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§1. Introduction

Let K be a ring with a given endomorphism S. An additive map D : K — K is
called an S-derivation on K if D(ab)=S(a)D(b) + D(a)b for all a, b € K. Given the
triple (K, S, D), we can form the skew polynomial ring R = K|[t,S, D] whose elements
are (left) polynomials of the form ¥ a;#* (a; € K), with multiplication induced by
ta = S{a)t + D(a) (Va € K). The study of the ring K[¢,S, D] was inaugurated by Ore
[O], and gained popularity subsequently through the influential work of Jacobson [J 4],
[J2: Ch. 3] and Amitsur [A,], [A;]. Modern treatments of the basic theory of K|[t,S, D]
have appeared in [Co], [MR] and [JS].

A major concern in the theory of skew polynomial rings is the investigation of the
ideal structure in such rings. For this investigation, the first important case is naturally
that in which K is a division ring. In this case, assuming that D = 0 and S is
an automorphism of K, Jacobson determined the structure of the 2-sided ideals of
R = KIt,5,D] in [J;: Ch. 3|. In the more general case when K is a simple ring,
assuming that S = I, Amitsur also determined the structure of the 2-sided ideals in R
[Az]. More recently, this line of investigation was continued in the work of Carcanague
[C], Cauchon [Ca], Leroy-Tignol-van Praag [L;], Lemonnier [Le] and Leroy [L;], among
others. In [C], K was assumed to be a division ring but there was no restriction on
(S,D); in [Ca, Ly, Le], K was allowed to be a simple ring, but S was assumed to be
an automorphism of K. In these papers and theses, various results were obtained on
the i1deal structure of the ring R.
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In the present work, we shall first assume K to be a diviston ring, and investigate the
relationship between two classes of polynomials in R = K|t, S, D], namely the invariant
polynomials and the semi-invariant polynomials. By definition, a polynomial p(¢) € R
is right inveriant if p(t)R C R - p(t), and right semi-invariant if p(¢)K C K - p(t). (To
simplify language, we shall drop the adjective “right” in the following.) The significance
of the notion of an invariant polynomial lies in the fact that, if p(¢) is invariant, then
R - p(t) is a 2-sided ideal in R, and conversely, any 2-sided ideal in R arises in this
manner. Thus, the determination of the ideal structure in R is equivalent to the
determination of its invariant polynomials; in particular, R is not a simple ring iff it
has a nonconstant invariant polynomial. The notion of a semi-invariant polynomial, on
the other hand, serves as a first approximation to the notion of an invariant polynomial:
in fact, p(?) is invariant iff p(t) is semi-invariant and p(¢)t € R - p(t). In addition,
semi-invariant polynomials arise naturally in the theory of semi-linear transformations
[J1], and in the study of minimal polynomials of algebraic sets [LL]. In the case when
S is an automorphism, Lemonnier [Le| proved the remarkable fact that the following
three conditions are equivalent?:

(A) R 13 not a stmple ring;

(B) There ezists a (nonconstant) monic semi-invariant polynomial in R;

(C) D is a quasi-algebraic derivation, i.e. there exists an operator equation b,D"™ +
cro+ b1 D+ boD.g = 0, where ¢, b; € K, b, # 0, 8 is an endomorphism of K, and
D .y denotes the B-inner derivation sending any =z € K to cz — 6(z)ec.

Here, (B)<=(C) is not difficult, but the equivalence of (B), (C) with (A) is much
harder, and Lemonnier’s rather elaborate proof of this equivalence (using “deviations”
and “codeviations”) seemed to be not well-understood. In our view, it seemed that there
should exist a way of directly constructing a nonconstant invariant polynomial from a
nonconstant semi-invariant polynomial, thereby yielding a natural proof for (B)=-(A).
Indeed, it was this viewpoint which prompted the present investigation.

Now we can summarize the results obtained in this paper. We shall assume, through-
out §82-4, that K is a division ring, but S is not assumed to be an automorphism
unless stated otherwise. In §2, we prove various identities on p(¢)t—tp(t) for any monic
semi-invariant polynomial p(t), and recapture Lemounnier’s result that, when p(t) is of
minimal degree®, p(¢)t has the form (¢+c)p(t)+d for suitable scalars ¢, d, determined
explicitly by p(#). The element d thus provides a measure of how far p(t) is from being
invariant; further, it has the remarkable property that, for any a € K, S™*t'(a)d = da,
where n = deg p(t). From this result, it follows that, if S is not an automorphism,
then p(t) is already invariant, and if S 1s an automorphism of infinite inner ordert,

then, in fact, any semi-invariant polynomial is invariant. These results are contained
in (2.5) and (2.6).

?Lemonnier’s results hold, more generally, for any simple ring K.

30f course, constant polynomials are both invariant and semi-invariant. Thus, whenever we speak
of invariant or semi-invariant polynomials of minimal degree, it will always be understood that we are
considering only nonconstant polynomials.

