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Abstract. For the Ore extension R[t,S, D], where R is a prime ring, we
describe prime ideals having zero intersection with R.

Introduction. The structure of prime ideals of various kinds of ring ex-
tensions has been investigated during the last few years. Normalizing ex-
tensions ([11]), crossed products ([2],[10]), enveloping rings ([11],{12]) and
Ore extensions ([1],(3],(4],[5].[6].[7]) were, in particular, studied.

In [7], [8] primes of Ore extensions over commutative noetherian rings
were considered. In [2], [3] and [12], prime ideals, disjoint from the coeffi-
cient ring, of Ore extensions of derivation type were described. The case
of Ore extensions of automorphism type has been dealt recently in [1], [4].
The aim of this paper is to study these prime ideals of Ore extensions,
which have zero intersection with coefficient ring. The methods we use are
based on [9].

Throughout the paper R will denote a prime ring while T' will stand for
the symmetric quotient ring of R. Recall that the left Martindale quotient
ring of R is defined as Q(R) = l_iEI_}IF}_ Homp(rlI, rR), where F is the filter
of all non-zero ideals of R, and T' can be considered as a subring of Q(R)
consisting of such elements ¢ € Q(R) that ¢/ C R for some ideal [ € F
depending on q.

The paper was written while the authors were staying at Institut d’Estudies Catalans,
Centre de Recerca Matematica, Spain.
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S and D will stand for an automorphism and S—derivation of R, respec-
tively. Recall that an S—derivation D is an endomorphism of the additive
group of R such that

D(ab) = D(a)b+ S(a)D(b) for all a,b € R
In case S is the identity, D is an ordinary derivation. For each ¢ € R we
will denote by D, s the S—derivation of R defined by D, s(a) = ca — S(a)e
for all @ € R. The Ore extension R[{,5, D] is the ring of polynomials in 1
over R, with multiplication determined by the rule

ia = S(a)i + D(a) foralle in R

For f(1) € R[{,S, D), deg f(?) will denote the degree of the polynomial
F).

It is well-known that both S and D have unique extensions to T'. There-
fore we can consider the over ring T[t,S,D] of R[#,5,D]. We will give
a complete description of T'-disjoint prime ideals of T{{,5,D]. Next we
will present a one-to-one corfespondence between I'-disjoint primes of
T[,S, D] and R-disjoint primes of R[t,S, D], provided one of the following
conditions is satisfied :

a) R is symmetrically closed (i.e. T' = R)
b) R is left and right ncetherian
¢) R satisfies the descending chain condition on {wo-sided ideals
d) S and D commute and another minor technical assumption (cf.
Prop. 2.9.)
The above results lead to a full description of R-disjoint prime ideals of
R[t,S, D] in these cases.

Invariant polynomials. Recall that if f(1) € R[¢, S, D] is a monic poly-
nomial, then f(1) is invariant if

(i) f = (1 + a)f(t) for some o € R.
and

(ii) for any r € R f()r = S™(r)f (1), where n = deg f(1).

If f(1) € R, S, D] is monic invariant then clearly the left ideal generated
by f(i) is two—sided and moreover R[t,S,D|f(?) = f()R[1,5,D]. Con-
versely, as the following lemma shows, it is possible to associate in a unique
way a monic invariant polynomial to any non-zero ideal of R[t,S,D].
Lemma 1.1. (Prop. 2.1, Cor. 2.2 [9])

(1) For any non-zero ideal I of R{,S, D] there exists a unique monic in-
variant polynomial fr(1) € T[¥,§, D] having the following properties:
(i) deg fr(1) = min{degg(1)|0 # g(t) € I} = n and every polynomial
g(1) € I of degree n is of the form g(1) = af;(1) for some a € R.
Gi) I TH,S,Dlf:1(1)N RS, D).
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(2) K I is an ideal of T[{,S, D] then the polynomial fr(1) defined in (1)
belongs to T'[},5,D]. &

The polynomial f;() from the above lemma will be called the invariant
polynomial associated to I.
In the sequel we will need the following simple observation.

Lemma 1.2. Let I C J be non-zero ideals of R[1,S,D]. Then there is a
monic invariant polynomial k(1) € T'[1,S, D] such that fr(1) = h(1)f;(1).

