH)F where
H is the torsion part of G and F is free abelian group of finite rank. From Proposition 2 we
thus easily get:

Corollary 4. (H.Bass) Let K be a commutative ring and G an abelian group with the torsion
part H. Then any idempotent of KG belongs to KH.

The following theorem offers a characterization of rings such that every idempotent of
R[x] belongs to R.

Theorem 5. For a ring R, the following conditions are equivalent:

(1) R is abelian;

(2) Idempotents of R commute with units of R;

(3) E(R[[x]]) = E(R);

(4) E(R[x±1]) = E(R);

(5) E(R[x]) = E(R);

(6) There exists n ≥ 1 such that R[x] does not contain idempotents which are polynomials
of degree n.

Proof. The implication (2) ⇒ (1) is a direct consequence of the fact that for any e ∈ E(R)
and r ∈ R, (er − ere)2 = 0 = (re− ere)2. Hence 1 + (er − ere) and 1 + (re− ere) are units
in R.

The implication (1) ⇒ (3) is given by Lemma 1.

(3) ⇒ (4) Let ϕ : R[x±1] → R[[x]] denote the R-homomorphism defined in Proposition
2. Then E(ϕ(R[x±1])) ⊆ E(R[[x]]) = E(R). Since ϕ is injective and ϕ|R = idR, we get
E(R[x±1]) = E(R).

The implication (4) ⇒ (5) is clear as R[x] ⊆ R[x±1] and (5) ⇒ (6) is a tautology.

(6) ⇒ (2) Suppose (6) holds and let e ∈ E(R). If e is not central in R, then either
eR(1− e) or (1− e)Re is nonzero. Suppose 0 ̸= r ∈ eR(1− e). Then (1 + rxn)(1− rxn) = 1.
Hence 1 + rxn is an invertible element and consequently (1 + rxn)e(1− rxn) = e− rxn is an
idempotent of degree n, a contradiction. Hence e has to be central in R. Thus, in particular,
(2) holds.
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If S is an abelian ring then so is any of its subrings. This observation and the above
theorem yield that we could add in Theorem 5 the following next equivalent statement ”the
ring S is abelian”, where S stands for any of the rings R[x], R[[x]], R[x±1]. Therefore, using
induction with respect to the number of indeterminates we obtain the following:

Corollary 6. Let S denote one of the rings R[x1, . . . , xn], R[x
±1
1 , x±1

2 , . . . , x±1
n ], R[[x1, . . . , xn]].

Then R is is abelian if and only if S is abelian if and only if E(S) = E(R).

A weaker version of the above corollary holds in the more general setting of graded rings.
Let M denote an additive monoid with a neutral element 0.

Proposition 7. Suppose R =
⊕

m∈M Rm is an M -graded ring. Then:

(1) If R0 is abelian and E(R) = E(R0), then R is an abelian ring;

(2) Suppose M = Z. Then R is abelian if and only if R0 is abelian and E(R) = E(R0);

Proof. (1) Suppose R0 is abelian and E(R) = E(R0). For showing that R is abelian, it is
enough to prove that for every e ∈ E(R) and homogeneous element r ∈ R, er(1 − e) =
(1− e)re = 0. One can check that e+ er(1− e) is an idempotent. Thus, as E(R) = E(R0),
er(1 − e) ∈ R0. This implies that er(1 − e) = 0 if r ∈ Rm with m ̸= 0. If r ∈ R0, then
er(1− e) = 0 as R0 is abelian. Replacing e by 1− e we get (1− e)re = 0.

(2) Let R =
⊕

m∈ZRm be Z-graded. One implication is given by the statement (1).
Suppose R is abelian. Then R0 is abelian as a subring of R. Moreover, by Corollary 6,

the ring R[x±1] is also abelian and E(R) = E(R[x±1]).
Let ψ : R → R[x±1] be the monomorphism defined by ψ(ri) = rix

i, for any homogeneous
element ri ∈ Ri, i ∈ Z. Let e =

∑
i∈Z ei ∈ E(R), where ei ∈ Ri and ei = 0, for almost

all i ∈ Z. Then ψ(e) =
∑

i∈Z eix
i ∈ R. This implies that e = e0 ∈ R0 and proves that

E(R) ⊆ E(R0). The reverse inclusion is clear.