*The inner order of an automorphism S is the order of the image of S in the group of automorphisms
of K modulo the normal subgroup of inner automorphisms.
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In §3, we study the powers of a minimal monic semi-invariant polynomial p(t), and
obtain a criterion for p(#)” to be invariant (Theorem 3.1). This gives us a handle on
the set of invariant polynomials contained in the left ideal R - p(t). More formally, let
J={h(t) € R: h(t)R C R-p(t)} be the “bound” of R - p(f): this is the largest
2-sided ideal of R contained in R - p(%) (see [J: p.39]). In (3.8), we show that this
bound J is given by R-p(t)* for some integer s < deg p(t). In the case when S is not
an inner automorphism, we show further that p(¢)* is, in fact, an invariant polynomial
of minimal degree in R (Theorem 3.10). In particular, this provides a strong form of
the implication (B)==>(A) above, in the mean time generalizing it to the case when S
is any endomorphism. Here, the conclusion that p(#)® is invariant of minimal degree is
quite significant, because then p(¢)* can be used to describe the center of R as well as
the set of all the 2-sided ideals in R, via the results of Cauchon [Ca].

In §4, continuing to assume that K is a division ring, we study the bound J of
R - p(t) when p(t) is a semi-invariant polynomial not necessarily of minimal degree. If
S(K) has finite right codimension m in K and deg p(t) = n, we show that J has the
form R- f(t) where f(t) is an invariant polynomial of degree < n(1+m+---+mn1)
(Theorem 4.2). This part of our paper is closely related to the work of Carcanague
[C], although Carcanague’s results do not seem to apply to non-minimal semi-invariant
polynomials. Also, our results in §4 are independent of those in the earlier sections; in
particular, in the case when K is a division ring with [K : S(K)], < oo, the argument
in §4 gives a fairly quick direct proof for the fact that the existence of a nonconstant
semi-invariant polynomial implies the existence of a nonconstant invariant polynomial.

Although we work under the assumption that K is a division ring in §§2-4, many
of the proofs can be extended to the case when K is a simple ring. However, some
extra considerations are needed in handling the non-monic polynomials, and generally
we need to assume that S is an automorphism. The details of this generalization are
presented in the last section (§5) of this paper.

§2. Structure of Semi-Invariant Polynomials

Throughout §§2-4 of this paper, we let K be a division ring, S be an endomorphism
of K which may not be an automorphism, and we let R denote the skew polynomial
ring K¢, S, D]. We begin this section by proving some basic identities concerning semi-
invariant polynomials. We shall denote a typical semi-invariant polynomial in R by
p(t) = %, ait’. Here, n denotes the degree of p(t), and we shall assume, after a
scaling, that p(¢) is monic (i.e. @, = 1). Under this assumption, the condition that
p(t) is semi-invariant can be expressed in the form

(2.1) p(t)a = S™(a)p(t) Vae€ K.

Given such a polynomial p(t), we shall associate to it the polynomial




q(t) = p(t)t—1p(?)
(22) = ZO aiti“ e ZO (S(a,')t -+ D(a;))ti

= (@n_1 — S(an-1))t" + -+ + (a0 — S(ao) — D(a1))t — D(ao).

In the next two Propositions, we shall establish some interesting properties of ¢(t), in

the general (K,S,D)-setting.

Proposition 2.3. (1) ¢(t)a — S**!(a)q(t) = (S"D(a) — DS™(a))p(t) Va € K;
(2) S"D — DS™ = D, 55", where ¢:=a,_1 — S(an_1).

Proof. Forany a € K, we have by (2.1):

g(t)a = (p(t)t —tp(t))a
= p(t)(S(a)t + D(a)) — tS"(a)p(t)
= §™(a)p(t)t + S*D(a)p(t) — (5™ (a)t + DS™(a))p(t)
= S™" Y a)q(t) + (S"D(a) — D5"{a))p(t).

Transposition of S"*'(a)q(t) now yields (1). For (2), we simply compare the (left)
coefficients of ¢" on the two sides of (1). On the RHS of (1), the coefficient is S™D(a)—
DS"(a) since p(t) is monic; on the LHS of (1), the coeflicient is ¢S™(a) — S™*(a)c =
D.5S"(a) in view of (2.2). Since this holds for all @ € K, we have proved (2). QED

Remark. In the case when p(t) is an invariant polynomial, (2) above was first proved
by Leroy, Tignol and van Praag [L,: Lemme 2.2]. In his thesis, Lemonnier proved (2)
for all monic semi-invariant polynomials p(#), but assumed that S is an automorphism
of K [Le: Ch.I, p.42]. Our proof above works for any endomorphism S and any monic
semi-invariant polynomial p(t). (The assumption that K be a division ring is not
needed.) Note that, in the special case when S = I, Prop. 2.3 boils down to the fact
that q(?) = p(¢)t —tp(t) commutes with scalars (cf. [L3: Lemme 1.7], and [LL: (3.12))).

Proposition 2.4. In the above notations, we have for every a € K :

[9(2) — ep(t)]a = S"*(a)q(t) — cp()].

In particular, the polynomial q(t) — cp(t) is semi-invariant.