Proof. By Lemma 1.1, there is a non—zero ideal A of R such that Afr(1) C
I. Since I C J, Lemma 1.1 yields that for any a € A there is g,(1) €
T[{,S, D] such that

af1(t) = ga(1) fs(¥)

fs(1) is a monic polynomial, thus we can divide f7(?) on the right by
fi(1) getting fr(2) = h(3)fs(1) + r(1) for some h(1),r(1) € T[t,S, D] with
degr(1) < deg fs(1). :

Therefore, for any a € A we have

9a(1)fs(1) = af1(t) = ah(1)fs(1) + ar(?)

and, consequently, (g.(1) — ah(1))f,(1) = ar(t). Comparing degrees of
polynomials appearing on both sides in the above equality we get ar(1) =0
for all a € A. This implies r(1) = 0 and f;(?) = h(1)fs(1). Now one can
easily check that k(1) is a monic invariant polynomial. H

Let M(1) € T[{,5,D] denote a monic invariant polynomial of minimal
non-zero degree, provided such polynomial exists; otherwise M (1) = 1.

In order to describe prime ideals in R[{, S, D] we will need a description
of the center Z of T'[1, S, D] and some properties of invariant polynomials.
Cs p will denote the ring of all central elements in T which are S and D
Invariant.

Proposition 1.3. (1) (Th. 3.6 and 3.7 [9]) There exist an invertible A € T
and £ > 0 such that Z = Cs p[z], where z = AM(1)*. Moreover, Z # Csp
iff M(?) # 1 and a non-zero power of S is an inner automorphism of T..
(2) (Prop. 3.4 [9]) Every monic invariant polynomial f(1) € T[t,S, D]
can be written in the form f(1) = aw(z)M{)™, where a € T is invertible,
m > 0 and w(z) is a monic polynomial in the center Cs p(z] of T[1, 5, D].

We will say that the center Z of T'[{, S, D] is non—trivial if Z # Cs p.
In the following lemma the notation will be as in the above proposition.
Additionally we will assume that Z is non—trivial.
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Lemma 1.4. Let f(1) € T'[1, S, D] be a monic non—constant invariant poly-
nomial and Z = Csplz] denote the center of T[,5,D]. The following
conditions are equivalent:

(1) f(1) can not be presented as a product of two monic non—constant
invariant polynomials.

(i1) Either f(1) = M (1) or there is an invertible B8 € T such that 8f(1) €
Cs plz] is a monic irreducible polynomial in Cs p|z], different from
Z.

Proof. (:) — (). By Proposition 1.3, f(1) = aw(z)M(1)™ for some
invertible o € T', a monic polynomial w(z) € Cs plz] and m > 0. Since
both f(?) and M (%) are monic polynomials, aw(z) is a monic polynomial
in T[{,5,D] and, clearly, aw(z) is an invariant polynomial. Therefore,
the assumption on f(1) yields that either f(1) = M({) or f() = aw(z).
Suppose that f(1) = aw(z), ie. a™'f(1) = w(z) € Csplz]. First we
will show that a™!f(?) is irreducible as a polynomial in Cg p[z]. Assume
that &' f(1) = wy(z)wa(z) for some w;(z) € Cs plz] with deg.w;(z) > 0,
¢ = 1,2. We will treat w;(z)’s as polynomials in 7 and denote @;(1) = w;(z),
+ = 1,2. By Proposition 1.3, the leading coefficients a1, a2 of polynomials
©1(1), @2(1) are invertible in T and o] '@ (1), a7 '@2(1) are monic invariant
polynomials. Therefore we can present f() in the form

f() = a@, (1)@ (1) = (eazen )y @1 (1)) (eg ' @2(1))

Since f(1) is monic, aasa; = 1 and the above equality shows that f(?)
can be decomposed into a product of two non-constant monic invariant
polynomials. This contradicts our assumption and establishes ™' f(1) is
an indecomposable polynomial in Cs plz].

Recall that z = AM(?)¢ for some invertible A € T and £ > 0. Using
this presentation of z and the assumption on f(1) it is easy to check that if
Bf({) = z for some invertible 8 € T then 8 = Aand L = 1,1ie. f() = M(?).
This completes the proof of the implication (2) — (s3).

(12) — (s). If f(1) = M(?) then clearly f(?) can not be decomposed into
the product of two non-constant monic invariant polynomials. Suppose
that there is an invertible 8 € T such that 8f(1) € Cs p[z] is a monic
irreducible polynomial in z different from z.