Remarks 8. 1. Using the full strength of Corollary 6, one can replace M = Z in statement
(2) of Proposition 7, by M = Zn.
2. The analogue of Proposition 7(2) for rings graded by finite groups clearly does not hold.
Indeed, let M is a finite abelian group of order n ≥ 2. Then the group algebra CM over the
field C of complex numbers is clearly abelian and M -graded. Moreover E(R0) = {1} is not
equal to E(R) as R is isomorphic to a direct product of n copies of C.
3. We have seen in Corollary 6, that the polynomial ring R[x] is abelian if and only if R is
abelian. The analogue of this statement does not hold for Z-graded rings. Indeed, let K be
a field and e = (1, 0) ∈ K ×K = R0. Then R0 is commutative but the idempotent e is not
central in R = R0[x;σ], where σ is the automorphism of R0 = K ×K switching components.

Theorem 5 describes the situation when E(R[x]) = E(R). Now we will present certain
sufficient conditions for all idempotents of R[x] to be conjugate to idempotents of R. For
this we need some preparation. If e(x) =

∑n
i=0 eix

i ∈ R[x] is an idempotent then e(x) =
e0 + b where e0 is an idempotent in R. Motivated by this observation we state the following
proposition.

Proposition 9. Let e, b, u be elements of R such that e2 = e and u = 2e − 1. Then the
following conditions are equivalent:

(i) e+ b is idempotent;
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(ii) be+ eb+ b2 = b;

(iii) (1 + bu)e = (e+ b)(1 + bu).

Moreover, if one of the equivalent statements holds then:

(iv) bu+ ub = −2b2;

(v) b2u = ub2 and (1 + bu)(1 + ub) = (1 + ub)(1 + bu) = 1− b2;

(vi) 1 + bu is invertible iff 1 + ub is invertible iff 1− b2 is invertible;

(vii) (1 + 2ub)(1 + 2bu) = 1 and b2u = ub2.

Proof. (i) ⇔ (ii) This is easy to check.
(ii) ⇒ (iii) First notice that multiplying the equality in (ii) by e on the left and on the right

we easily get ebe = −eb2 = −b2e. We then have (e+b)(1+bu) = e+b+eb(2e−1)+b2(2e−1) =
e+ b− eb− b2 = e+ be = (1 + b)e = (1 + bu)e.

(iii) ⇒ (ii) Observe that u2 = 1. Using the equality given in (iii) multiplied by u on
the right, we have e + be = (1 + bu)e = (1 + bu)eu = (e + b)(1 + bu)u = (e + b)(u + b) =
eu+ bu+eb+ b2 = e+ b(2e−1)+eb+ b2 = e+2be− b+eb+ b2. This gives be− b+eb+ b2 = 0
as desired.

Suppose now that one of the equivalent statements (i) − (iii) holds. One can directly
check, with the help of (ii), that bu+ ub = 2(be+ eb− b) = −2b2.

(v) Using (iv) and the fact that u2 = 1, one can get (1 + bu)(1 + ub) = 1 − b2. It was
shown, in the proof of (ii) ⇒ (iii), that e commutes with b2. Hence also b2u = ub2. Thus
(1 + ub)(1 + bu) = 1 + bu+ ub+ ubbu = 1− 2b2 + ub2u = 1− b2.

(vi) It is known (see Ex.1.6, [8]) that the element 1 + bu is invertible if and only if 1 + ub
is invertible (even when u, b ∈ R are arbitrary). Thus, if 1 + ub is invertible then, by (v),
1− b2 is invertible. Finally, suppose that 1− b2 is invertible. Then the statement (v) shows
that 1 + bu is invertible.

Using the statement (iv) and the fact that b2u = ub2, it is easy to complete the proof of
(vii).

Remarks 10. 1. One can check that all statements from Proposition 9 are equivalent,
provided R is 2-torsion free.

2. Let e, b ∈ R be such that e, e′ = e+ b ∈ E(R). Set u = 2e− 1. We state without proof
a few relevant facts (which will not be used in the sequel):

(a) If k ∈ N is odd, then (ebk + ebk+1)e = 0;

(b) If k ∈ N is odd, then e+ eb+ eb2 + · · ·+ ebk−1 is an idempotent;

(c) If bk = 0, then e+ eb+ eb2 + · · ·+ ebk−1 is always an idempotent;

(d) e− (1 + 2ub)b is an idempotent and we have (1 + ub)e = (e− (1 + 2ub)b)(1 + ub);

(e) e+ 2b(1 + ub) is an idempotent and we have (e+ b)(1 + ub) = (1 + ub)(e+ 2b(1 + ub));

(f) If be = eb, then b = b3. In particular, b2 is an idempotent.