Proof. Substituting (2) into (1) in Proposition 2.3, we have
q(t)a = S"*(a)q(t) + (eS™(a) — S™(a)e)p(1).
Transposing the term ¢S™(a)p(t) = cp(t)a yields the desired result. QED

Now we come to the main result of this section. Again, in the special case when
S is an automorphism of K, part (1) below was first proved by Lemonnier [Le: Ch.
I, p.60]. However, Lemonnier’s proof of (1) depended heavily on using the notion of

quasi-algebraic derivations. Our approach does not involve this notion, and (1) below
is deduced easily from (2.4).



Theorem 2.5. Let p(t) = Y%, ait' be a monic semi-invariant polynomial of the

smallest degree n > 1. Then

(1) p(t)t = (¢ + ¢)p(t) + d, where ¢ :=an_y — S(an-1), and d:= —(D(ao) + cao);

(2) For any a € K, S"(a)d = da;

(3) p(t) s invariant iff d = 0;

(4) p(t) is invariant unless S™*! is an inner automorphism of K. In particular, if S
18 not an automorphism, then p(t) is an invariant polynomial.

Proof. Since q(t) = p(t)t—1tp(t) = ct™+---, the polynomial q(¢)—cp(t) has degree < n.
But by (2.4), it is semi-invariant. By the minimality of n, we must have g(t)—cp(t) = e
for some e € K. Comparing the constant terms on both sides, we see that e =
—D(ao) ~ cap = d. This proves (1). Replacing () — cp(t) in (2.4) by d, we get
the equation in (2). If d = 0, then p(t)t = (¢ + ¢)p(#); this together with the semi-
invariance of p(t) imply that p(t) is invariant. Conversely, if p(t) is invariant, then
p(t)t = (¢t + ¢')p(t) for some ¢’ € K, and (¢ + ¢)p(t) + d = (t + ¢')p(t) clearly implies
that d = 0. This proves (3). Finally, if S"*! is not an inner automorphism of K, then
(2) implies that d must be zero, and (3) implies that p(t) is invariant. QED

In view of the above Theorem, for a monic semi-invariant polynomial p(¢) of minimal
degree, the element d = —(D(ao)+cao) € K provides a measure of the deviation of p(t)
from being invariant. From part (4) of the Theorem, we can also deduce the following
result about semi-invariant polynomials which are not of minimal degree:

Corollary 2.6. Let p'(t) be a monic semi-invariant polynomial of non-minimal degree
n'. Assume that S 13 an automorphism whose inner order is > n. Then p/(t) is

imvariant. In particular, if S is an automorphism of infinite inner order, then any
semi-invariant polynomaial is invariant.

Proof. Let p(t) be a monic semi-invariant polynomial of minimal degree n > 1. By
[LL: (2.11)], we know that there is a representation p'(t) = Y7_, c;p(t)! where ¢, = 1
and rn = n’. The proof of [LL: (2.11)] shows further that ¢; # 0 only if $¥~™ is an
inner automorphism of K. Thus, if we assume that S has inner order > n’, we must

have co = ¢; = -++ = ¢,_; = 0, and hence p/(t) = p(¢)". Since n’ > n, (2.5)(4) implies
that p(t) is invariant; therefore, p'(t) is also invariant. QED

§3. Powers of a Minimal Semi-Invariant Polynomial

In this section, we continue to write p(t) = Y%, a;t' for a monic semi-invariant
polynomial in R = K|[t,S, D] of degree n > 1, but in addition, we shall assume that
p(t) has been chosen such that n is minimal. Our main objective will be to study
the powers of p(t). For this purpose, the following notation will be useful. For any
endomorphism 6 of K, and any integer r > 1, let us write T,y for the operator
07t + 62 +.-- 40+ Idy on K, ie. T, 4(a) =Yt 6i(a) for every a € K. Using this
notation, we have the following natural extension of parts of (2.5).




Theorem 3.1. Let p(t), ¢ and d be as in (2.5). Then, for any » > 1, we have
(3.2) POt — tp(8)" = Tosn(e)p(8) + Tosn(d)ple) .

In particular, p(t)" 1s invariant iff T, s+(d) = 0.

Proof. For r =1, (3.2) is just (2.5)(1). Inductively, if (3.2) holds for some r, then

p(®)™t = p(t)(p(t)"t)

p(B)[tp(1)" + Tr5n(e)p(t)" + Trsn (d)p(2) "]

[tp(2) + cp(t) + d]p(t)" + S™(Ty,sn(c))p(t)+! + S™(Tr,5n(d))p(t)"
tp(t)™* + [S™(Trsn () + clp(t)™* + [S™(T,,5~(d)) + dlp(2)"

= tp(t)™! + Trpy 50 (€)p(8)™ + Trpr,5n(d)p(2)".