Let 1 # fi(1), f2(1) € T[{,S,D] be monic invariant polynomials such
that f(1) = f1(?)f2(1). We will show that f;(1) = 1. By making use of
Proposition 1.3 we can write polynomials fi(1), f2() in the form f;(1) =
aiwi(z )M(1)™ where o; € T is invertible, w;(z) is a monic polynomial in
Cs plz], mi 2 0;3 = 1,2, Then

BF(1) = Barnwn (2)M ()™ argwa()M(1)™ = wy (2 )wa(z )y M(1) ™+
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for some invertible y € T'. Since 8f(?), w1(z), w2(z) are monic in z, central
polynomials, yM ()™ ™2 is a monic central polynomial in z. Using the
description of central polynomials it is easy to see that yM(1)™ ™2 = ;*
for some k > 0. Therefore Bf(1) = wi(z)wz(z)z*. Because Bf(1) is an
irreducible polynomial in Cs p(z], we get:

(*) k = 0, since otherwise w;(z

) = wv(z) = 1 and ﬂf(“f) =
(*%) wi(z) =1 or wa(z)

1 s

Since k = 0, fi(1) = ajwi(z), + = 1,2. Now the condition (**) together
with the fact that fi1(1) # 1 forces wa(z) = 1. It means that f;(1) =1 and
establishes the lemma. W

Up to the end of this section we will additionally assume that S and
D commute. It is well known that in this case S can be extended to an
automorphism of T[t, S, D] by setting S(?) =1 and D can be extended to
an S—derivation of T'[1, S, D] by D(1) = 0.

In the next lemma we will describe the set of all monic invariant poly-
nomials of minimal non-zero degree and study the additive commutator

[M(),1].

Lemma 1.5. Suppose that M(1),M'(1) € T[{,S, D] are monic invariant
polynomials of minimal non-zero degree. Then :
(i) M'(1) = M(i) + ¢ for some ¢ € T. If ¢ # 0 then c is invertible in
T and S™ is an inner automorphism of T' determined by ¢, where
n = deg M(1).
(il M{) =t +bifandonly if D = D_;.5 (i.e. D(z) = S(z)b— bz for
allz €T).
If moreover S(M(3)) # M(1) then S is an inner automorphism of T
and T[1,S,D] = TV
(i) M)t =1M (1) if either deg M (1) > 1 or S(M (1)) = M(?)
(iv) If M(i1t =i1M(1) then there exists ¢ € T' such that S(c) = ¢, D(c) =
0 and S(M(1)) = M(1) + ¢, D(M (1)) = —ct.

Proof. (i) By Proposition 1.3 M'(1) = aw(z)M({)™ for some m > 0

where « € T is invertible and w(z) € Csplz]. Comparing degrees of

polynomials appearing in the above equality we obtain that either m =1

and M'(1) = M(1) or m = 0 and M'(1) = aw(z). In the second case. by

using again Proposition 1.3, we get M'(1) = M (1) + cfor some c € T.
Now, for any r € R,

cr =(M'())—=M@))r =S™(r)(M'(1) —M@))=S"(r)c
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where n = deg M (1). It means that the element ¢ normalizes R. Now the
statement (i) follows from the fact that non-zero R-normalizing elements
from T' are invertible.

Notice that in the proof of (i) we have not used the assumption that S
commutes with D.

(i1) Since M(?) = 1 + b is invariant we have, for any z € T,M({)z =
S(z)M(1) and a comparison of independant terms on both sides of this
equation leads to D(z) 4+ bz = S(z)bie. D = D_,.s.

Conversely if D = D_;,5 then we easily verify that (1 4+ b)z = S(z)(1 + b)
for any # € T and that (? + b)1 = (1 + ¢)(1 + b) where ¢ = b — S(b). This
shows that M (1) =1 + b is invariant.

Now, S(M(1)) = S({+b) =1+ 53) =1+b+50b)—b = M) —c
Hence S(M (1)) # M(1) if and only if ¢ # 0. Since S(M (%)) is obviously
an invariant polynomial of minimal non zero degree, part (1) above shows
that if S(M (1)) # M(?) then S is an inner automorphism of T induced by
¢ and one can check that ¢7'( 4+ b) is a central polynomial in T'[t, S, D].
This yields T[{, S, D] = T'[#'] for ¢! = c71(1 + b).

(111) &(iv). By (i), S(M(?)) = M(#) + cfor some c € T'. Let a € T be
such that M(i1){ = ({ +a)M (1) (M(1) is monic invariant). Then

M@AY =1 M®{) +a M@{) = S(M@®))t + D(M{)) +a M({) =
= (M@) + ) +a M) + D(M())

Hence

(1) D(M(1) = —aM({{) — c

If deg M (1) > 1, then since deg D(M (1)) < deg M{1) the equation (1) shows
that a = 0 f.e. M (1)t =1M(3).

