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André Leroy∗

Abstract

The relations between evaluation of Ore polynomials and pseudo-linear
transformations are studied. The behavior of these transformations under
homomorphisms of Ore extensions, in particular with respect to algebraicity,
is analyzed leading to characterization of left and right primitivity of an Ore
extension.

Necessary and sufficient conditions are given for algebraic pseudo-linear
transformations to be diagonalizable. Natural notions of (S,D) right and left
eigenvalues are introduced and sufficient conditions for a matrix to be (S,D)
diagonalizable are given.

1 Introduction

Skew polynomial rings were introduced by Oystein Ore in 1933 [0] but some earlier
works related to the differential case already appeared e.g. in Landau (see [La]) We

will mainly be interested in the case when the coefficients belong to a division ring
but occasionally we will have to work with more general rings, so let A be a ring,
S ∈ End (A) and D a left S-derivation i.e. D is an additive endomorphism of A
such that

for any a, b ∈ A D(ab) = S(a)D(b) +D(a)b (1.1)
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A skew polynomial ring (also called Ore extension) A[t;S,D] consists of polynomials∑n
i=0 ait

i, ai ∈ A which are added in the usual way but are multiplied accordingly

to the following commutation rule

for any a ∈ A ta = S(a)t+D(a) (1.2)

In an attempt to study modules over K[t;S,D], K a division ring, we are forced
to consider pseudo-linear transformations since they translate the action of the in-

determinate. This situation is completely similar to the standard relations between
modules over k[t], k a field, and linear algebra. This similarity is based on some
common properties shared by these polynomial rings and skew polynomial rings; di-

vision algorithm, ”unique” factorization into irreducibles,... These properties were
established in the skew case by Ore himself and used later by Jacobson (cf. [J]) to
study pseudo-linear transformations.

Let K be a division ring and V be a K vector space. A pseudo-linear transfor-

mation is an additive map T : V → V such that

T (αv) = S(α)T (v) +D(α)v for α ∈ K, v ∈ V (1.3)

We will often use the abbreviation (S,D)PLT for a pseudo-linear transformation
with respect to the endomorphism S and the S-derivation D. Jacobson [loc. cit.]

was mainly interested in irreducibility (absence of invariant subspace), indecom-
posability (absence of direct summand) normal form (matrices over K[t;S,D] are
(S,D) similar to diagonal matrices whose elements are the invariant factors).

In the second section of this paper we will recall the folklore of (S,D) similarity

give examples and show how the use of (S,D)PLT enables us to generalize formulas
of earlier work connected to skew evaluation.

An important particular feature of (S,D)PLT (or even of usual K linear trans-
formations when K is a non commutative division ring) is the absence of a Cayley

Hamilton theorem. In the third section, we analyze this problem and give differ-
ent necessary and sufficient conditions for T , an (S,D)PLT to be algebraic we
show that this property is preserved under the image of an (S ′, D′)C.V. polynomial

p(t) ∈ K[t;S,D] (see definition 3. 1). These considerations enable us to exhibit a
class of skew polynomial rings for which all the (S,D)PLT ’s on finite-dimensional
vector spaces are algebraic. We obtain an analogue of the Amitsur-Small’s theorem
namely a characterization of skew polynomial rings which are primitive. In this

characterization the notion of (S,D)-algebraicity plays the role of (usual) algebraic-
ity.

In section 4, we first consider the question of diagonalization of an algebraic
(S,D)PLT and we obtain different necessary and sufficient conditions for the exis-

tence of a basis consisting of eigenvectors, e.g. we show that the minimal polynomial
of the pseudo-linear transformation must be the minimal polynomial of the set of
eigenvalues. In the second part of this section, assuming S ∈ Aut(K), we introduce
the notions of right and left ”(S,D) eigenvalues” for a matrix A ∈Mn(K) we show

that this set is (S,D) closed and that if it consists of n (S,D) conjugacy classes
then A is (S,D) similar to a diagonal matrix (cf. definition 1.3 (b) for the notion of
(S,D) conjugacy classes).
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Let us now end this introduction with a few notations.

For any element a in a ring A equipped with an endomorphism S and an S-
derivation D we have, in A[t;S,D], and for any n ∈ N

tna =
n∑
i=0

fni (a)ti (1.4)

where the maps fni ∈ End (A,+) consist of the sum of all products with i factors S
and n− i factors D. This formula generalizes (1.2) and will be in its turn generalized

in section 2 (cf. remark 2.11).

In earlier works we introduced (cf. [LL1], [LL2]) a natural notion for the eval-
uation f(a) of a polynomial f(t) ∈ R = A[t;S,D] at some elements a ∈ A : f(a)
is the remainder of f(t) =

∑n
i=0 ait

i divided on the right by t − a i.e. f(t) =
q(t)(t − a) + f(a), for some polynomial q(t) ∈ A[t;S,D]. It is easy to show by

induction that f(a) =
∑n
i=0 aiNi(a) where the maps Ni are defined by induction in

the following way : For any a ∈ A N0(a) = 1 and Ni+1(a) = S(Ni(a))a+D(Ni(a)).
This natural notion seems to be important and we offer in section 2 another per-
spective on it in terms of pseudo-linear transformations leading to generalizations

of formulas obtained earlier.

2 Basic properties and examples.

Let K,S,D, V be a divison ring, an endomorphism of K, a (left) S-derivation and
a left K-vector space respectively.

Definition 1. A map T : V → V such that

T (v1 + v2) = T (v1) + T (v2) for v1, v2 ∈ V
T (αv) = S(α)T (v) +D(α)v for α ∈ K v ∈ V

is an (S,D) pseudo-linear transformation of V .

The abbreviation (S,D) PLT will stand for an (S,D) pseudo-linear transforma-
tion.

If V is finite-dimensional and e = {e1, . . . , en} is a basis of V let us write Tei =∑n
j=1 aijej, aij ∈ K or with matrix notation Te = Ae where A = (aij) ∈ Mn(K).

The matrix A will be denoted Me(T ) and ∆(T ) will stand for the set {Me(T )|e is a
basis of V }.

Lemma 2. a) Let T : V → V be an (S,D) PLT then V becomes a left module

over R = K[t;S,D] via f(t) · v = f(T )(v) for f(t) ∈ R and v ∈ V . Conversely, any
left R-module V gives rise to an (S,D)PLT on V via T (v) = t · v.

b) If V1 is a vector space isomorphic to V and σ : V → V1 is an isomorphism
then σ ◦ T ◦ σ−1 is an (S,D) PLT on V1.

Proof The easy proofs are left to the reader.

Part b) of the above lemma motivates the following
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Definition 3. a) Let V and V1 be isomorphic vector spaces and let T and
T1 be (S,D)PLT ’s on V and V1 respectively. T1 is similar to T if there exists an

isomorphism σ : V → V1 such that T1 = σ ◦ T ◦ σ−1.
b) Let A, S,D be a ring, an endomorphism of A and an S-derivation of A respec-

tively. Two elements a, b ∈ A are (S,D) conjugate if there exists c ∈ A, c invertible,
such that b = S(c)ac−1 + D(c)c−1. We will use the notations a ∼

S,D
b to express that

a and b are (S,D) conjugate and ac := S(c)ac−1 +D(c)c−1. It is easy to check that
∼
S,D

is an equivalence relation on A.

Proposition 2.4. Let V and V1 be isomorphic left K-vector spaces of finite di-
mension , say n, and let T and T1 be (S,D)PLT ’s on V and V1 respectively. Extend
S and D in the natural way from K to Mn(K) and denote U := Mn(K)[t;S,D] and

R := K[t;S,D]. Then the following are equivalent

(i) T is similar to T1.

(ii) There exists an isomorphism σ : V → V1 such that T1 = σ ◦ T ◦ σ−1.

(iii) The R-module structure on V induced by T is isomorphic to the R-module
structure on V1 induced by T1.

(iv) Me(T ) ∼
S,D
Mσ(e)(T1) for any basis e of V and some K isomorphism σ : V → V1.

(v) Me(T ) ∼
S,D
Mu(T1) in Mn(K) for some basis e of V and some basis u of V1.

(vi) Me(T ) ∼
S,D
Mu(T1) in Mn(K) for any basis e of V and any basis u of V1.

(vii) {Me(T )|e is a basis of V } = {Mu(T1)|u is a basis of V1}.

(viii)
U

U(t−Me(T ))
∼=

U

U(t−Mu(T1))
as left U-modules for any basis e and u of V

and V1 respectively.

In particular if V1 = V, T1 = T, σ = idV , (vi) above shows that for any basis
e, u of V the matrices Me(T ) and Mu(T ) are (S,D) conjugate and the set ∆(T ) =
{Me(T )|e is a basis of V } is an (S,D) equivalence class in Mn(K).

Proof The equivalence of the five first assertions is easy.

(v) ↔ (vi) Let e′ and u′ be basis of V and V1 respectively. there exist P,Q ∈
GLn(K) such that e′ = Pe and u = Qu′ then Me′(T )Pe = Me′(T )e′ = Te′ =
TPe = S(P )Te + D(P )e = (S(P )Me(T ) + D(P ))e and we conclude Me′(T ) =
S(P )Me(T )P−1 + D(P )P−1 . Similarly we have Mu(T1) = S(Q)Mu′(T1)Q

−1 +

D(Q)Q−1. SoMe′(T ) ∼
S,D
Me(T ), Mu(T1) ∼

S,D
Mu′(T1). By hypothesisMe(T ) ∼

S,D
Mu(T1)

and by transitivity we get Me′(T ) ∼
S,D
Mu′(T1) .