This completes the inductive proof of (3.2). If T,sn(d) = 0, then p(¥)"t = (¢ +
T, sn(c))p(t)", so p(t)" is indeed invariant. Conversely, if p(#)" is invariant, then
p(t)"t = (t+e)p(t)" for some e € K, and we have ep(t)” = T} sn(c)p(t) + T s (d)p(1)"1,
which clearly implies that T, s»(d) = 0. QED

Il

1
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Remark 3.3. In generalization of (2.5)(2), one can also show that, for any a € K
and any r > 1, T, sn(d)a = S (a)T, s»(d). However, we will not need this equation
in the sequel, so we shall leave its proof as an exercise.

Proposition 3.4. Keeping the above notations, we have Tjni1y,sn(d) = jThy1,5(d) =
JTni1,5(d) for any integer j > 1. In particular, if charK = p > 0, then p(t)P"*V) is
invariant.

Proof. We may clearly assume that d # 0. Then, by (2.5)(2), S™*! = I, where I,
denotes the inner automorphism on K associated with d (I4(a) = dad™ Va € K).
Since I fixes d, we have S™(d) = S™(d) whenever m = m/(mod (n + 1)). For any
j > 1, we have then

J(n+1)

Tintn,sn(d) = Y (§™)*HD=i(q)
=1

J{n+1)
= Z S'(d) (since n(j(n +1) —1) =4 (mod (n+1)))

= j(S(d)+---+5"(d))
= jTus1,s(d).

For j =1, this gives T,41,50(d) = Tny1,5(d), so we have proved the first part of (3.4).
Using this, the last part of (3.4) follows from (3.1). QED

As it turns out, some power of p(t) will also be invariant in the case of characteristic
zero. To treat the case of general characteristic, we shall now study the left ideal R-p(t)
generated by p(t) in R = K[t,S,D], and try to calculate its bound J = {h(t) € R :
h(t)R C R - p(t) }. The first main step toward this calculation is the following:
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Proposition 3.5. p(t)" € J.

Proof. By (3.1), we have p(¢)"t C R - p(t)""! for every r > 1. Thus, p(¥)"t €
R-p(t)** C R-p(t) for every i < n — 1. From this, we see that p(¢)" - r(t) €
R - p(t) for every polynomial r(t) of degree < m. But for any g¢(¢) € R, we can
write g(t) = ¢'(t)p(t) + r(t), where ¢'(t) € R and deg r(t) < n. Thus, p(¢)"g(¢) =
P8 (Dp(2) + P(1)r(1) € B - p(t), and s0 p(t)" € . QED

Theorem 3.8. There exists a nonconstant semi-invariant polynomaial iff there exists a
nonconstant invariant polynomaal.

Proof. If p(¢) is any monic semi-invariant polynomial of minimal degree n, as above,
then the bound J of R-p(t) is nonzero since it contains p(¢)™. Thus, J = R- f(¢) for
some polynomial f(t) # 0,and f(¢) is invariant since J is a two-sided ideal. QED

Remark 3.7. In view of the equivalence of the conditions (B) and (C) mentioned in
the Introduction, (3.6) can also be paraphrased as follows: R is nonsimple iff the S-
derivetion D ¢s quasi-algebraic. In particular, this affirms the conjecture made by two
of the present authors in [LL: (3.10)].

We can now complete our computation of the bound J for the left ideal R - p(t).

Theorem 3.8. J = R-p(t)* for some s < n.

Proof. Write J = R- f(t), where f(%) is monic. If S is not an automorphism, p(%)
is already invariant (by (2.5)(4)), and we have f(¢) = p(t). Therefore, we may assume
that S is an automorphism. In this case, it is known (cf. [LL: (2.9)]) that f(¢) can
be written in the form 37%_, d;p(t)’, where d, = 1. On the other hand, p(¢)" € J
implies that p(t)" = h(t)f(t) for some h(t) € R. Since p(#)* and f(t) are both semi-
invariant, so is h(t) [LL: (2.7)(3)], and hence we can write h(t) = S7_, c;p(%), where
¢, = 1. Then,

r

(39) PO = X cp(®) X diplty = 3 eiS™(dy)pe).

i=0 J=0 2]
Let I < r be the smallest integer such that ¢; # 0, and m < s be the smallest integer
such that d, # 0. If m < s, then I +m < r + s = n; isolating the term in (3.9)
corresponding to (7,7) = (I,m), we get ¢;S™(dnm)p(t)'*™ € R - p(t)*™*!, and hence
c1S™(dm) = 0, a contradiction. Thus, we must have m = s, i.e. dg=++-=d,_, =0,
from which we conclude that f(¢) = p(¢t)°. QED

Our next result reveals some other remarkable properties of the generator p(t)* for
the bound J of R-p(?).

Theorem 3.10. For any integer m > 0, p({)™ 1s invariant iff s|m. If S is not an
inner automorphism, then p(t) is an invariant polynomial in R of minimal degree.

Note that knowing p(#)® to be an invariant polynomial of minimal degree is quite
significant since, with this knowledge, one can give fairly precise descriptions of the
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center of R as well as the set of all invariant polynomials in R, by using the results of
Cauchon [Ca: Th. 5.1.4, Th. 5.2.2].