If deg M (1) = 1 but S(M(1)) = M({) then ¢ = 0 and (1) implies that a = 0.
Now if M (1)1 =1M (1) the element a defined above is equal to zero and (1)
shows that D(M (1)) = —ct. Where ¢ € T is such that S(M(1)) = M(1) +<.
If ¢ #£ 0 part (i) of this lemma implies that S(¢) = ¢ and, by comparing
S(D(M(1))) and D(S(M(1))), we get D(c) = 0.

Example 1.6. Let us give an example of a monic invariant polynomial of
minimal degree M (1) in an Ore extension T'[1, S, D] such that SoD = Do S
but M (1)t £ 1M (1). Lemma 1.5 shows that the degree of such a polynomial
must be one. Consider the polynomial ring k[c] over a field & and let § =
c*4L. Define an automorphism over R = k[c|[b, §] by putting S(p(c)) = p(c)
for p(c) € k[c] and S(c) = b —c. It is easy to observe that S is a well
defined automorphism of R and that So D_jg = D_j.50S. Let T' be the
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symmetric Martindale ring of quotients (e.g. T' = R if char k¥ = 0 since in
this case R is simple). In the Ore extension T'[{, S, D _s,s] the polynomial
1 + b is invariant. Since D_p.5(b) = —cb we get tb = (b —¢)t — ¢b and so

@+ =14+t +cb=(1+c)F+b)

This shows that (1 +5)1 £1(1 +b). H
In the sequel we will use the following simple technical observation.

Lemma 1.7. Suppose that A € T and g(1) € T[1, S, D] is not zero divisor.
If both g(1) and Ag(1) commute with 1, then S(A) = A and D(}A) = 0.

Proof. Suppose that g(1) and Ag(?) commute with 1. Using regularity of

g(1) it is standard to see that A commutes with 1. This implies the thesis.
=

The following lemma is of independent interest.

Lemma 1.8. Suppose that either deg M (1) > 1 or S(M(1)) = M(1) and
let g(1) be a monic invariant polynomial. Then g(1) commutes with 1.

Proof. If the center Z of T'[t, S, D] is trivial then, by Proposition 1.3, every
monic invariant polynomial is a power of M(1). In this case the thesis is a
consequence of Lemma 1.5.

Suppose Z is non-trivial, i.e. Z = Cs plz], where z = AM ()¢ for some
invertible A € T', £ > 0. By making use of Lemmas 1.5 and 1.7 we get

S(\Y=Aand D(A) =0 [}

Let g() be a monic invariant polynomial. Then, by Proposition 1.3,
g(1) = aw(z)M(1)™ for some invertible @ € T, w(z) € Csplz], m > 0.
Since M (1) is invariant. Property (*) shows that M(?7)A = AM(?), hence if
we write w(z) = Y i_, a;z', a; € Cs.p we then get

g9(1) = aw(z)M({)™ = az ai/\iﬂff(i)i—"m

1=0

A comparison of leading coefficients shows that 1 = aa,A? and so @ is §
and D invariant. Hence 1 commutes with @, w(z) and,thanks to Lemma .5
(i), also with M (?). This proves that { commutes with g(1). W

Let us recall that an ideal I of R is called S, D stable if S(I) = I and
D(ne .



Lemma 1.9. Suppose that either deg M(1) > 1 or S(M(1)) = M(1). Let
gd) = 3 i qit* € T[t,S,D] be either a monic invariant polynomial or
g(1) € Z - the center of T(t,S,D]. Then there is a non-zero 5,D stable
ideal I of R such that Iqi, ¢;I CR for0 <3 <'s.

Proof. Assume that 0 # J is an S, D-stable ideal of R such that Jg(1) C
R[t,S,D]. Since S(J) =7, g(1)J = Jg(1) C R[1,S,D]. Now it is straight-
forward to verify (cf. Lemma 1.3 [9]) that ¢;J C R for 0 < < 's. There-
fore in order to establish the lemma it is enough to find a non-zero §, D-
stable ideal I of R such that I9(i) C R[t,S5,D]. First we will find such
an ideal for g(1) = M(1). By Lemma 1.5, S(M(1)) = M(?) + ¢ where
the element ¢ € T satisfies: S(¢) = ¢, D(c) = 0 and ¢cR = Rec. Define
I ={reR|rM({) € R[{,S,D] and rc € R}. Clearly I is a left ideal of R
and I # 0 by definition of T'. Since both M (1) and ¢ normalize R, I is an
ideal of R.