(vi) → (vii) By symmetry it is enough to show that for any basis e of V we have
Me(T ) = Mu(T1) for some basis u of V1. By (v) we know Me(T )P = Mu′(T1)
(notation as in Definition 3 (b)) for some P ∈ GLn(K) and some basis u′ of V1. Let



Pseudo linear transformations and evaluation in Ore extensions. 325

u be the basis of V1 defined by u = P−1u′. it is easy to check Mu(T1) = Mu′(T1)
P−1

and so Mu(T1) = Me(T ) as desired.

(vii) → (iv) If Me(T ) = Mu(T1) e basis of V , u basis of V1. It suffices to define σ
by σ(e) = u.

(vi) → (viii) By hypothesis we know there exists P ∈ GLn(K) such that Me(T ) =
Mu(T1)

P and this implies that (t − Me(T ))P = S(P )(t − Mu(T1)) in
U = Mn(K)[t;S,D]. It is then easy to check that there exists a well defined

U -module isomorphism between
U

U(t−A)
and

U

U(t− B)
, where A = Me(T ) and

B = Mu(T1). Explicitly this isomorphism ψ is given by

ψ(1 + U(t− A)) = P + U(t− B)

(viii)→ (vi) If ψ is an isomorphism of U-modules between
U

U(t− A)
and

U

U(t− B)
,

let ψ(I + U(t− A)) = P + U(t− B). Since ψ is surjective we easily conclude that
there exists C ∈ Mn(K) such that CP = I and, as is well known, this implies that
P is invertible. Since ψ is a morphism of left U-modules we get (t−A)P ∈ U(t−B).

So S(P )(t−B) + S(P )B +D(P )−AP ∈ U(t−B) and thus S(P )B +D(P ) = AP
i.e. A = BP . Using A = Me(T ) and B = Mu(T1) we obtain the desired conclusion
Me(T ) ∼

S,D
Mu(T1). The final assertions are now easy to check.

Remarks 2.5. a) If S ∈ Aut(K) we can also add to the above equivalences

the following one :

(ix)
U

(t−Me(T ))U
∼=

U

(t−Mu(T1))U
as right U-modules where e and u are basis of

V and V1 respectively.

This is easily proved using the fact that for any B ∈Mn(K) left division by t−B
can now be performed in U .

b) Most of the above is part of folklore but has been recalled for the convenience
of the reader.

c) Of course it is also possible to define PLT’s with respect to an endomorphism σ

and a right σ-derivation δ (i.e. δ(ab) = δ(a)σ(b) +aδ(b))). They correspond to right
A-modules where A = K[T ; δ, σ] in which polynomials are written with coefficients
on the right and the commutation law is at = tσ(a) + δ(a) for a ∈ K. For a, b ∈ K,
we define a

∼
δσb if there exists c ∈ K r {0} such that b = c−1aσ(c) + c−1δ(c). If

S ∈ Aut(K) and D is a left S derivation then (K[t;S,D])op ∼= Kop[t;S−1;−DS−1]
i.e. −DS−1 is a left S−1 derivation of Kop and so a right S−1 derivation of K. It is
worthwile to remark that a ∼

S,D
b iff a ∼

−DS−1,S−1
b. These observations will shed some

light on definitions and apparent lack of symmetry in section 4.

d) Even if Me(T ) = 0 this does not mean that T = 0. In fact the zero map

0 : V → V : v 7→ 0 is not a PLT if D 6= 0.

e) Even if Me(T ) is invertible this does not mean that T is bijective. In fact it
may happen that Mu(T ) = 0 but Me(T ) is invertible for some other basis e of V .
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Let us consider, for instance, the case V = K and T = D. Of course D itself is a
PLT and D(1) = 0 so M{1}(D) = 0.

f) If T1, T2 are (S,D) PLT in a K vector space V, T1 + T2, T1 ◦ T2, αT1(α ∈ K)
are not necessarily pseudo-linear transformations.

Example 2.6. Of course D : K → K is an (S,D) PLT. More generally any

c ∈ K gives rise to an (S,D) PLT on K denoted Tc and defined by

Tc(x) := S(x)c+D(x) for x ∈ K (2.7)

It is easy to check that all the (S,D) PLT’s on K are of this form (e.g. D = T0).

To convince the reader of the importance of these maps, let us mention that they
give back.

a) The maps Ni : K → K used in [LL1] [LL2] (cf. §1 for definition) which

can be seen as generalization of both the standard ith power and ith norm. If fact
T ic (1) = Ni(c) for i ≥ 0 (see Theorem 2.8 b) hereafter).

b) The left R-module structure on K in relation with evaluation at c defined in
[LL1] Remark 2.8. Explicitely this R-module structure was given by g(t)∗x = g(cx)x

for x ∈ K g(t) ∈ R = K[t;S,D]. In fact this R-module structure is nothing else
but the one given by Tc (cf. Remark 2.11 (a) below).

Let us notice that the maps Tc defined by (2.7) have a meaning also for an
element c in a ring A equipped with an endomorphism S and a S-derivation D.

Recall from the introduction that the Ni’s are maps from K to K defined by
induction : For a ∈ K, N0(a) = 1 and Ni+1(a) = S(Ni(a))a+D(Ni(a)). Let us also
define for i ≥ j hij(Tc) ∈ End (A,+) to be the sum of all products with j symbols
S and i − j symbols Tc (e.g. hn0(Tc) = T nc , h

n
n(Tc) = Sn) with these notations we

easily prove the following.

Theorem 2.8. Let A be a ring, S ∈ End (A) and D an S-derivation of A. For
f(t) =

∑n
i=0 ait

i ∈ R = A[t;S,D], and c, x ∈ A we have

a)

f(t)x =
n∑
j=0

 n∑
i=j

aih
i
j(Tc)(x)

 (t− c)j (2.9)

In particular we have (f(t)x)(c) = f(Tc)(x) and f(c) = f(Tc)(1).

b) If x is invertible in A then for any n ∈ N Nn(cx)x = T nc (x) and f(Tc)(x) =∑n
i=0 aiNi(c

x)x. In particular we get Nn(c) = T nc (1) and we obtain the classical
formula f(c) =

∑n
i=0 aiNi(c). We also have f(Tc)(x) = f(cx)x.

Proof We will prove formula 2.9 by induction on deg f(t) = n. Let us first assume
that the polynomial f(t) is of the form f(t) = tn.
For n = 0 both sides of 2.9 boil down to x.

For n = 1 we have tx = S(x)(t− c) + Tc(x) = h1
1(Tc)(x)(t− c) + h1

0(Tc)(x).
Assuming the formula 2.9 valid for f(t) = tn we compute :

tn+1x = t

 n∑
j=0

hnj (Tc)(x)(t− c)j
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and using the case n = 1 we get :

tn+1x =
n∑
j=0

[
S(hnj (Tc)(x))(t− c)j+1 + Tc(h

n
j (Tc)(x))(t− c)j

]

=
n∑
j=1

[
S(hnj−1(Tc)(x)) + Tc(h

n
j (Tc)(x))

]
(t− c)j

+S(hnn(Tc)(x))(t− c)n+1 + Tc(h
n
0(Tc)(x))

tn+1x =
n∑
j=1

hn+1
j (Tc)(x)(t− c)j + hn+1

n+1(Tc)(x)(t− c)n+1+hn+1
0 (Tc)(x)

and finally we obtain tn+1x =
n+1∑
j=0

hn+1
j (Tc)(x)(t− c)j as required.

Now if f(t) =
∑n
i=0 ait

i we easily compute

f(t)x =
n∑
i=0

ait
ix =

n∑
i=0

ai

 i∑
j=0

hij(Tc)(x)(t− c)j


and hence

f(t)x =
n∑
j=0

 n∑
i=j

aih
i
j(Tc)(x)

 (t− c)j

as we wanted to prove.
Let us now prove the particular case; the remainder of f(t)x divided by t− c is,

by definition, the evaluation of f(t)x at c, i.e. (f(t)x)(c). This remainder is also the
independant term of the R.H.S. of 2.9 we obtain

(f(t)x)(c) =
n∑
i=0

aih
i
0(Tc)(x) =

n∑
i=0

aiT
i
c (x) = f(Tc)(x)

as desired. For x = 1 this last formula gives f(c) = f(Tc)(1).
b) Let us prove the formula Nn(cx)x = T nc (x) by induction on n.

For n = 0 the formula boils down to x = x. Assume the formula true for n ∈ N and

let us compute

Nn+1(cx)x = [S(Nn(cx))cx +D(Nn(cx))] x

=
[
S(Nn(cx))(S(x)cx−1 +D(x)x−1) +D(Nn(cx))

]
x

= S(Nn(cx)x)c+ (S(Nn(cx))D(x) +D(Nn(cx))x

= Tc(Nn(cx)x) = T n+1
c (x).

From this it is easy to establish f(Tc)(x) =
∑
aiNi(c

x)x.

For n = 1 these formulas become Nn(c) = T nc (1) and f(Tc)(1) =
∑n
i=0 aiNi(c). But

by a) above we have f(c) = f(Tc)(1) and so we conclude f(c) =
∑n
i=0 aiNi(c). The

last formula is now clear : f(Tc)(x) =
∑
aiNi(c

x)x = f(cx)x.
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As a corollary we obtain a formula which generalizes the standard one (e.g. [LL2],
2.1) for the evaluation of a product of polynomials at a point c ∈ A.

Corollary 2.10. Let A, S,D be as in Theorem 2.8 and let f(t), g(t) be polyno-
mials in R = A[t;S,D]. Then for any c ∈ A we have (f(t) · g(t))(c) = f(Tc)(g(c)).
In particular if g(c) is invertible in A we have (f(t) · g(t))(c) = f(cg(c))g(c).