The statements (iii) and (vi) of Proposition 9 gives directly the following corollary.
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Corollary 11. Let e, b ∈ R be such that e, e+b ∈ E(R). If 1−b2 is invertible, then e and e+b
are conjugate. In particular, this holds when either b is nilpotent or b ∈ J(R), the Jacobson
radical of R.

In the following example we will exhibit two idempotents e and e + b that are conjugate
although 1− b2 is not invertible.

Example 12. Let R be the ring of 2 × 2 matrices over a ring S. One can easily check that
the matrices

e =

(
1 0
0 0

)
b =

(
−1 0
0 1

)
P =

(
0 1
1 0

)
are such that e2 = e, (e + b)2 = e + b and P ∈ GL2(S) is such that P (e + b)P−1 = e but
1− b2 = 0 is not invertible.

With the help of Corollary 11 we have:

Theorem 13. Any idempotent f of R[[x]] is conjugate to its constant term. Thus, in partic-
ular, any idempotent of R[[x1, . . . , xn]] is conjugate to an idempotent of R.

Proof. Let f =
∑∞

i=0 ei ∈ R[[x]] be an idempotent. Then f = e + b, where e = e0 is an
idempotent and b =

∑∞
i=1 ei. Since 1 + bv is an invertible element of R[[x]] for any element v

of R[[x]] we get b ∈ J(R). Now, Corollary 11 yields that f and e are conjugate. The second
part of the theorem follows by induction.

There are many other ring extensions where Corollary 11 can be applied. In the following
corollary we present some of them, that seem to be interesting:

Corollary 14. Let R be a ring. Then:
(1) Any idempotent of R[x]/(xn) is conjugate to an idempotent of R;
(2) Any idempotent of the upper triangular matrix ring An(R) of n × n matrices over R is
conjugate to a diagonal idempotent matrix;
(3) If S is another ring and RMS is an (R,S)-bimodule, then any idempotent of the ring

T =

(
R M
0 S

)
is conjugate to an idempotent of R⊕ S.

Proof. It is easy to see that every idempotent of R[x]/(xn) (resp. of An(R) or of T ) can be
presented in a form e + b, where e is an idempotent of R (resp. a diagonal idempotent of
An(R), or of R ⊕ S) and b is a nilpotent element. Thus, Corollary 11 gives statements (1)
and (2) and (3).

Corollary 15. Let R be any ring and e(x) = e+cxn ∈ R[x] be an idempotent, where e, c ∈ R
and n ≥ 1. Then e(x) is conjugate in R[x] to e = e2 ∈ R. In particular, every idempotent of
R[x] having degree one is conjugate to an idempotent of R.

Proof. Since e(x) is an idempotent, e has to be an idempotent and b = cxn a nilpotent element.
Now the corollary is a direct consequence of Corollary 11 applied to the ring R[x].

Recall that a ring R is called 2-primal if the set of all nilpotent elements of R coincides
with the prime radical B(R) of R (equivalently, all minimal prime ideals of R are completely
prime).

For a ringR, let Sn(R) denote one of the ring extensionsR[x
±1
1 , x±1

2 , . . . , x±1
n ], R[x1, . . . , xn].

Keeping this notation we have the following theorem.
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Theorem 16. Suppose R is a 2-primal ring. Then any idempotent of Sn(R) is conjugate to
an idempotent of R.

Proof. Let B = B(R). It is well known and easy to check that BSn(R) is a nil ideal of Sn(R)
and the factor ring Sn(R)/BSn(R) is isomorphic to Sn(R/B). Moreover, as R is 2-primal,
R/B and hence Sn(R/B) is a reduced ring. Since reduced rings are abelian, Corollary 6 shows
that E(Sn(R/B)) = E(R/B). This and the fact that idempotents can be lifted modulo nil
ideals (see Theorem 21.38 of [7]) imply that every idempotent f of Sn(R) can be presented
in a form f = e+ b where e = e2 ∈ R and b ∈ BSn(R). In particular, b is a nilpotent element
and Corollary 11 shows that f is conjugate to e ∈ R. This gives the result.

In the next theorem we give yet another situation where an idempotent of a polynomial
ring is conjugate to its constant term. Recall that an idempotent e of a ring R is called right
semicentral if er = ere, for all r ∈ R. Similarly one defines left semicentral idempotents.