Let r € I. Since S(c) = ¢, S(r)c = S(rc) € R and S(r)M(1) =
S(rM(1)) — S(r)c € R[,5, D). This shows that S(I) C I. Applying the
same argument to S~! we obtain $(I) = I. By Lemma 1.5 D(M(1)) = —ct.
Hence D(r)M(1) = D(r M(1)) + S(r)ct € R[1,5,D]. Since D(c) = 0,
D(r)c € R. This completes the proof that

I is an S, D-stable ideal of R such that IM (1) C R[t,5,D].  (*)

If the center Z of T(t,S, D] is equal to Cs p then, by Proposition 1.3,
every monic invariant polynomial is a power of M(1). Thus the statement
() yields the thesis in this case.

Suppose that Z # Cs,p. Then, by Proposition 1.3, Z = Cs,plz] where
= AMQ@ )‘! for some £ > 0 and an invertible element A € T'. By Lemma
1.5, M(1)* commutes with 1. Hence Lemma 1.7 shows that S(A) = A and
D()) = 0. Now using the above property of A together with the statement
(%) it is easy to complete the proof for g(1) € Cs,p[z].

Finally let g(1) be a monic invariant polynomial. Then, by Proposition
1.3, g(1) = aw(z)M ()™ for some m > 0 where « € T is invertible and
w(z) € Cs plz]. Lemma 1.8 implies that g(1) commutes with 1. Since the
polynomial w(z)M(1)™ also commutes with  Lemma 1.7 gives us S(a) = «
and D(«) = 0. Using this property and what has been proved above for
M (1) and for central polynomials, it is easy to show that there is a non-zero
S, D-stable ideal I of R such that Ig(t) C R[t,5, D], as required. W

Prime ideals of R[t,S,D]. In this part we give a description of prime
ideals of R[t, S, D] having zero intersection with the coefficient ring R. Us-
ing Lemma 1.1 it is standard to prove the following:
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Proposition 2.1. For the ring R[t,S,D] the following conditions arc
equivalent:

(1) 0 is the only R-disjoint prime ideal of R[1, S, D].
(ii) R[t,S,D] has no non-zero R-disjoint ideals.
(ii1) T'[t,S, D] does not contain non-constant monic invariant polynomial.
.+

The equivalence given in the above proposition can be also expressed in
terms of properties of § and D (cf. Th. 2.6 [9]).

Because of Proposition 2.1 we will further assume that R[{,S, D] has
non-zero It-disjoint ideals. Notice that in this case there are non-constant
monic invariant polynomials in T[{, S, D], so M (1) # 1.

Speco(R[t, S, D)) will denote the set of all prime ideals of R[{, S, D] which
are R-disjoint.

Maz,(R[1,S, D]) will stand for the set of all maximal ideals among I~
disjoint i1deals.

Since R is prime, it is easy to check that

Maz.(R[t,S,D]) C Speco(R[t, S, D]).

This observation will be used freely in the sequel.

We will continue to use the notation from Proposition 1.3. In particular
the center Z of T'[1, 5, D] is non-trivial if it is not contained in T'. In this
case Z = Cg plz] where z = AM(1) for some invertible A € T and £ > 0.

Theorem 2.2. For a non-zero ideal P of T 1, S, D| the following conditions
are equivalent:
(i) P € Speco(T[t,S, D))
(ii) P € Maz,(T[t,S,D])
(iii) P = f(1)Tt,S, D] where f(1) € T[1,5, D] is either equal to M(t) or
the center Z of T{1, S, D] is non—trivial and there is an invertible 3 €
T such that Bf(1) € Z = Cs,plz] is a monic irreducible polynomial
(as a polynomial in z ) different from z.

Proof. (:) — (111). Let 0 # P € Speco(T[!,S5,D]). By Lemma 1.1,
PC!:P(”T“)SJD] (”

where fp(1) denotes the monic invariant polynomial associated to P.
We will show that P = fp(1)T[t, S, D]. Define

P, = {h(1) € T[, S, D]lfp(1)h(1) € P} .
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Since fp(1) is invariant, P, is an ideal of T'[{,S, D] and, by Lemma 1.1,
P,NT # 0. Clearly we have (fp(1)T[{,S,D])P, C fp(1)P, C P and
P, ¢ P. Hence primeness of P and (*) establish fp({)T[t,5,D] = P.
The fact that non—constant monic invariant polynomials generate two-sided
ideals and primeness of P implies that fp(1) can not be decomposed into
the product of two non-constant monic invariant polynomials. Now Lemma
1.4 completes the proof of (s) — (s11).

(s33) — (32). Suppose that P = f(1)T[,S, D], where f(1) is described as
in (ii1). If Bf(1) is a central polynomial then the leading coefficient o of
B f(1) normalizes R, so a is invertible in T' and ™' 3 f(1) is a monic invariant
polynomial. Using Lemma 1.1, it is easy to see that a™!8f(1) = fp(1).
Thus, by Lemma 1.4, fp(1) can not be decomposed into a product of two
non-constant monic invariant polynomials.