Proof Since A is an A[t;S,D] left module via the action of Tc, we have
(f · g)(Tc) = f(Tc) · g(Tc). Hence the last formula of part a) of the above theo-
rem implies that (f · g)(c) = (f · g)(Tc)(1) = f(Tc)(g(Tc)(1)) = f(Tc)(g(c)). Now,
if g(c) is invertible in A we have, thanks to the last formula of the above theorem,

f(Tc)(g(c)) = f(cg(c))g(c) and so (f · g)(c) = f(cg(c))g(c).

Remarks 2.11.

a) For any element c in a division ring K, we introduced in [LL1] a left R-module
structure via f(t) ∗ x = f(cx)x ; x ∈ K∗. Since f(cx)x = f(Tc)(x) it is now

clear that this R-module structure in K is the one induced by Tc.

b) For c = 0, Tc = D and hni (Tc) = fni where the fni ’s are defined in section 1

(cf. (1.4)).

c) Formula 2.9 also gives the quotient of the division of f(t)x by t− c : f(t)x =
q(t)(t− c) + f(Tc)(x) where

q(t) =
n∑
j=1

 n∑
i=j

aih
i
j(Tc)(x)

 (t− c)j−1

d) Formula 2.9, for x = 1, can potentially be used for checking the multiplicity of
a root. In this respect the expression

∑n
i=j aih

i
j(Tc)(1) is the analogue of the

standard jth derivative of f(t) evaluated at c.

As noticed earlier if K is a division ring, S ∈ End (K) and D an S-derivation

of K, then S and D extend in a natural way to Mn(K). Still denoting by S and
D the extended maps we may associate to every matrix C ∈ Mn(K) the map
TC : Mn(K) → Mn(K) : X 7→ S(X)C + D(X). Of course this is a PLT on
V = Mn(K). Let us remark that for any i, 1 ≤ i ≤ n, the K subspace consisting

of the ith row is TC-stable. We thus get a PLT on a vector space isomorphic to Kn.
Up to the end of the paper we will use the notation TC, C ∈ Mn(K), for this last
PLT. To make this clear and for easy further references we state the

Definition 2.12. Let K,S,D stand for a division ring, an endomorphism of K

and an S-derivation. For C ∈Mn(K), we define a map TC on the vector space Kn

of rows by
TC : Kn → Kn : v 7→ S(v)C +D(v)

where v = (α1, . . . , αn) ∈ Kn S(v) = (S(α1, . . . , S(αn)) D(v) = (D(α1),
. . . , D(αn)).

Proposition 2.13. Let T : V → V be an (S,D) PLT on a left K vector space
V . If dimK V <∞ then T is similar to TA where A = Me(T ) and e is any basis of
V .
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Proof Let (e1, . . . , en) be a basis of V . Define a linear map σ : V → Kn by
σ(ei) = (0, . . . , 0, 1, 0, . . . , 0) the row with 1 in the ith entry and 0 elsewhere. By

definition T is similar to T1 = σ ◦T ◦σ−1 defined on Kn. For (α1, . . . , αn) ∈ Kn and
Me(T ) = A = (aij) ∈Mn(K) let us compute

T1(α1, . . . , αn) = σ(T (
∑

αiei)) = σ

 n∑
j=1

(
n∑
i=1

S(αi)aij +D(αj)

)
ej


=

(
n∑
i=1

S(αi)ai1 +D(α1), . . . ,
n∑
S(αi)aij +D(αχj), . . .

)

= TA(α1, . . . , αn)

3 Algebraicity of a P.L.T.

In this section we will investigate polynomials in a PLT. Let us first recall from
[LL1] the following

Definition 3.1. A polynomial p(t) ∈ R = K[t;S,D] is a c.v. polynomial with
respect to an endomorphism S ′ and an S ′-derivation D′ of the division ring K, if
for any x ∈ K we have

p(t)x = S ′(x)p(t) +D′(x) (3.2)

The notion of c.v. polynomials with respect to (S ′, D′) appears naturally while

investigating K-ring homomorphisms ψ : R′ = K[t′;S ′, D′) → R = K[t;S,D].
In this case ψ(t′) is a cv polynomial in R. The name comes from the fact that
polynomials of the form at + b are cv polynomials (with respect to (S ′ = Ia ◦
S, aD +Db,S′)) and they define a ”change of variables”.

If T is an (S,D) PLT on V and g(t) =
∑
bit

i ∈ R = K[t, S,D] g(T ) will stand
for

∑
biT

i ∈ End (V,+). For A ∈ Mn(K) g(A) =
∑
biNi(A) =

∑
biT

i
A(In) where S

and D have been extended to Mn(K) in the natural way and In ∈ Mn(K) is the

standard identity matrix of size n × n.

Lemma 3.3. Let T : V → V be a PLT with respect to (S,D) and let g(t) =∑n
i=0 bit

i ∈ K[t;S,D]. Then with the above notations

a)

g(T )(αv) =
n∑
j=0

 n∑
i=j

bif
i
j(α)

 T j(v) for v ∈ V and α ∈ K (3.4)

(Recall that f ij ∈ End (K,+) is the sum of all words of length i with j letters
S and i− j letters D).

In particular

T n(αv) =
n∑
j=0

fnj (α)T j(v) (3.5)



330 A. Leroy

b) If e = (e1, . . . , en) is a basis of V and A = (aij) = Me(T ) ∈ Mn(K) then
g(T )(ei) =

∑n
j=1 g(A)ijej for i = 1, . . . , n or in matrix form

Me(g(T )) = g(Me(T )) (3.6)

c) If p(t) ∈ R = K[t;S,D] is a c.v. polynomial with respect to (S ′, D′) then p(T )

is a PLT with respect to (S ′D′). In this situation we have

– 1) p({Me(T )|e is a basis of V }) = {Me(p(T ))|e is a basis of V }

i.e. p(∆(T )) = ∆(p(T )) (3.7)

– 2) If T and T1 are similar (S,D) PLT’s then p(T ) and p(T1) are similar
(S ′, D′) PLT’s.

i.e. T ∼ T1 ⇒ p(T ) ∼ p(T1) (3.8)

– 3) For A ∈ Mn(K) the (S ′, D′) PLT’s on V = Kn defined by p(TA) and
Tp(A) are equal

i.e. p(TA) = Tp(A) (3.9)

– 4) If A∈Mn(K) and P∈GLn(K) then p(S(P )AP−1+D(P )P−1)
=S ′(P )p(A)P−1+D′(P )P−1.

i.e. p(AP ) = p(A)P (3.10)

where the L.H.S. conjugation is relative to (S,D) and the
R.H.S. conjugation is relative to (S ′, D′).

d) If g(T ) is an (S ′, D′) PLT then there exists a c.v. polynomial r(t) ∈ R =
K[t;S,D] with respect to (S ′, D′) such that g(T ) = r(T ).

Proof

a) Formula 3.5 can be proved either by a direct induction or by using the ring
homomorphism ψ : K[t;S,D] → End (V,+) defined by ψ(t) = T and ψ(a) =
La : V → V : v 7→ av ; a ∈ K, v ∈ V . Indeed in R = K[t;S,D] we have the

well known formula tnα =
∑
fni (α)ti for α ∈ K n ∈ N and applying ψ we get

Formula (3.5).

b) It is enough to prove the result for g(t) = tm. We proceed by induction :
For m = 0 we have g(T )(ei) = (id)(ei) = ei =

∑n
j=1 δijej =

∑n
j=1(I)ijej. As-

sume the formula holds for g(t) = tm and let us compute :

Tm+1ei = T (Tmei) = T

 n∑
j=1

Nm(A)ijej
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=
n∑
j=1

S(Nm(A)ij)T (ej) +D(Nm(A)ij)ej

=
n∑
j=1

n∑
k=1

S(Nm(A)ij)Ajkek +
n∑
k=1

D(Nm(A)ik)ek

=
n∑
k=1

 n∑
j=1

S(Nm(A))ijAjk +D(Nm(A))ik

 ek
=

n∑
k=1

Nm+1(A)ikek

as desired.

c) If p(t) ∈ R = K[t;S,D] is an (S ′D′) c.v. polynomial we have for any α ∈
K p(t)α = S ′(α)p(t) + D′(α). By making use of the homomorphism ψ
defined in the proof of a) above we get p(T )Lα = LS′(α) ◦ p(T ) + LD′(α) and

hence p(T )(αv) = S ′(α)p(T )(v) +D′(α)v, for any α ∈ K and any v ∈ V . This
shows that p(T ) is an (S ′, D′) PLT.

1) Formula (3.6) shows that we have p(∆(T )) ⊂ ∆(p(T )). Now if B ∈
∆(p(T )) then B = Mu(p(T )) for some basis u of V but then p(Mu(T )) =
Mu(p(T )) = B and so B ∈ p(∆(T )).

2) If T ∼ T1 then Proposition 1.4 (vii) shows that ∆(T ) = ∆(T1) hence
p(∆(T )) = p(∆(T1)) and, by using 1) above, we conclude ∆(p(T )) =
∆(p(T1)) and Proposition 2.4 implies p(T ) ∼ p(T1).

3) Let c = {e1, . . . , en} be the usual canonical basis for the space Kn of rows
then Mc(p(TA)) = p(Mc(TA)) = p(A) and p(TA) is the (S ′, D′) PLT on

Kn defined by p(A).