'To begin the proof of (3.10), let d € K be as defined in (2.5). If d = 0, then p(%)
is already invariant, so we have here s = 1, and both conclusions in (3.10) are obvious.
(We do not need any assumptions on S in this case.) In the following, let us assume,
therefore, that d # 0. By (2.5), S™*! is the inner automorphism associated with d; in
particular, S is an automorphism. For the first conclusion in the theorem, of course,
any power p(t)*" is invariant; conversely, if p(¢)™ is invariant and m = sh 4+ e where
0 < e < s, then from p(¢)™ = p(£)**p(t)°, we can see that p(¢)® is invariant (cf. [LL:
(2.7)]). If e > 0, then p(t)® € J = R- p(¢)*, and this would contradict e < s. Thus,
e = 0 and we have s|m. To prove the second part of (3.10), let k& be the inner order of
S, so that k|{n + 1). The crux of the proof is the following lemma.

Lemma 3.11. (1) Any monic semi-invariant polynomial g(t) has the form p(t) +
bp(t)"=* + b'p(¢)""%F + ..., where r > 1, and b,b/,--- € K.

(2) Assume that k > 1 (i.e. S is not an inner automorphism). If the g(t) above is
invariant, then in fact p(t)" s invariant.

Proof. Part (1) here is a special case of [LL: (2.11)(2)], but for the convenience of the
reader we shall include a proof here. By [LL: (2.9)], we know that g(¢) has the form
Yo bip(t)', with b, =1, and deg g(t) = nr for some r. The semi-invariance condition
g(t)a = S™(a)g(t) now becomes

> 8™ (a)bip(t) = bip(t)a =D b;S™(a)p(t),

ie. S"(a)b; = b;S™(a) for 0 < i < r. Replacing a by S~"(a), this amounts to
S™r=9(a)b; = b;a (for all a € K). Therefore, whenever b; # 0, we have S™r-1 = T
and so k|n(r — ¢). Since k|(n + 1), this implies that k|(r — i), so ¢ must have the
form r,r —k, r — 2k, .-, proving (1). For (2), we use the invariance condition g(t)t =
(t+e)g(t) (for some e € K), that is:

[p()" + bp(t)F + -1t = (¢t +e)[p(t)" +bp(t) " F +---].
Transposing the term £p(t)” to the LHS, we get
p(t)"t — tp(t)" = ep(t)” — bp(¢)~*t + thp(t)~* + - ..

By (3.2), the LHS is T, sn(c)p(t)" + T, s+(d)p(t)~. Comparing the coefficients of ¢",
we see that e = T, s»(c). Cancelling the term ep(?)”, we get

(3.12) T sn(d)p(t) ™" = —bp(t) = ¢ + thp(t) =" + - .

Since we assume d # 0, p(t) is not invariant, and so n = deg p(t) > 2 (see [LL: (2.6)]).
In view of this, and the fact that %k > 2, the degree of the RHS of (3.12) is at most

n(r—k)+1l=nr—nk+1<nr—-2n+1<n(r-1).

Therefore, the leading coefficient T, sn(d) of the term ("= in the LHS of (3.12)
must be zero. It follows then from (3.1) that p(¢)" is invariant. QED
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Using the above Lemma, we shall now give the conclusion of the proof of (3.10).
Let g¢(t) be any monic invariant polynomial, written as in (1) in the Lemma. Then, by
(2) above, p(t)" is invariant, and so p(t)" € J = R- p(¢)*. From this, we have clearly
deg g(t) = deg p(t)" = deg p(t)°. QED

Combining (3.10) with (3.4), we get the following extra information in characteristic
p (no assumptions on S are necessary). The easy proof is left to the reader.

Corollary 3.13. Suppose char K = p > 0. Then, in the notations of (3.10), s|p(n+1).
In particular: (1) If n+1 i3 prime, then p(t)P is invariant;
(2) If n < p, then s|(n+1). If, in addition, n+1 is prime, then p(t) is invariant.

It remains now to treat the case when S is an inner automorphism. If § = I,
(a € K\{0}), then, as is well-known, KJ[t,S,D] = K[t',I,D’] for t' = a~'t and
D’ = a7'D. Therefore, after a change of variable, we may assume that S = I. In
this case, it is known that invariant polynomials in K[, S,D] are just the central
polynomials ([As: Remark 1, p.95], [LL: (2.4)(2)]). The relation between invariant and
semi-invariant polynomials is given by the following result, in supplement to (3.10).

Theorem 3.14. Let R = K[t,I, D], and let p(t) = Y% ,a;t be a monic semi-invariant
polynomial of minimal degree n > 1 in R.

(1) If char K =0, then n =1 and p(t) s invariant. (In this case, p(t) exists iff D
s an inner derivation.)

(2) Let char K = p > 0. Then either p(t) is already invariant, or else p(t)™ is
wmvarient iff m 1s a multiple of p.

Proof. (1) The fact that p(¢) must be linear (under the assumption char K = 0)
follows from [LL: (3.11)(3)]. Given this, it is easy to see that p(¢) exists iff D is inner
(see, e.g. [LL: Ex. (2.6)]). (In particular, this recovers the well-known result that, in
the case of characteristic 0, any algebraic derivation on K is inner.)