Now let I be a non-zero T'-disjoint ideal of T'{{, S5, D] such that P < I.
Then, by Lemmas 1.2 and 1.1, fp(1) = h(1)f;(1) for somne monic invari-
ant polynomial k(1) € T[t,S,D].. This implies that fp(1) = f;(1), since
fr(1) # 1 and fp is indecomposable. Using again Lemma 1.1 we have
PcIcfi(i)T{,5,D] = fp(1)T},S,D] = P. Thus P = I and P ¢
Mazo(T[1, S, D)).

(s3) — (). This implication is a direct consequence of primeness of T' and
of the fact that for P € Maz,(T[t,S, D|) every ideal strictly containing P
has a non-zero intersection with T'. M

Combining Theorem 2.2 and Propositions 2.1 and 1.3 we get the follow-
ng:

Corollary 2.3. Let Spec(Z) denote the set of all prime ideals of Z
the center of T[t,5,D]. There is one-to-one correspondence between
Speco(T'[1,S, D)) and Spec(Z) except the case when T'[1,S, D] has non-zero
T'-disjoint ideals and no non-zero power of S is an inner automorphism of
T. In this case Spec(Z) = {0} but Speco(T[t,S,D]) = {0,M()I[t,5,D]}.
=

As a consequence of Theorem 2.2 and Lemma 1.4 we also obtain the
following:

Corollary 2.4. Let 0 # P € Spec,(T[t,5,D]) then P = fp(1)T[t, S, D],
where fp(1) is the monic invariant polvnomial associated to P. B

Now we will pass to the description of Spec,(R[i,S, D]). For this some
preparation is needed. For an ideal I of R[{,S, D] we define the closure
Il of I as f;(1)T[},S,D|N R{1,5,D] if I # 0; otherwise [I] = 0. We will
say that I is closed if I = [I]. This notion was first introduced in [3] for
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polynomial rings. Using Lemmas 1.1 and 1.2, it is straightforward to verify
that the following holds:

Lemma 2.5. Let I, J be ideals of R[{,S, D]. Then:
(i) I C[I]
(i1) If I C J then [I] C [J].
(ii1) [I] is closed.
(iv) If I € Maz,(R[},S,D]) then I is closed. B

Notice also that every P € Speco(T'[t, S, D]) is a closed ideal of T[t, S, D],
since, by Theorem 2.2, every non-zero prime ideal belongs to Maz,(T'[t, S, D]).

Lemma 2.6. Suppose that every P € Spec,(R[{,S,D]) is closed. Then:
(i) IFP # 0 then P € Speco(R[t, S, D]) ifand only if P € Maz.(R[{, S, D)).
(i1) There is one—to—one correspondence between Spec,(R[t,S, D]) and

Speco(T[1,S,D]) given by

F : Speco(R[t, S, D]) — Speco(T[t, S, D))

and
G : Spec,(T'[t,5,D]) — Spec,(R[1, S, D])

where for 0 # P € Speco(R[t, S, D]), F(P) = fp(1)T[t, 5, D] and for
P e Spec,(TX,5,D]) G(P)=PnR{,S, D]

4

Proof. (ii) First we will show that the maps F' and G are well-defined. Let
0 #£ P € Spec,(R[¥,5,D)) and f,(1), f2(1) € T[t, S, D] be monic invariant
polynomials such that fp(?) = fi(1) fo(1). Define I = f;(1)T[t,5, D] N
R{,5,D], + = 1,2. Then clearly P = [P] C I;, + = 1,2. Moreover, using
closeness of P, one can show that I1I, C P. Hence, by primeness of P,
either Iy = P or I, = P. It means that either fi(1) or f2(1) is equal to
fp(1). This shows that fp(?) can not be decomposed into a product of
two non—constant monic invariant polynomials. Now Theorem 2.2 together
with Lemma 1.4 yield F(P) = fp(1)T[}, S, D] € Spec,(T[t,5,D]), i.e. F is
well-defined.

Now take 0 # P € Speco(T[?,S,D]). By Theorem 2.2 and Lemma 1.4,
P = fp(1)T[#,S,D] and fp(1) can not be presented as a product of two non-
constant monic invariant polynomials. Let I € Maxz,(R[t,S, D)) be such
that G(P) C I. Then, by Lemma 1.2, there is a monic invariant polynomial
h(1) € T{1,S,D] suck that fgpy)(1) = h(1)f1(1). Since fgpy(1) = fp(3),
h(1) = 1 and fgpy(?) = fr(1) Now_G{p) = I follows, because both G(P)
and I are closed ideals. This shows that

G(P) € Maz,(R[,5,D]) . (%)
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Then clearly G(P) € Speco(R[t,S, D]), i.e. G is well-defined.