4 ) Let A ∈Mn(K) P ∈ GLn(K) c the canonical basis of Kn and u another

basis of Kn s.t. u = Pc. For T = TA the (S,D) PLT determined on Kn

by A we have Mc(T ) = A and Mu(T ) = S(P )AP−1 + D(P )P−1 = AP

and Mc(p(T )) = p(A), by (3.6) above. Moreover, we also have

p(A)P = S ′(P )p(A)P−1 +D′(P )P−1 = Mu(P (T ))

= p(Mu(T )) = p(AP ).

d) The fact that g(T )(αv) = S ′(α)g(T )(v) + D′(α)v for α ∈ K and v ∈ V
implies that g(T ) ◦ Lα − LS′(α) ◦ g(T ) − LD′(α) = 0 ∈ End (V,+). Hence
if AnnRV = 0 we conclude that g(t) itself is an (S ′, D′) c.v. polynomial.

Otherwise, g(t)α − S ′(α)g(t) − D′(α) ∈ AnnRV = Rf(t) ⊇ f(t)R where
f(t) is a monic right invariant polynomial generating AnnRV . There exist
q(t), r(t) ∈ R deg r(t) < deg f(t) such that g(t) = q(t)f(t) + r(t) and we
easily get, for any α ∈ K, r(t)α−S ′(α)r(t)−D′(α) ∈ Rf(t). Since deg r(t) <

deg f(t) we conclude r(t)α = S ′(α)r(t) + D′(α) for α ∈ K i.e. r(t) is an
(S ′, D′) cv polynomial. The fact that r(T ) = g(T ) is clear from the equalities
g(t) = q(t)f(t) + r(t) and f(T ) = 0.
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Remarks 3.11. With the notations of the lemma we have, for C ∈ CS,D(A) =
{C ∈ Mn(K) |S(C)A + D(C) = AC}, g(TA)(vC) = g(TA)(v)C for any v ∈ Kn.

And we conclude that Ker g(TA) is a right CS,D(A)-module. For n = 1 this gives
back the classical fact (cf. [LL2] §3) that E(g, a) = {y ∈ K∗|g(ay) = 0} ∪ {0} is a
CS,D(a)-right vector space.

As noticed earlier, if p(t) ∈ R = K[t;S,D] is an (S ′, D′) c.v. polynomial there

exists a ring homomorphism ϕ : R′ = K[t′;S ′, D′] → R = K[t;S,D]. So any
left R-module inherits an R′-module structure. The next proposition analizes this
situation.

Proposition 3.12. Let T : V → V be an (S,D) PLT and let

ϕ : R′ = K[t′;S ′, D′] → R = K[t;S,D] be the K-ring homomorphism defined by
an (S ′, D′) c.v. polynomial p(t) ∈ R. The R′-module structure induced on V via
ϕ by T corresponds to the R′-module structure given by the (S ′, D′) PLT p(T ). In
particular if g(t′) ∈ R′ we have for A ∈Mn(K)

g(p)(TA) = g(Tp(A)) (3.13)

and for A ∈Mn(K), P ∈ GLn(K)

g(p)(AP ) = g(p(A)P ) (3.14)

where g(p) ∈ R, TA and Tp(A) stand for an (S,D) and (S ′, D′) PLT respectively,
AP = S(P )AP−1 +D(P )P−1 and p(A)P = S ′(P )p(A)P−1 +D′(P )P−1.

Proof By definition of the induced R′-module structure of V via ϕ we have for

g(t′) =
∑n
i=0 ait

′i ∈ R′ and v ∈ V g(t′)·v = ϕ(g(t′))·v = g(p(t))·v =
∑n
i=0 aip(t)

i·v =∑n
i=0 aip(T )i(v) = g(p(T ))(v) and p(T ) in an (S ′, D′) PLT as remarked in the lemma.

From these equalities we extract g(p(t)) · v = g(p(T ))(v) and so g(p)(T ) =
g(p(T )). In particular g(p)(TA) = g(p(TA)) = g(Tp(A)) (by 3.9). We have, by making

use of Theorem 2.8 and Formula (3.13), g(p)(AP )P = g(p)(TA)(P ) = g(Tp(A))(P ) =
g(p(A)P )P . This proves formula (3.14).

Notice that formula (3.14) was obtained for n = 1 P = 1 in [LL2]. This was
called the composite function theorem. In this respect we could say that Proposi-
tion 3.12 generalizes the composite fonction theorem and says that the R′-module

structure induced by ϕ on V is given by p(T ).

Definition 3.15.

a) An (S,D) PLT T : V → V is algebraic if there exist n ∈ N∗,
a0, a1, . . . , an ∈ K, an 6= 0 such that anT

n + · · ·+ a1T + a0I = 0.

b) A set ∆ ⊂Mn(K) of matrices is (S,D) algebraic if there exists g(t) =
∑
ait

i ∈
K[t;S,D] such that g(A) =

∑
aiNi(A) = 0 for any A ∈ ∆.

Remarks 3.16. a) Unlike classical linear transformations of a finite dimen-
sional vector spaces over a commutative field, a pseudo-linear transformation need
not be algebraic.
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b) A finite set of matrices ∆ ⊂ Mn(K) is always (S,D) algebraic. Indeed if
∆ = {A} then I, A,N2(A), . . . , Nn2(A) are matrices in Mn(K) and are left K-

dependant. For ∆ = {A1, . . . , As}, s ∈ N, it suffices to consider the left least
common multiple in R = K[t;S,D] of polynomials annihilating the Ai’s.

Lemma 3.17. Let T be an (S,D) PLT on V and f(t) ∈ R = K[t;S,D].

a) If T is algebraic, its monic minimal polynomial fT is invariant in R and
fTR ⊆ RfT = annRV where the left R-module structure on V is induced
by the action of T .

b) If f is semi-invariant (i.e. (S ′, 0) c.v. polynomial) and e is a basis of V
then f(T ) = 0 if and only if f(Me(T )) = 0. In particular this is true if f is

invariant.

c) If T1 is an (S,D) PLT on V1 similar to T , then T is algebraic if and only if T1

is algebraic and moreover T and T1 have the same monic minimal polynomial.

Proof

a) is easy and left to the reader.

b) Of course if f(T ) = 0 then Formula 3.6 shows that f(Me(T )) = Me(f(T )) = 0.
On the other hand, if f(Me(T )) = 0 then Me(f(T ))

= 0 but, by Lemma 3.3, f(T ) is an (S ′, 0) PLT and so for v =
∑
αiei ∈ V we

have

f(T )v = f(T )

(
n∑
i=1

αiei

)
=

n∑
i=1

S ′(αi)f(T )(ei) = 0

c) This is straightforward since T ∼ T1 iff T and T1 induce isomorphic left R-
module structure on V and V1 respectively and this implies annRV = annRV1

Theorem 3.18. Let T be an (S,D)PLT on V and let f(t)∈R=K[t;S,D] be a
monic invariant polynomial. Then the following are equivalent.

(i) T is algebraic and f is its minimal monic polynomial.

(ii) fR ⊆ Rf = annRV where the left R-module structure on V is given by the
action of T .

(iii) For any basis e of V , the (S,D)PLT on Kn, TMe(T ) is algebraic and f is its

minimal monic polynomial.

(iv) There exists a basis e of V such that the (S,D)PLT on Kn, TMe(T ) is algebraic
and f is its minimal monic polynomial.

(v) There exists a basis e of V such that the f(Me(T )) = 0 and f is of minimal
degree among invariant polynomials annihilating Me(T ).
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(vi) ∆(T ) = {Me(T )|e is a basis of V } is (S,D) algebraic and f is its minimal
polynomial.

Proof Let us first remark that a monic invariant polynomial of degree m is in

particular an (Sm, 0) c.v. polynomial.

The implications (i) ↔ (ii) and (iii) → (iv) are obvious.
(ii) ↔ (iii) is a direct consequence of the above lemma and of the fact that for any

basis e of V , T is similar to TMe(T ).

(iv) ↔ (v) is clear in view of Lemma 3.17 b).
(v) → (vi) Assume f(Me(T )) = 0 and let Mu(T ) ∈ ∆(T ) then there exists P ∈
GLn(K) such that Mu(T ) = Me(T )P = S(P )Me(T )P−1 + D(P )P−1 and since
f is an (Sm, 0) c.v. polynomial we get, by Lemma 3.3 c) - 4 that f(Mu(T )) =
Sm(P )f(Me(T ))P−1 = 0.

(vi)→ (i) For any basis e of V we have Me(f(T )) = f(Me(T )) = 0. Hence f(T ) = 0
and the minimality of deg f amongst f ∈ AnnRV is obvious from the already proved

implication (i) → (vi).

We will now look to the question of the transfer of algebraicity via c.v. polyno-
mials. We need the following easy but useful

Lemma 3.19. Let p ∈ R = K[t;S,D] be any polynomial of degree ≥ 1 and f
any non zero polynomial in R. Then Rf ∩K[p] 6= 0 where K[p] is the left Kvector

space generated by powers of p : K[p] = {∑αip
i|αi ∈ K}.

Proof If Rf ∩ K[p] = 0 then K[p] embeds in R/Rf but dimK K[p] = ∞ and
dimK R/Rf <∞.

Theorem 3.20. Let p be an (S ′, D′) c.v. polynomial of degree ≥ 1 and let T be

an (S,D)PLT on the vector space V . Then

a) T is algebraic iff the (S ′, D′) PLT p(T ) is algebraic.

b) ∆ ⊂ Mn(K) is (S,D) algebraic iff p(∆) is (S ′, D′) algebraic.

Proof

a) Assume T is algebraic then annRV = Rf ⊇ fR where f is the monic minimal

polynomial of T . Thanks to the above lemma there exist a0, . . . , al ∈ K s.t.∑
aip(t)

i ∈ Rf and we conclude that
∑
aip(T )i = 0 i.e. p(T ) is algebraic.