(2) Let ¢, d € K be asin (2.5). Then we have T}, sn(d) = Y25 (S™)!(d) = md. Assume
that p(t) is not invariant, so d % 0. Then md = 0 iff p|m, so by (3.1), p(t)™ is
invariant iff p|m. QED

Example 3.15. (cf. [LL: Ex. 2.5(b)]) Let K be a division ring of characteristic 2, with
S = I, and D a non-inner derivation with D? = 0. Let a be a central element with
D(a)#0. Then, as is easily seen, p(t) = t®+a is not invariant, but it is a semi-invariant
polynomial in R = K[t, S, D] of minimal degree. By direct computation, p(t)? = t‘+a?,
and p(t)*t = tp(t)?, so p(t)? is a central polynomial, as predicted by (3.14) (or (3.13)).
Also, it can be checked that R-p(¢)® is the bound of R-p(t). However, contrary to
the last conclusion of (3.10), p(t)? is not an invariant polynomial of minimal degree; in
fact, an invariant polynomial of minimal degree is given here by t2. Of course, (3.10)
does not apply to this example since S = I here. This example serves to show that

the hypothesis that S not be an inner automorphism is essential for the second part of
(3.10).




§4. Semi-Invariant Polynomials Not Necessarily of Minimal Degree

Continuing to assume that K is a division ring, , we shall give in this section some
results on R - p(t) where p(t) is a monic semi-invariant polynomial, not necessarily
of minimal degree. In particular, what can we say about the bound J = {h(¢) € R :
h(t)R C R-p(t)} ? We begin with an example which shows that J may not be generated
by a power of p(t).

Example 4.1. Let K be a division ring with S an automorphism of order 2, and let
D = 0. Let a be a central element with S(a) # a, and let p(t) = ¢ + a. Then (cf.
[LL: Ex. 2.5(a)]) p(t) is semi-invariant, but not invariant. We leave it to the reader to
check that p(t)? = t* + 2at? + a? is also not invariant®. On the other hand, one can
check that f(t) = (4 5(a))(#*+a) = t*+ (a+ S(a))#? + S(a)a is invariant, and in fact
that J = R - f(t). Therefore, in this example, we have p(t), p(t)? ¢ J, and J is not
generated by a power of p(t). Here, (3.5) and (3.8) fail to apply since t is an invariant
(and hence semi-invariant) polynomial of degree lower than that of p(%).

In the case when S(K) has finite right codimension in K, we can indeed get some
results on the bound of R - p(t) (not assuming p(t) to be of minimal degree) which
would “explain” the example above. This is given in the following:

Theorem 4.2. Let K be a division ring such that the right dimension [K : S(K)], =
m < co. Let p(t) be any monic semi-invariant polynomial in R =K[t, S, D] of degree
n > 1. Then the bound of R-p(t) has the form R . f(t) where f(t) is an invariant
polynomial of degree <n(l+m+---+m™ ). In particular, if S is an automorphism
of K, we have deg f(t) < n?.

In what follows, we shall present a proof of Theorem 4.2. The idea of our proof
is close to that of the proof of Carcanague’s Theorem 4 in [C]. Given the monic semi-
invariant polynomial p(¢) € R, we shall try to exploit the fact that V := R/R-p(t) has
the structure of an (R, K)-bimodule. Here, the right K-structure on V is well-defined
since p(t) - K € K -p(t) implies that R -p(t) is a right K-subspace of R. (In [C],
Carcanague considered V, instead, as a right module over its full endomorphism ring
EndpV. Also, Carcanague assumed p(t) to be irreducible, while we assume p(t) to

be semi-invariant.) We shall deduce Theorem 4.2 from the following general fact about
bimodules.

Proposition 4.3. Let R be a ring containing a division subring K. Let V = gVx
be @ nonzero (R, K)-bimodule with the property that N := [V : K|, < co and n :=
[V : K| < oco. Then there is a 2-sided ideal J C R such that [R/J : K}y < nN. In
particular, if [R: K]y > nN, then J #0 and R is not a simple ring.

Proof. Consider the ring homomorphism ¢ : R — End(Vy) given by the the left

action of R on Vg. Via ¢, we can view E := End(Vy) as a left R-module, in
particular a left K-vector space. We fix a basis {e1,-+-,ex} for Vi and identify E