Knowing that F' and G are well-defined it is standard to complete the
proof of the statement (ii).

(i) The inclusion Mazo(R[t, S, D]) C Speco(R[t,S, D)) is clear.

Let 0 £ P € Spec,(R[t,S, D]). Then, by (ii), P = G(P) for some suitable
P € Speco(T[t,S,D]) and (*) yields P € Maz (R[t,S,D]). R

The above lemma together with Theorem 2.2 provide a description of
Speco(R[t,S,D]) in the case when every P € Spec,(R[t, S, D]) is closed.

Notice that every P € Spec,(T[t,S5,D]) is a closed ideal of T[t,S, D]
since, by Theorem 2.2, every non-zero prime ideal of T'[t,S, D] belongs
to Mazo(T[i,S,D]) and by Lemma 2.5 (iv) every P € Maxz(T[t,S, D))
is closed. In particular if R is a symmetrically closed prime ring (i.e. if
R =T) then the conditions of Lemma 2.6 are satisfied. We will now show
that every P € Speco(R[t,S, D)) is closed if one of the following conditions
is fulfilled :

1) R is left and right neetherian
2) R satisfies the descending chain condition on two sided ideals
3) S and D commute and either deg M (1) > 1 or S(M (1)) = M(1)

Proposition 2.7. Suppose R is left and right neetherian. Then every ideal
P € Spec.(R[1,S,D]) is closed.

Proof. In virtue of Lemma 2.5 (iv), it is enough to show that
Spec.(R[t;SD]) C Maxz, (R[1,S,D]).

Let S be the set of regular elements in R and Q = RS™! = SR be
the classical left and right quotient ring. Since R is prime, Q is a left
and right artinian simple ring by goldie’s theorem. It is standard to -
tend both S and D to @ and to prove that S is both a right and left
denominator set in R[{,S, D] such that S™'(R[t,S,D]) = R[t,S5,D|S™' =
Q[t,S,D] (cf. [6] Lemmas 1.3 and 1.4). Since R[t,S, D] is both left and
right ncetherian there is a (1,1) correspondence between the sets {P €
Spec(R[t, S, D])|PNS = @} and Spec(Q[t, S, D]) (cf.[11] Proposition 2.1.16
(vii)). Since @ is simple and hence also symmetrically closed we have
Spec(Q[t,S,D] = Speco(Q[1,S,D]) = Maz,(Q[i,S, D]), where the last
equality comes from theorem 2.2.

On the other hand if P € Spec.(R|[i,S,D]) then obviously PNS =9
and the inclusion Spec,(R[{,5,D]) € Maxzx,(R{t,5,D]) is now and easy
consequence of the fact that the (1.1) correspondence mentioned above
preserves inclusion. .l

Proposition 2.8. Suppose that R satisfies d.c.c. on two-sided ideals.
Then every ideal P € Speco(R[1, 5, D]) is closed.
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Proof. Let 0 # P € Speco(R[t,S,D]). First we will find a non-zero ideal
I of R such that I[P] C P. For doing this, let us define Q@ = {h(1) €
T{t,5,D]| fp(1)h(i) € Rli,S, D]} and J = {r € R|fp(t)r € R[S, D).
Clearly J is a non-zero ideal of R and [P] = fp(1)T[{,S,D]N R[{,S5,D] =
fp(1)Q. With the above notation we will prove that:

fora.nymZOa.ndh(f)=ZGJiEQ (5]
1=0 &
I™h() C R, S, D]

Let h(1) = S m,aid' € Q. Since fp(1) is monic and fp(1)k(1) € R[t, S, D),
a;m € R. This establishes (*) for m = 0.
Assume m > 0. By above, a,, € R. Thus

fp(1)Ja,i™ C fp(1)J1™ C R[1, S, D]

Using this inclusion it is easy to see that J(h(1)—an1™) C Q. Therefore, by
inductive hypothesis, J™~1J(h(1) — a,,1™) C R[{,S,D] and the statement
() follows.