Conversely if p(T ) is algebraic, say g(p(T )) = 0 then g(p(t)) ∈ annRV .

b) Assume ∆ ⊂ Mn(K) is (S,D) algebraic and let f(t) ∈ K[t;S,D] be such

that f(A) = 0 for any A ∈ ∆. By the lemma we have Rf ∩ K[p] 6= 0 and
thus there exists a0, . . . , al ∈ K such that 0 6= ∑

i=0 aip(t)
i ∈ Rf(t). Let

g(t′) =
∑l
i=0 ait

′i ∈ R′ = K[t′;S ′, D′] we have g(p(t)) ∈ Rf and g(p)(A) = 0
(since in Mn(K)[t;S,D] t − A divides on the right f(t) and so also g(p(t))).

By making use of 3.14 we conclude that for any A ∈ ∆ g(p(A)) = 0 i.e.
g(p(∆)) = 0 and this shows that p(∆) is (S ′D′) algebraic. The converse is an
easy application of Formula 3.14.
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Corollary 3.21.

Let K,S,D be a division ring, an endomorphism of K and an S-derivation of
K respectively. Suppose that :

• for any n ∈ N∗ and any A ∈ Mn(K), A is algebraic over Z(K) the center of

K.

• R = K[t;S,D] contains an (id.,0) c.v. polynomial of degree ≥ 1.

Then every (S,D) PLT on a finite dimensional left K-vector space is algebraic.

Proof Let T : V → V be an (S,D) PLT and put n = dimV . Let g(t) ∈ R be an
(id.,0) c.v. of degree ≥ 1 whose existence is asserted in hypothesis 2. Theorem 3.18

shows that T is algebraic iff ∆(T ) ⊂ Mn(K) is (S,D) algebraic and by Theorem
3.20 ∆(T ) is (S,D) algebraic iff g(∆(T )) is algebraic i.e. iff ∆(g(T )) is algebraic.
But hypothesis 1 implies that any conjugacy class in Mn(K) is algebraic and so
∆(g(T )) is algebraic as desired.

The next remarks concern the hypothesis made in the above corollary.

Remarks.

a) The hypothesis 1) in the corollary is satisfied in particular when eitherK is locally

finite dimensional over its center or when K is algebraic over its center Z(K) which
is in turn uncountable..

The hypothesis 1) is equivalent to asking that every linear transformation on a
finite dimensional K vector space is algebraic.

b) The hypothesis 2) is satisfied when R is non simple and a non zero power of S is
inner.

We will now give, as an application of the preceeding results, different charac-

terizations of the primitivity of R = K[t;S,D].

Theorem 3.23. Let K,S,D be a division ring, an endomorphism of K and a
S-derivation respectively. Then the following are equivalent

(i) R = K[t;S,D] is left primitive.

(ii) There exists a faithful left R-module V such that dimK V <∞.

(iii) There exists a non algebraic (S,D) PLT T : V → V such that dimK V <∞.

(iv) There exists a positive integer n and an (S,D) conjugacy class

∆S,D(A) ⊂ Mn(K) which is not (S,D) algebraic.

(v) There exists n ∈ N and A ∈ Mn(K) such that A is not annihilated by an
invariant polynomial of R.

Proof (i) → (ii) This is clear since any left ideal of R is of the form Rg(t) for
some g(t) ∈ R and dimK R/Rg(t) = deg g(t).
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(ii)→ (i) This comes from the fact that R is prime and for prime rings primitivity is
equivalent to the existence of a faithful left R-module of finite length ([MR] Lemma

9.6.10).
(ii) ↔ (iii) It suffices to notice that R-modules correspond to (S,D) PLT’s and in

this correspondence faithfulness corresponds to non algebraicity.
(iii) ↔ (iv) Follows from equivalence (i) ↔ (vi) in Theorem 3.18.

(iv) ↔ (v) Also follows from Theorem 3.18.

Equivalence (i)↔ (v) of the above theorem gives a characterization of primitivity
of R = K[t;S,D] similar to the classical one obtained for K[t] (and more generally
for K[t1, . . . , tn]) by Amitsur and Small (cf. MR Chap 9). We will soon give a

characterization of the primitivity of R which avoids (S,D) evaluations. This will
enable us to show that R is left primitive if and only if it is right primitive. For this
we need the following.

Proposition 3.24. Suppose there exists a non constant (S ′, D′) c.v. polynomial
p in R = K[t;S,D] and let R′ be the Ore extension K[t′;S ′, D′]. Then

a) R′ is left primitive if and only if R is left primitive.

b) If R′ is right primitive then R is right primitive.

Proof Let us prove that if R′ is left (resp. right) primitive then R is left (resp.

right) primitive. There is a ring embedding ϕ : R′ → R define by ϕ(a) = a for a ∈ K
and ϕ(t′) = p(t), hence we can replace R′ by its image ϕ(R′) = K[p] ⊂ R. So let us
suppose that K[p] is a left (resp. right) primitive subring of R and let m be a left
(resp. right) maximal ideal in K[p] which contains no non zero 2-sided ideal. Let M

be a left (resp. right) maximal ideal of R containing Rm (resp mR). Since Rm 6= R
(resp. mR 6= R) we have M 6= R. Since m is maximal in K[p] and M ∩K[p] ⊃ m
we conclude that M ∩ K[p] = m. Assume M contains I a 2-sided ideal of R then
I ∩K[p] 6= 0, by Lemma 3.19, and this contradicts the fact that m does not contain

non zero 2-sided ideals. We conclude that M is a maximal left (resp. right) ideal
of R which contains no non zero 2-sided ideals. It remains to show that if R is
left primitive then R′ is left primitive. Now if R is left primitive, Theorem 3.23 (iv)

shows that there exists ∆S,D(A), A ∈Mn(K), an (S,D) conjugacy class which is not
(S,D)-algebraic and so p(∆S,D(A)) = ∆S′,D′(p(A)) is not (S ′, D′) algebraic thanks
to Formula 3.10 and Theorem 3.20 b. Theorem 3.23 (iv) enables us to conclude that
R′ = K[t′;S ′, D′] is left primitive.

Remark 3.25. Corollary 3.27 will show that the converse of (b) in the above
proposition is also true.

It is now an easy task to express primitivity of R = K[t;S,D] in terms of ”usual”
algebraicity over Z(K) the center of K.

Theorem 3.26.

With the same notations as in Theorem 3.23, the following assertions are equiv-
alent :

(i) R = K[t;S,D] is left primitive
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(ii) R = K[t;S,D] is right primitive

(iii) One of the following conditions holds

a - R is simple

b - R is not simple but S` is not an inner automorphism for any ` > 0

c - R is not simple, a non zero power of S is an inner automorphism and

the (usual) polynomial ring K[x] is primitive.

(iv) One of the following conditions holds

a’ - R is simple

b’ - R is not simple but S` is not an inner automorphism for any ` > 0

c’ - R is not simple, a non zero power of S is an inner automorphism and
there exists n ∈ N and A ∈ Mn(K) such that A is not algebraic over

Z(K).

Proof (i) → (iii) : If R is left primitive but a) and b) above are false then R
is not simple and a non zero power of S is an inner automorphism so the center
of R is non trivial (cf. [LTVP] Proposition 2.3). In particular there exists and
(Id, 0) c.v. polynomial p ∈ R and thanks to the above proposition we conclude that

K[p] ∼= K[x] is primitive.

(ii)→ (iii) : Suppose R is right primitive but a) and b) are false then R is not simple
and a non zero power of S is an inner automorphism. We conclude in particular

that the center of R is non trivial. Since S ∈ Aut(K) the left primitive ring Rop

is equal to Kop[t, S−1,−DS−1] and Rop has a non trivial center. Let p ∈ Rop be a
central no constant polynomial. Proposition 3.24 shows that Kop[p] is left primitive

and so K[p] ∼= K[x] is right primitive.

(iii) → (i) and (iii) → (ii) : We will prove these two implications simultaneously
by showing that if one of the conditions a), b) or c) is satisfied then R is both left

and right primitive. If R is simple then obviously R is left and right primitive.
If R is not simple but no non zero power of S is inner then there exists a semi
invariant monic polynomial p ∈ R of degree n ≥ 1 ([LLLM], Theorem 3.6) and
T := K[x;Sn] ∼= K[p;Sn] ⊂ R but since no power of Sn is inner, the 2-sided ideals

of T = K[x;Sn] are all of the form Txi i > 0 and it is easy to check that none of
them is contained in the maximal left ideal T (x− 1) nor in the maximal right ideal
(x− 1)T . So T is left and right primitive and Proposition 3.24 shows that R is left
and right primitive. Let us now assume that c) is satisfied then the center of R is

non trivial [loc. cit.] and if p is a non constant central polynomial then K[x] ∼= K[p]
is right and left primitive and hence, using Proposition 3.24 again, we conclude that
R is left and right primitive.

(iii) ↔ (iv) : It is enough to prove that c) is equivalent to c’); but this follows
from the classical Amitsur-Small’s theorem which characterizes the primitivity of a
polynomial ring in commuting variables over a division ring (cf. [MR] Chapter 9).

We are now able to complete Proposition 3.24.
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Corollary 3.27. Let p ∈ R = K[t;S,D] be an (S ′, D′) c.v. polynomial of
degree ≥ 1. Let R′ denote the skew polynomial ring K[t′;S ′, D′]. Then the following

assertions are equivalent

(i) R′ is left primitive.

(ii) R′ is right primitive.

(iii) R is left primitive.

(iv) R is right primitive.

Proof The obvious proof is left to the reader.