Proposition 17. Let T ⊆ S be a ring extension and e, f ∈ T be right semicentral idempotents
of S. If e, f are conjugate in S, then:

(1) e=ef and f=fe;

(2) e and f are conjugate in T .

Proof. (1) Let v ∈ S be an invertible element of S such that f = vev−1. Using the fact that e
is right semicentral in S, we get fr = vev−1r = vev−1re = fre, for any r ∈ R. Taking r = 1,
we get f = fe. Similarly, changing the roles of e and f we obtain e = ef .

(2) Let b = f − e ∈ T , that is, f = e+ b. By (1), b2 = 0. Thus, the statement is a direct
consequence of Corollary 11.

Theorem 18. Let f be a right (resp. left) semicentral idempotent of R[x] (resp. of R[x, x−1]).
Then f is conjugate to the constant term of f .

Proof. We give the proof in the case e ∈ R[x] is right semicentral. If e is right semicentral
then, with the help of right version of Proposition 17, the same proof works.

Let f = e + b, where e ∈ R is the constant term of f and b ∈ R[x]x. Then, by Theorem
13, idempotents e and f are conjugate in the power series ring S = R[[x]]. Observe that, for
n ≥ 0 the coefficient at xn of the product hp of two power series p, h ∈ R[[x]] depends only of
a finite number of coefficients of h and p. This implies that the semicentral idempotent f of
R[x] is also semicentral as idempotent of R[[x]]. Hence, by Proposition 17 (2), idempotents e
and f are conjugate in T = R[x].

The case of an idempotent element in R[x, x−1] is treated similarly using the emebedding
ϕ of R[x, x−1] into R[[x]] given in the proof of the implication (3) ⇒ (4) in Theorem 5.

Remark 19. Let e, f ∈ R be conjugate, right semicentral idempotents of a ring T . The
identities from Proposition 17 were observed first in Propositions 2.4, 2.5 of [1] in the special
case when T is either R[x] or R[[x]], f is an idempotent of T and e is the constant term of f .

As another application of Corollary 11 we now give a result of Guo and Song ([10]). Recall
that two elements e, e′ of a ring R are called equivalent if there exist invertible elements
p, q ∈ R such that e′ = peq.

Corollary 20. (Theorem 2 of [10]) Let e, e′ be two idempotents of a ring R. Then e and e′

are equivalent if and only if they are conjugate.
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Proof. It is enough to prove that if e′ = peq with p, q invertible in R then pep−1 is conjugate to
e′. According to Corollary 11 it suffices to prove that b := pep−1−e′ is nilpotent. Since e′2 = e′

we get eqpe = e and (pep−1 − peq)2 = p(e − eqp)2p−1 = p(e − eqpe − eqp + eqpeqp)p−1 = 0,
as required.

Recall that a ring R is called projective-free if every finitely generated projective R-module
is free of unique rank. According to Proposition 0.4.5 in [4], a ring is projective-free precisely
when it has invariant basis number (IBN for short) and every idempotent matrix is conjugate
to a matrix of the form diag(1, . . . , 1, 0 . . . , 0). As an application of Corollary 11 we obtain a
new proof of a classical result by I. Kaplansky: Projective modules over a local ring are free.
We give a short proof for the case of finitely generated projective modules.

Theorem 21. (1) Let I denote an ideal of ring R contained in the Jacobson radical J(R)
of R. If R/I is projective-free then R is also projective-free;

(2) Every local ring R is projective-free.

Proof. (1) We first remark that R has IBN as R/I has IBN. Now, consider e2 = e ∈Mn(R).
Let us write ē := e+Mn(I) ∈Mn(R)/Mn(I) ∼=Mn(R/I). Since R/I is projective-free, there
exists an invertible matrix P̄ ∈ GLn(R/I) such that P̄ ēP̄−1 is a diagonal matrix of the form
D̄ = diag(1̄, . . . , 1̄, 0̄ . . . , 0̄) ∈ Mn(R/I). Since I ⊆ J(R), units of Mn(R/I) lift to units of
Mn(R). Therefore there exists an invertible matrix P ∈ GLn(R) such that P +Mn(I) = P̄ .
This leads to PeP−1− diag(1, . . . , 1, 0, . . . , 0) ∈Mn(I) ⊆ J(Mn(R)). Hence, by Corollary 11,
PeP−1 is conjugate to diag(1, . . . , 1, 0, . . . , 0). This yields the result.