SIf p(t) were invariant, it must commute with ¢ since D = 0; but a direct calculation shows that this
is not the case as long as S(a) # a.
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with the matrix ring My(K) in the usual way: any A € E is identified with a matrix
(Xij) where A(e;) = N, e;\i;. The crucial step is to compute the dimension of E over
K with respect to the left action of K defined via ¢ above®. Letting C) be the left
ideal of My(K) = E consisting of matrices whose nonzero entries occur only on the
k-th column, we have a direct decomposition F = C1 @ ---@ Cn. Since E - C; C Cj,
these Ci’s are left K-subspaces of E and so [E : K|; = Efcvzl[C'k : K];. We claim
that, for any k, Cp s isomorphic to V as left K-spaces. In fact, we have a map
or: Cpx — V sending any M € Ci with k-th column (z;,---,2y5)7 to the vector
v = ;Vlejmj € V. For a € K, let ¢(a) = (a;;) € E. The action of @ on M gives
a matrix in Cj with k-th column (y1,---,yn)T = (ai;) - (z1,--+,2zx)T. On the other
hand, the left action of @ on v € V is

v=a-Yem =Y Yaass; = Y an; = Yo
7 7 1 1 7 1

Thus, oy is an isomorphism of left K-spaces?. From this, we conclude that

N N
(4.4) [E:I{]IZZ[C/C:K],'ZZ[V:K]IZTLN.
k=1 k=1
Let = ker(¢) C R. Since R/J embedsinto E as a left K-space, we have

[R/J : K] <[E:K],=nN. QED

Proof of Theorem 4.2. Using the notations in (4.2), let V = R/R - p(t), where R
is now K|[t,S,D]. As we have observed in the paragraph preceding the statement of
(4.3), we have V = gV, with [V : K|, = n = deg p(t). We claim that

(45) N:=[V:Kl,=1+m+m?’+.---+m" ! where m=[K :S(K)], <

Assuming this claim, R will have a 2-sided ideal J G R with [R/J: K]; <nN =n(1+
m+-+-+m"™ 1) by Proposition 4.3. Clearly, J # O since [R : K|; = co. Moreover, this
J is obtained as the kernel of the ring homomorphism ¢ : R — End((R/R - p(t)) k),
which consists of polynomials h(t) € R such that h(f)R € R -p(¢t). Thus, J is
precisely the bound of R . p(t). Writing J = R - f(t), we have then f(t) # 0, and
deg f(t) =[R/J: Kli <n(l+m+..-+m" 1), as desired.

We now prove the claim (4.5) by explicitly constructing a right K-basis on V. The
construction here is similar to that in {Co: pp. 57-58] (except that Cohn assumed p(%)
to be invariant). Write K = @, z:5(K). Then, by iteration, we get

K = @z, (@5(23)52 > @Z, z;) 52 K),

R = @z, (2;)S*(2x)S*(K), --- , ete.

1,7,k

®This action is not to be confused with the usual action a - (Aij) = (akij) of K on My(K) = E. In

fact, with respect to this action, E has left K-dimension N2, but with respect to the K-action defined
by ¢, E has left K-dimension nlN, as we shall show in (4.4).

"An explicit left K-basis on F can be given as follows. Let {e; : 1 <! < n} be a left K-basis on V,

and let A(k,1) € E be the endomorphism of Vi sending e; to er, and sending all other e;’s to zero.
Then {A(k,1):1<k <N, 1<1<n} givesa left K-basis on E.
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The claim (4.5) will follow if we can show that
{ 1, zi{7 ziS(zj){z’ Tty %y S(Ziz) te Sn—2(zin—1 );’h_l }

form a basis of Vi. To see this, let Vi = K -1+ K-+ .-+ K -1 (1 <k < n).
Then 0CV, CV,C .. CV, =V is a rght K-filtration. It is therefore sufficient to
show that, for any k < n, the images of {z; S(zi;,)--S* (2, )t*} form a basis of the
right K-space Vii1/Vi. This is done by an easy computation. To illustrate the ideas
used, let us do it explicitly for £ = 2. On V3, we have for any a € K:

at? = > z5(z;)S*(ai;)t* (for unique ai; € K)
4]
= > 2z:5(z;)(¥a;; + an element in (K + K -t))
2]

> 2:5(2;)E - aij (mod V; ).
4J

This shows that, modulo V3, the elements {z;5(z2;)#?} form a right K-basis for Vs.
Obviously, the same argument works for Vi, /V4. QED

5. The Case When K is a Simple Ring

In this section, we shall indicate how some of the proofs in §§2-3 can be modified to
give similar results in the case when K is a simple ring. Thus, we shall assume now that
K 1s a simple ring rather than a division ring. In order to get reasonable generalizations
of our results, however, we shall need to assume that S is an automorphism of K.

Because of the possible existence of zero-divisors, we may no longer have deg fg =
deg f + deg g for f,g € K[t,S,D]. Also, K may have left-invertible elements which
are not right-invertible. Therefore, great caution must be exercised in dealing with
R := K[t,S,D] when K is only a simple ring. For instance, note that, with respect
to the definitions given earlier, an invariant polynomial f(#) need no longer be semi-
invariant (unless we are given that the leading coefficient of f(#) is, say, right-invertible).

For ease of reference, let us first recall some known facts ([Ca: p.5.3], [Lq: (2.1)]):

Lemma 5.1. (1) Let I be a (K, K)-submodule of R. If I contains a polynomial f(1)
of degree m, then it contains a monic polynomial g(t) of degree m;

(2) Let e € K\{0} and ¢ be an automorphism of K. If ed = ¢(d)e for all d € K,
then e 13 a unit of K.