Remarks 3.28. 1) If S ∈ Aut(K) the equivalence (ii)↔ (iv) in Corollary 3.27
can be obtained directly using the fact that R is then a left and right principal ideal

domain.
2) If S ∈ Aut(K) the equivalence (ii) ↔ (iii) in Corollary 3.27 can be obtained

via a corollary of a result due to Jategaonkar and Letzter (cf. GW] Corollary 7.17).

4 Eigenvalues and diagonalization.

We will use the results of Sections 2 and 3 to study eigenvalues and diagonalization
of algebraic PLT’s. We will also give sufficient conditions for A ∈ Mn(K) to be
(S,D) equivalent to a diagonal matrix. In this section we will assume that S is an
automorphism and D an S-derivation of a division ring K. We recall without proof

a few properties of invariant polynomials of R = K[t;S,D].

Proposition 4.1. (cf. [LL1]) With the above notations if a monic polynomial
f ∈ R is right invariant (fR ⊆ Rf) then :

a) Rf = fR,

b) f is an (S`, 0) c.v. polynomial where ` = deg f ,

c) g ∈ R divides f on the right iff g ∈ R divides f on the left

d) For a ∈ K, if f(a) = 0 then f(∆S,D(a)) = 0 where ∆S,D
(a) = {ax = S(x)ax−1 +

D(x)x−1 | x ∈ K∗}.

e) If ∆ ⊂ K is (S,D)-algebraic and closed by (S,D)-conjugation then its monic
minimal polynomial f∆ ∈ R is right invariant and if q ∈ K is such that

f∆(q) = 0 then q ∈ ∆.

Proposition 4.2. Let T be an (S,D) PLT on a vector space V .

If γ1, . . . , γs ∈ K are eigenvalues belonging to different (S,D) conjugacy classes
and v1, . . . , vs ∈ V are corresponding eigenvectors (T (vi) = γivi, i = 1, . . . , s) then
v1, . . . , vs are left linearly independant.



Pseudo linear transformations and evaluation in Ore extensions. 339

Proof Assume v1, . . . , vs are linearly dependant and choose a shortest depen-
dance relation :

∑`
i=0 βivi = 0 βi ∈ K β` = 1. Applying T we get

∑`
i=1(S(βi)γi +

D(βi))vi = 0 from this relation we substract
∑`
i=0 γ`βivi = 0 and we obtain∑`−1

i=1(S(βi)γi + D(βi) − γ`βi)vi = 0. Since γ` is not (S,D) conjugate to γi, this
equation is a shorter non trivial relation for the vi’s. This contradiction shows that
the vi’s are linearly independant.

Proposition 4.3. Let T : V → V be an (S,D) PLT and α ∈ K, v ∈ V be an
eigenvalue and its corresponding eigenvector : T (v) = αv. Then :

• T n(v) = Nn(α)v = T nα (1)v for any n ∈ N. More generally for any g(t) ∈ R =
K[t;S,D] we have g(T )(v) = g(α)v.

• For β ∈ K r {0}, T (βv) = αββv where αβ = S(β)αβ−1 + D(β)β−1. More
generally for any g(t) ∈ R = K[t;S,D] g(T )(βv) = g(αβ)βv.

• If dimK V = n and e = (e1, . . . , en) is a basis of V , writing v =
∑
αiei and

v = (α1, . . . , αn) we have S(v)Me(T ) +D(v) = αv.

Proof 1) Let us prove that T n(v) = Nn(α)v by induction on n ∈ N. If n = 0
we have T 0 = id N0(α) = 1 and the formula is true. Now assume T n(v) =
Nn(α)v and let us compute T n+1(v) = T (Nn(α)v) = S(Nn(α))T (v) +D(Nn(α))v =
[S(Nn(α))α+D(Nn(α))]v = Nn+1(α)v. From this we immediately get the conclusion

g(T )(v) = g(α)v.

2) Let us compute : T (βv) = S(β)T (v) + D(β)v = (S(β)α + D(β))v. Hence

T (βv) = (S(β)αβ−1 +D(β)β−1)βv = αββv. From this and part 1) we easily obtain
the more general result.

3) This is straightforward and is left to the reader.

Let us denote ΓT := {α ∈ K|T (v) = αv for some non zero v ∈ V }.

Remarks 4.4. a) Proposition 4.3 2) shows that ΓT is closed by (S,D) con-
jugations. If dimK V = n we will write ΓT = Γ1 ∪ . . . ∪ Γr where Γi = ∆S,D(γi) =
{γxi |x ∈ K∗}. Notice that r ≤ n.

b) If T = Ta : K 7→ K then ΓT = ∆S,D(a) = {S(x)ax−1 +D(x)x−1|x ∈ K∗}.
c) If T and T1 are similar (S,D) PLT’s on V and V1 respectively then ΓT = ΓT1.

d) If p(t) ∈ R = K[t;S,D] is an (S ′, D′) c.v. polynomial then p(ΓT ) ⊇ Γp(T ).

The proofs of these remarks are left to the reader.

We now turn to algebraic PLT’s.

Proposition 4.5. Let T be an algebraic (S,D) PLT on V and let fT (t) ∈ R =
K[t;S,D] be its minimal polynomial, the following are equivalent

(i) α ∈ K is an eigenvalue for T (i.e. α ∈ ΓT )

(ii) t− α divides on the right the polynomial fT (t) in R = K[t;S,D].

(iii) t− α divides on the left the polynomial fT (t) in R = K[t;S,D].
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Proof (i)→ (ii) Let v ∈ V r{0} be such that T (v) = αv and put fT =
∑
ait

i ∈ R
then 0 = fT (T )(v) = fT (α)v (by Proposition 4.3. (1)), and so fT (α) = 0. Hence we

conclude t− α divides fT on the right in R.
(ii) → (iii) This is an easy and well known property of invariant polynomials (cf.
4.1)
(iii) → (i) Suppose we have fT (t) = (t − α)g(t) in R. Since fT (t) is the minimal

(monic) polynomial of T , there exists v ∈ V s.t. ω := g(t)(v) 6= 0 and we get
0 = fT (t)(v) = T (ω)− αω.

Corollary 4.6. Let T be an algebraic (S,D) PLT on V and let fT (t) ∈ R be its
minimal polynomial, then

a) ΓT is an (S,D)-algebraic (S,D) closed subset of K and the minimal monic
polynomial of ΓT , fΓT divides fT in R.

b) fT has roots in at most n = dimV (S,D) conjugacy classes

Proof a) and b) are easy consequences of Propositions 4.2. and 4.5.

Let us write VΓ (resp. VΓi i = 1, , . . . , r) for the vector space spanned by the
eigenvectors of T (resp. the eigenvectors of T associated to an eigenvalue in Γi)
(recall that Γ = ∪ri=1Γi).

Lemma 4.7. With the above notations we have

a) r ≤ min{deg fT , dimV }

b) For any i ∈ {1, . . . , r} VΓi is a left R submodule of V . If fΓi denotes the
minimal monic polynomial of Γi, we have RfΓi = annVΓi. Moreover fΓifΓj =
fΓjfΓi for any i, j ∈ {1, . . . , r}.

c) VΓ =
⊕r
i=1 VΓi and if fΓ denotes the minimal polynomial of ΓT then

1) fΓ divides fT

2) RfΓ = annVΓ

3) fΓ =
∏r
i=1 fΓi

Proof a) Proposition 4.2 implies r ≤ dimV , on the other hand Γi = ∆S,D(γi)
where γi is not (S,D) conjugate to γj if i 6= j and Proposition 4.5 shows that
fT (γi) = 0. But fT can have roots in at most deg fT distinct (S,D) conjugacy
classes (cf. [LL3]) and hence r ≤ deg fT .

b) Let us remark that if Γi = ∆S,D(γi) then VΓi = V ect{v ∈ V |T (v) = γiv}
this is clear since if T (ω) = γxi ω, ω ∈ V, x ∈ K∗, then T (x−1ω) = γix

−1ω and so
we need only take into account eigenvectors relative to γi. It is easy to observe
that Γi ⊂ ΓT is an (S,D) algebraic subset of K and that fΓi(t), being divisible on

the right by t − γxi for any x ∈ K∗, is such that fΓi(T )(VΓi) = 0. On the other
hand if g(t) ∈ R = K[t;S,D] is such that g(T )(VΓi) = 0 and if T (v) = γiv we
have T (xv) = γxi xv for any x ∈ K∗, so 0 = g(T )(xv) = g(γxi )xv. Hence g(γxi ) = 0

for any x ∈ K∗ and finally g(t) ∈ RfΓi . The fact that fΓi and fΓj commute is an
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obvious consequence of the fact that fΓifΓj and fΓjfΓi are both the monic miminal
polynomial of Γi ∪ Γj.

c) For i ∈ {1, . . . , r}. let {vi1, vi2, . . . , . . . vini} be a basis for VΓi s.t. T (vij) =

γ
xij
i vij where Γi = ∆S,D(γi) and xij ∈ K∗. We will show that the vectors v11, . . . , v1n1,
v21, . . . , v2n2, . . . , vrnr are linearly independant over K. Assume at the contrary that
v11 =

∑
j 6=1 α1jv1j +

∑
i6=1

j=1...ni

αijvij is a minimal relation among the vij’s. By the

standard method we get∑
j 6=1

(
S(α1j)γ

x1j

1 +D(α1j)− γx11
1 α1j)

)
v1j

+
∑
i6=1

j=1...ni

(S(αij)γ
xij
i +D(αij)− γx11

1 αij)vij = 0

which is a shorter relation.