The statement (2) is a direct consequence of (1), as every division ring is projective-
free.

As a direct application of Theorem 21(1) we obtain the fact that if a ring R is projective
free then so is R[[x]]. This was first proved by P.M. Cohn (cf. Theorem 7, [5]). We now
present another short proof of this result based on Theorem 13.

Theorem 22. (P.M. Cohn) Let R be any projective-free ring. Then the power series ring
R[[x]] is again projective-free.

Proof. Since R has the IBN property and is an homomorphic image of R[[x]], the ring
R[[x]] has the IBN property as well. By Proposition 0.4.5, [4], it is enough to show that,
for any n ≥ 1, every idempotent matrix e ∈ Mn(R[[x]]) is conjugate to a matrix of the
form diag(1, . . . , 1, 0 . . . , 0). Notice that T = Mn(R[[x]]) is naturally isomorphic to the
ring Mn(R)[[x]]. Thus, by Theorem 13, the idempotent e is conjugate in T to an idem-
potent of Mn(R) which, in turn, is conjugate in Mn(R) ⊆ T with an idempotent of the form
diag(1, . . . , 1, 0 . . . , 0), as R is projective-free.

Remark 23. Suppose B is a ring such that the ring B[x] is projective-free. Then, looking at
Mn(B)[x] as Mn(B[x]), we see that every idempotent of R[x] is conjugate to an idempotent
of R =Mn(B).

In particular, the above remark applies to:
1. B is equal to the polynomial ring K[x1, . . . , xm] over a field K, where m ≥ 1 (by Quillen-
Suslin solution of Serre’s Problem);
2. B is any division ring (by Theorem 2.5 page 73 of [9]).
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Theorem of Ojanguren-Sridharan (cf. Theorem 3.1, page 74 of [9]) states that when D
is a noncommutative division ring, then R = D[x, y] is not projective-free. Computing the
matrix associated to the map Id − ψϕ given in the proof of the above mentioned theorem
in the case D = H is the division ring of real quaternions and a = i, b = j, we get the
polynomial e(x) = A0(y) + A1(y)x + A2(y)x

2 ∈ M2(H[y])[x] ≃ M2(H[x, y]) such that e(x)
is an idempotent of M2(H[y])[x] which is not conjugate to diag(ϵ1, ϵ2), where ϵ1, ϵ2 ∈ {0, 1}.
Therefore, as H[y] is projective-free, e(x) is not conjugate to any idempotent of the base ring
M2(H[y]). Coefficients of this polynomial are

A0(y) =
1

2

(
1− jy k + ky2

−k 1− jy

)
, A1(y) =

1

2

(
i+ ky 0

0 i− ky

)
, A2(y) =

1

2

(
0 0
−k 0

)
A result of Parimala-Sridharan (see Theorem 1.17, page 169 of [9]), states that there exist

uncountably many mutually nonisomorphic nonfree projective modules P (similar to the one
presented above) over the polynomial ring H[x, y], such that P ⊕ H[x, y] ≃ H[x, y]2. This
implies that there are uncountably many polynomials of degree 2 in M2(H[y])[x] which are
idempotents not conjugate to each other and not conjugate to any idempotent of M2(H[y])

We close the paper by a partial generalization of Theorem 16 to matrices over 2-primal
rings. We say, following Steger [11], that a ring R is ID if every idempotent matrix over R is
conjugate to a diagonal one. Of course, every projective-free ring R is ID.

Proposition 24. Let R be a 2-primal ring such R[x] is an ID-ring. Then every idempotent
e ∈Mn(R)[x] is conjugate to a diagonal matrix of the form diag(e1, . . . , en) ∈Mn(R), where
ei’s denote idempotents in R.

Proof. Let e ∈ Mn(R)[x] be an idempotent. We look at Mn(R)[x] as Mn(R[x]). Since R[x]
is an ID ring, e is conjugate to a diagonal matrix, that is, we can find an invertible matrix
u ∈ Mn(R[x]) such that ueu−1 = diag(f1, . . . , fn), where fi ∈ E(R[x]). Since R is 2-primal,
Theorem 16 shows that, for any 1 ≤ i ≤ n the idempotent fi is conjugate to a certain
ei ∈ E(R). Hence e is conjugate to diag(e1, . . . , en) ∈Mn(R)

Finally we remark that any commutative ring R such that R/B(R) is a principal ideal
ring fulfills the assumptions of the above proposition (cf. Theorem 11, [11]).
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