Proof. (1) Say f(#) = at™ + ... . Since a # 0 and S is an automorphism of K,
there exists an equation 3 b,a5™(c;) = 1in K. Then g(t) := ¥ b;f(t)c; € I is monic
of degree m. (2) Since ¢ is an automorphism, the hypothesis implies that Ke = eK.
Therefore Ke = e¢K = K since K is a simple ring. QED



Proposition 5.2. The following statements about R = K|[t,S, D] are equivalent:
(1) R 1is not simple;

(2) R has a nonconstant monic invariant polynomial;

(3) R has a nonzero invariant polynomial which is not left-invertible.

Proof. (2) == (3) == (1) are clear. For (1) = (2), let I be an ideal of R other than
{0} and R. Let f(t) be a nonzero polynomial in I of the least degree. By (5.1)(1), we

may assume f is monic. By the usual division algorithm argument, we have I = R - f,
so f is invariant. QED

Remark 5.3. In general, an invariant polynomial may very well have a left inverse.
For instance, let K be a simple ring with two elements a, b such that ab # 1 = ba.
Then b[(ab — 1)t + a] = (bab — b)t + 1 = 1. Thus, (ab — 1)t + a is a linear polynomial
with a left inverse b, hence necessarily invariant.

In the present context ( K a simple ring and S an automorphism of K ), let us indi-
cate how to modify our earlier arguments to give a proof for the fact that, if there exists
a nonconstant monic semi-invariant polynomial in R, then there exists a nonconstant
monic tnveriant polynomial in R. We proceed as follows. Let F be the set of all non-
constant monic semi-invariant polynomials. Assuming F is nonempty, let p(t) € F be
of the least degree, say n. We can define ¢(t) as in §2, and (2.3), (2.4) remain valid as
before. Using our earlier notations, we may assume that the semi-invariant polynomial
q(t) — cp(t) is not zero, for otherwise p(t) is already invariant. Suppose ¢(t) — cp(#)
has degree m(< n) and leading coefficient e. The following lemma. gives the extra step
needed to carry through our program:

Lemma 5.4. The element e s a unit in K.

Proof. Comparing the leading terms in the equation in (2.4), we have eS™(a) =
S™tl(a)e for all a € K. Replacing a by S~™(d), we get ed = S*™*1(d)e for any
d € K. Therefore, (5.1)(2) gives the desired conclusion. QED

Since q(t) —cp(t) is semi-invariant, we see easily that e~'(g(t) — cp(?)) is also semi-
invariant. But the latter is monic and has degree m < n. By the minimal choice of =,
we conclude that m = 0, g(t) — cp(t) = e (and as before, e = d := —(D(ao) + cap)).
This enables us to recapture all of the earlier results in §§2-3 (in the case when S is an
automorphism). The point is, that we try to stick to monic polynomials only in all our
considerations. (Thus, for example, in restating Cor. 2.6, we just take the p'(t) there
to be of non-minimal degree in the family F.) The couple of results needed from [LL]
(for instance, [LL: (2.7), (2.9), (2.11)]) can easily be checked to be valid over simple
rings when we consider only monic polynomials, and Lemma 5.1(2) will guarantee that
certain nonzero elements arising in our considerations are actually units. Thus, in the
case when K is a simple ring and S is an automorphism of K, we not only get back
Lemonnier’s result that R = K[t,S, D] is non-simple iff D is quasi-algebraic, but we
also have all the explicit results (in §3) about the bound of R - p(t), where p(t) is a
(monic) polynomial of the least degree in F.
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To complete our results, we shall record a couple of other closely related conditions
equivalent to the existence of a nonconstant monic semi-invariant polynomial. This
result is the analogue of Prop. 5.2 for semi-invariant polynomials. Note that, by our
results above, the conditions in (5.5) below are all equivalent to those in (5.2).

Proposition 5.5 The following statements about R = K[t,S, D] are equivalent:

(1) R has a nonconstant monic semi-invariant polynomial;

(2) R has a nonzero semi-invariant polynomial which is not left-invertible;

(3) R has a nonzero semi-invariant polynomial f(t) for which there is no b € K

such that bf(t) = 1.

In fact, if (3) holds, then R has a nonconstant monic semi-invariant polynomial g(t)
of degree < deg f(t).

Proof. Since (1) => (2) = (3) are tautologies, it is sufficient to prove the last
sentence of the Proposition. Fix the given polynomial f(¢) in (3), and let I be the
(K, K)-submodule K- f(t) € R. Among all nonzero polynomials in I, pick g(t) to be
of the least degree, say m. By (5.1)(1), we may assume that g(¢) is monic. For any
a € K, if g.(t) = g(t)a — S™(a)g(t) # 0, then gu,(t) € I and deg g.(t) < deg g(t),
contradicting the minimal choice of m. Thus, g(t)a = S™(a)g(t) for every a € K, so
g(t) is semi-invariant. But by assumption, I = K - f(¢) does not contain 1; hence we
must have m > 1, and g(¢) is the nonconstant monic semi-invariant polynomial we

want. QED
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