By minimality we conclude that for i 6= 1 and j ∈ {1, . . . , n} we have S(αij)γ
xij
i +

D(αij)−γx11
1 αij = 0. Since γi and γ1 are not (S,D) conjugate this implies that αij=0

for i > 1 and our initial relation is in fact a non trivial relation between v11, . . . , v1n1.

But this is impossible since {v11, . . . , v1n1} is a basis of VΓ1 by hypothesis. From this
it is easy to conclude that VΓ = ⊕VΓi and the properties of fΓ and the fΓi’s are
direct consequences of previous results.

As usual we will say that T is diagonalizable if there exists a basis of V consisting

of eigenvectors. We need the easy technical but useful

Lemma 4.8. Let T : V → V be an algebraic (S,D) PLT with minimal monic
polynomial fT and let Γ = ∆S,D(α), α ∈ K, be an algebraic (S,D) conjugacy class

with minimal polynomial fΓ. If fΓ = fT then T is diagonalizable. If dimV = n
there exists a basis e = {e1, . . . , en} of V such that T (ei) = αei i.e. Me(T ) =
diag(α, . . . , α).

Proof Since fT = fΓ we have fT (t) = (t−α)q(t) for some polynomial q(t) ∈ R =
K[t;S,D]. Let VΓ be the vector space generated by the eigenvectors associated to

eigenvalues in Γ. We have to prove that VΓ = V . VΓ is a left R-submodule of V and
for any v ∈ V we have (T − α)(q(T )(v)) = fT (T )(v) = 0; hence q(T )(V ) ⊂ VΓ or
in other words q(t) ∈ annR(V/VΓ). Assume that V/VΓ is non zero and let h(t) ∈ R
be a non constant monic polynomial such that Rh(t) = annR(V/VΓ). By the above

observations we conclude that h(t) divides q(t) and in particular h(t) divides fT (t)
and 1 ≤ deg h(t) < deg fT . Let us write fΓ = fT = gh for some g ∈ R. Since h
is invariant we easily see from 4.1 that if h(γ) = 0, for some γ ∈ Γ, then for any
x ∈ K∗, h(γx) = S`(x)h(γ)x−1 = 0 where ` = deg h. This means that if there exists

γ ∈ Γ such that h(γ) = 0 then h(Γ) = 0 but this contradicts the fact that fΓ = fT
is the minimal polynomial for Γ. On the other hand if for any γ ∈ Γ, h(γ) 6= 0
then since fΓ = fT = hg, using Corollary 2.10, we get that g(Γ) = 0 which also
contradicts the minimality of fΓ. This shows that V/VΓ must be the zero module

and so V = VΓ. Let f1, . . . , fn be a basis of V consisting of eigenvectors associated to
αx1 , . . . , αxn , {x1, . . . , xn} ⊂ K∗ respectively. Then the vectors e1 = x−1

1 f1, . . . , en =
x−1
n fn form a basis of V such that T (ei) = αei i = 1, . . . , n
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Theorem 4.9. Let T be an (S,D) PLT on a left K vector space V such that
dimV = n. Let fT be its minimal monic polynomial and Γ = ∪ri=1∆S,D(γi) the set

of eigenvalues of T . Then the following assertions are equivalent :

(i) T is diagonalizable,

(ii) there exists e a basis of V such that Me(T ) is diagonal (in other words ∆(T )
contains a diagonal matrix),

(iii) there exists e a basis of V and {δ1, . . . , δn} ⊂ K such that TMe(T ) = Tδ1⊕· · ·⊕
Tδn where ⊕ni=1Tδ1 : Kn −→ Kn : (α1, . . . , αn) 7−→ (Tδ1(α1), , . . . , Tδn(αn)),

(iv) VΓ = V, where VΓ is the vector space generated by the eigenvectors of T ,

(v) fΓ = fT , where fΓ is the minimal polynomial of Γ,

(vi) deg fΓ = deg fT ,

(vii) fT =
r∏
i=1

fΓi, where fΓi is the minimal polynomial of Γi=∆S,D(γi);

(viii)
∑n
i=1[K : CS,D(γi)]right = deg fT where CS,D(γi) = {x ∈ K∗ | γxi = γi}∪ {0} is

a subdivision ring of K.

Proof (i) → (ii) is clear : take e to be a basis consisting of eigenvectors.
(ii) → (iii) If A = Me(T ) = diag(δ1, . . . , δn) we obviously have TA = ⊕ni=1Tδi.

(iii)→ (iv) If TMe(T ) = ⊕ni=1Tδi we haveMe(T ) = diag(δ1, . . . , δn) and so T (ei) = δiei,
thus e = {e1, . . . , en} ⊂ VΓ and we conclude V = VΓ.

(iv) → (v) This is clear since fΓR = annRVΓ = fTR.
(v) → (vi) This is clear.

(vi) → (vii) This is obvious in view of Lemma 4.7 c).

(vii)↔ (viii) Assume fT =
∏r
i=1 fΓi then deg fT =

∑r
i=1 deg fΓi , but by [LL3] Theo-

rem 5.10, we know that deg fΓi = [K : CS,D(γi)]right.

(vii) → (i) Let us define Vi = KerfΓi(T ) for i = 1, . . . , r. Since fΓi ∈ R is invariant
of degree say `i, we know that fΓi(T ) is an (S`i, 0) PLT and Vi is an R submodule
of V containing VΓi (Indeed, if v ∈ V is such that T (v) = γiv for some γi ∈ Γi
then t − γi divides fΓi on the right and so fΓi(T )(v) = 0). Let fi ∈ R be such

that Rfi = annRVi. Since fi(T )(VΓi) = 0 we also have fi(Γi) = 0 and we easily
conclude that fi = fΓi. Lemma 4.8 above then shows that VΓi = Vi. Now assume
fT =

∏r
i=1 fΓi . If r = 1 Lemma 4.8 shows that T is diagonalizable. If r > 1 let us

put hi =
∏
j 6=i fΓj i = 1, . . . , r. We claim

∑r
i=1 hiR = R. Indeed if

∑
hiR = gR =

Rg deg g ≥ 1. Let g1 ∈ R be such that h1 = gg1. Since h1 is the minimal polynomial
of the S,D algebraic set ∪j 6=1Γj, there exists d ∈ ∪j 6=1Γj such that x = g1(d) 6= 0
but h1(d) = 0 and Corollary 2.10 gives us g(dx) = 0. Now assume d ∈ Γ` for some
`, ` ≥ 1, then since Γ` is closed by (S,D) conjugation we also have dx ∈ Γ`, but g

divides h` also on the right since h` is invariant in R and we conclude that h`(d
x) = 0

(cf. Proposition 4.1). Once more the invariance of h` then forces h` to annihilate
Γ` but this contradicts the definition of h` and proves our claim :

∑
hiR = R. We
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can thus write
∑r
i=1 hiqi = 1 and for v ∈ V let us put vi = hi(qi(T ))(v). We have

v =
∑
vi, but fT = fΓihi and so fΓi(T )(vi) = (fΓihi)(qi(T )(v)) = 0. This means

that vi ∈ KerfΓi(T ) = Vi = VΓi (by the first paragraph above). We conclude that
any v ∈ V can be written v =

∑
vi, vi ∈ VΓi i.e. V = ⊕VΓi. This means that T is

diagonalizable.

Let us mention a few observations in the form of a

Corollary 4.10. Let T be an algebraic (S,D) PLT on a left K-vector space V
and T1 be an (S,D) PLT on a left K-vector space V1. Then

a) If T ∼ T1 then T is diagonalizable if and only if T1 is diagonalizable.

b) If T is diagonalizable then for any (S ′, D′) c.v. polynomial p∈R, p(T ) is diag-

onalizable.

c) If T is diagonalizable and dimV = n, there exists a basis e = (e1, . . . , en) of V
such that Me(T ) = diag(α1, . . . , α1, α2, . . . , α2, . . . , αr, . . . , αr) where r is the
number of (S,D) conjugacy classes containing eigenvalues of T .

Proof a) Lemma 3.17 shows that T1 is algebraic and fT1 = fT hence if T is

diagonalizable we have by the theorem fT = fΓ and so fT1 = fΓ which implies that
T1 is diagonalizable.
b) This is clear from the fact that p(T ) is also algebraic (cf. Theorem 3.20) and

∆(p(T )) = p(∆(T )) (cf. 3.7). So if ∆(T ) contains a diagonal matrix A then p(A) ∈
∆(p(T ) is easily seen to be diagonal and Theorem 4.9 (ii) gives the conclusion.
c) Theorem 4.9 and Lemma 4.7 show that V = VΓ = ⊕ri=1VΓi. But the final assertion
from Lemma 4.8 implies that for any i = 1, . . . , r VΓi has a basis {ei1, . . . , eini} such

that T (eij) = αieij when Γi = ∆S,D(αi) and so the basis
e = {e11, . . . , e1n1, e21, e22, . . . , e2n2, . . . , er1, . . . , ernr} satisfies the required proper-
ties.

In this final part, we will look at (S,D) diagonalization of matrices. We will use
the previous notations in particular up to the end we will assume that S ∈ Aut(K).
Let us first give the relevant definitions.

Definitions 4.11. Let A be an n × n matrix in Mn(K) and α, β be elements

in K. Let u be a column in nK and v a row in Kn.

a) A is (S,D) diagonalizable if there exists P ∈ GLn(K) such that S(P )AP−1 +
D(P )P−1 is a diagonal matrix.

b) v is a left eigenvector for A associated to the left eigenvalues α if S(v)A +
D(v) = αv.

c) u is a right eigenvector for A associated to the right eigenvalues β if Au −
D(u) = S(u)β.

d) SpecA is the set of right and left eigenvalues of A.

e) u and v are orthogonal if
∑n
i=1 viui = 0 where u = (u1, . . . , un)t and v =

(v1, . . . , vn).
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Let us make a few observations about these definitions.

Remark 4.12. a) v ∈ Kn is a left eigenvector of A associated to α if and only
if TA(v) = αv. This shows that definition b) above is natural since TA plays the role
of the classical linear transformation attached to a matrix.

b) The notions of right eigenvectors, right eigenvalues are also natural in view of the
following : if S ∈ Aut(K) then (−DS−1, S−1) is a right S−1 derivation and hence
the application LA : nK → nK : u 7→ AS−1(u)− DS−1(u) is a right (−DS−1, S−1)
PLT (cf. Remark 2.5 c)); RA is the analogue of the classical linear transformation

on the space nK of columns defined by A. Thus ω ∈ nK is a right eigenvector for A
associated to the right eigenvalues β if RA(ω) = ωβ i.e. AS−1(ω)−DS−1(ω) = ωβ
hence Au−D(u) = S(u)β where u = S−1(ω) ∈ nK.

Proposition 4.13. Let A be an n × n matrix over K, v, v1, . . . , vs be rows in
Kn and u, u1, . . . , ur columns in nK. Then

a) SpecA is closed by (S,D)-conjugation, more precisely :
If α ∈ K is such that S(v)A+D(v) = αv then for γ ∈ K∗ S(γv)A+D(γv) =

αγγv
If β ∈ K is such that Au − D(u) = S(u)β then for γ ∈ K∗ Auγ − D(uγ) =
S(uγ)βγ

−1

b) If v1, . . . , vs (resp. u1, . . . , us) are left eigenvectors (resp. right eigenvectors)

for A associated to non (S,D) conjugate eigenvalues then v1, . . . , vs (resp.
u1, . . . , us) are left (resp. right) linearly independant over K.

c) Left and right eigenvectors associated to non (S,D) conjugate eigenvalues are
orthogonal.

d) SpecA contains at most n (S,D) conjugacy classes.

Proof a) This is left to the reader.
b) We have TA(vi) = γivi for some γi ∈ K and i = 1, . . . , s. Since the γi’s are
assumed to be non (S,D) conjugate, Proposition 4.1 shows that v1, . . . , vs are left

linearly independant. The map RA : nK → nK : u 7→ AS−1(u)−DS−1(u) is a right
(−DS−1, S−1) PLT and the conditions Aui −D(ui) = S(ui)βi mean that S(ui) is a
right eigenvector of RA associated to the right eigenvalue βi i.e. RA(S(ui)) = S(ui)βi
and the analogue of Proposition 4.2 for right (−DS−1, S−1) PLT implies that the

S(ui)’s are right independant and so the ui’s are also right linearly independant
overK.
c) Suppose that v = (v1, . . . , vn) ∈ Kn u = (u1, . . . , un)t ∈ nK and
γ, β ∈ K are such that S(v)A + D(v) = γv and Au − D(u) = S(u)β. If c :=∑
viui 6= 0 then [γv−D(v)]u = (S(v)A)u = S(v)(Au) = S(v)[S(u)β+D(u)] and so

γvu = S(v)S(u)β + S(v)D(u) +D(v)u hence γc = S(c)β +D(c) and γ = βc. This
contradiction shows that c = 0.
d) Let γ1, . . . , γr and β1, . . . , βs be respectively left and right eigenvalues for A and

suppose that γ1, . . . , γr, β1, . . . , βs are not (S,D) conjugate. Let u1, . . . , ur ∈ nK
and v1, . . . , vs ∈ Kn be respective eigenvectors. By b) above we know that the
columns u1, . . . , ur are right independant. Let U1 = (u1, . . . , ur) ∈ Mn×r (K) and
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ϕ : Kn → Kr : (x1, . . . , xn) 7→ (x1, . . . , xn)U1 a left linear map. Since the columns of
U1 are right independant we deduce that the left K space generated by the rows of

U1 is of dimension r and so dim imϕ = r (in particular, there exists a matrix V1 ∈
Mr×n (K) such that V1U1 = Ir). By b) and c) we deduce that the rows v1, . . . , vs are
left linearly independant vectors in Ker ϕ and so r+ s ≤ dimker ϕ+ dim imϕ = n.

Lemma 4.14. Let T be an algebraic (S,D) PLT on V with minimal monic
polynomial fT . If γ ∈ K is such that fT (γ) 6= 0 then T−Lγ : V → V : v 7→ T (v)−γv
is a bijection.

Proof Since fT is an invariant polynomial in R = K[t;S,D] the fact that fT (γ) 6=
0 implies that t−γ is neither a left nor a right factor of fT . In this section we assume
S ∈ Aut(K) so that we can write fT (t) = (t−γ)q(t)+r for some q(t) ∈ K[t;S,D] and
r ∈ K∗. Let v be any vector of V then we easily check that (T−Lγ)(q(T )(r−1v)) = v.

On the other hand if (T − Lγ)(ω) = 0 and ω 6= 0 then γ is an eigenvalue and
Proposition 4.5 shows that t− γ divides fT . This contradiction shows that T − Lγ
is injective.

In the next theorem we give sufficient conditions for a matrix A to be diagonal-
izable. This theorem is the analogue of Theorem 8.2.3 in [Co1].

Theorem 4.15. Let K,S,D be a division ring an automorphism of K and
an S-derivation of K. Suppose that A ∈ Mn(K), n ∈ N, is such that specA con-

sists of exactly n (S,D) conjugacy classes. Suppose moreover that either the set of
left eigenvalues or the set of right eigenvalues of A is (S,D) algebraic then A is
diagonalizable.

Proof Let γ1, . . . , γr ∈ K and β1, . . . , βs ∈ K be respectively non (S,D) conjugate
right eigenvalues and non (S,D) conjugate left eigenvalues of A such that r+ s = n.
Suppose that u1, . . . , ur are columns in nK and v1, . . . , vs are rows in Kn such that

Aui − D(ui) = S(ui)γi for i = 1, . . . , r and S(vj)A +D(vj) = βjvj for j = 1, . . . , s.

Put U1 = (u1, . . . , ur) ∈Mn×r(K) and V2 =


v1

...
vs

 ∈Ms×n(K).

Proposition 4.13 b) shows that the ui’s are right independant while the vj’s
are left independant and we conclude as in Lemma 4.14 above that there exist
V1 ∈ Mr×n(K) and U2 ∈ Mn×s(K) such that V1U1 = Ir and V2U2 = Is. Since we

are also assuming that for i = 1, . . . , r and j = 1, . . . , s, γi is not (S,D) conjugate
to βj we conclude thanks to Proposition 4.13 c) that V2U1 = 0. Let us denote

V :=
(
V1

V2

)
∈Mn×n(K) and W := (V1 · U2) ∈Mr×s(K) we have

AU1 = S(U1)C +D(U1) where C = diag(γ1, . . . , γr)

S(V2)A = BV2 −D(V2) where B = diag(β1, . . . , βs).

It is easy to check that V (U1 U2 − U1W ) = I , and we get S(V )AV −1 +

D(V )V −1 =

(
S(V1)

S(V2)

)
(AU1 A(U2 − U1W )) +

(
D(V1)

D(V2)

)
(U1 U1 − U1W ) we easily
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compute
the left upper block : S(V1)AU1 + D(V1)U1 = S(V1U1)C + S(V1)D(U1)

+D(V1)U1 = C +D(V1U1) = C
left lower block : S(V2)AU1 + D(V2)U1 = S(V2U1)C + S(V2)D(U1)
+D(V2)U1 = 0
right lower block S(V2)A(U2 − U1W ) + D(V2)(U2 − U1W ) = (BV2 − D(V2))

(U2 − U1W ) + D(V2)(U2 − U1W ) = BV2U2 − D(V2)U2 + D(V2)U1W + D(V2)U2 −
D(V2)U1W = B.
Let us call Y ∈Mr×s(K) the right upper block we thus have

S(V )AV −1 +D(V )V −1 =

(
C Y
O B

)
(4.16)

By our hypothesis at least one of the sets ∆ = ∪si=1∆S,D(βi) OR Γ =

∪rj=1∆S,D(γj) is (S,D) algebraic. So let us suppose that ∆ is (S,D) algebraic and
denote f∆(t) ∈ R = K[t;S,D] its monic minimal polynomial. We know that f∆

is invariant and Theorem 4.9 shows that f∆ is also the minimal polynomial of the
(S,D) PLT TB : Ks → Ks. Since for any i ∈ {1, . . . , r}, γi does not belong to

∆, the above lemma 4.14 shows that TB − Lγ : Ks → Ks is a bijection and so
for any i = 1, . . . , r there exists xi ∈ Ks such that (TB − Lγ)(xi) = −yi where
yi is the ith row of Y . We thus have S(xi)B + D(xi) − γixi = −yi and if we put

X =


x1

...
xr

 ∈ Mr×s(K) we get S(X)B + D(X) − CX = −Y . Now, consider the

matrix U =

(
Ir X
0 Is

)
∈Mn×n(K) and let us compute

S(U)

(
C Y
0 B

)
U−1 +D(U)U−1

=

(
C Y + S(X)B
0 B

)(
I −X
0 I

)
+

(
0 D(X)
0 0

)(
I X
0 I

)

=

(
C Y + S(X)B − CX
0 B

)
+

(
0 D(X)

0 0

)
=

(
C 0

0 B

)

This and 4.16 show that S(UV )A(UV )−1 + D(UV )(UV )−1 =

(
C 0
0 B

)
. We

similarly handle the case when the set of right eigenvalues of A is (S,D) algebraic.
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