R is a prime ring with d.c.c. on two-sided ideals, thus J™ = J™*! =
J # 0 for some m > 0. Therefore, by (*), JQ C R[{,5, D). Define I = {z €
S*™(N|zfp(1) € P, n =deg fp(1)}. Then, by primeness of R, the ideal I is
non-zero. Since I fp(1) C P and S™"(I) C J with n = deg fp(1), we have:

PPl =1"fp()Q C (Ifp())(ST"(I)Q) C PR[4,5,D] C P

Let A = R[t,S,D]I*R[i,S5,D]. Then A is an ideal of R{i,S, D] having
non-zero intersection with R and, by the above, A[P] C P. Now primeness
of P implies [P] = P, i.e. P is closed. This establishes the proposition. B

Now we will investigate the case when 5 and D commute. For this we
will use a subring T, of T consisting of all such elements ¢ € T that there is
a non-zero S, D-stable ideal I of R such that Iq,qI C R (one can look at
T, as a Martindale symmetric quotient ring of R constructed with respect
to the filter of all non-zero S, D-stable ideals of R ). It is easy to see that
S(T,) =T, and D(T,) C T,. Therefore we can consider the following Ore
extensions: R[t,5,D] C TL[t,5,D]C T[t,S, D).

We will continue to denote by M(i1) € T'[t, S, D] a monic invariant polyno-

mial of minimal non—-zero degree. As we remarked earlier, such a polynomial
exists of Speco(R[{,S,D]) # {0}.

13
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Proposition 2.9. Suppose that S and D commute and that either
deg M(1) > 1 or S(M(1)) = M(1). Then every ideal P € Speco(R[t, S, D])

is closed.

Proof. Let 0 # P € Speco(R[t,5,D]). S commutes with D, thus we
can apply Lemmas 1.8 and 1.9 to the polynomial fp(?) getting fp(1) €
T.[{,5,D] and fp(t)! = 1fp(1). Now, using the fact that R[t,5,D] C
T,,5,D] and fp({) € T,[,5,D], one can easily check that both
fe())TL[t,S, D) and fp(#)T[t, S, D] have the same intersection with R}, S,Dl.
Therefore in order to prove that P is closed, it is enough to show that
P = fp())TL[t,S,D|N R}, S, D]. We will do this in two steps. First we will
establish the following:

P = fp(1)R[t,5,D]NR[,S,D]C P . (%)

Consider P, = {h({) € R{t,S,D]|fp(1)h(1) € P}. Clearly both P and
P, are non—zero right ideals of R[{, S, D]. Since fp(1) commutes with 1 and
fp(1) normalizes R, fp(1) also normalizes R[{,S,D]. This implies that P
and P, are ideals of R[t, S, D]. Notice that PP, C P but P, is not contained
in P, because P, N R # 0. Now primeness of P yields the statement (*).

Let g(1) € fp(1)TL[t,S, D] N R[t,S,D]. Then g(t) = fp(1)h(3) for some
h(1) € T,[t,5, D] and, by definition of T,, there is a non—zero S, D—stable
ideal J of R such that Jh({) C R[t,$,D]. Since S(J) = J and fp(?) is
invariant, we have Jfp(1) = fp(1)J. Therefore

T () =T fp(H)h(t) = fo(1)Th(3) C

c fr(1)R{, S, D] N R{, S, D] = P (%)

S, D—stability of J yields also that J =JR[{,5,D] = R[$,5,D]J is an ideal
of R[{,5,D]. Using this together with (**) and (=) we get
J(R[t, S, D]g(1)R[t, S, D)) C R[t, S, D}J¢(1)R[, S, D] C
C Rft,S,D]PRR,S,D]C PCP
Because J N R # 0, J is not included in P and primeness of P implies
g(1) € P. Thus fp(1)T,[t,5,D]N R[{,S,D] C P. This gives the proof of
the proposition. W
The last three propositions together with Lemma 2.6 and the remarks
preceding Proposition 2.7 give us immediately the following:
Theorem 2.10. Suppose that one of the following conditions is satisfied
a) R is symmetrically closed (i.e. T = R)
b) R is ncetherian

¢) R satisfies D.C.C. on two-sided ideals
d) § and D commute and either M (1) > 1 or S(M(1)) = M(1).
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Then every P € Speco(R[1,5,D]) is closed and for a non zero R-disjoint
ideal P of R[t,S, D] the following conditions are equivalent :
(i) P € Spec,(R[1,S5,D]).
(ii) P € Maz (R[t,S,D]).
(i) P = f(1)T[t,S,D|NR[, S, D] where the polynomial f(1) € T[,S, D]
is as described in Theorem 2.2 (iii). W

Let us make a few final comments :
1) If D = 0 we can choose M (1) =1 so that S(M(#)) = M(?) and the above
theorem (case d)) applies.
2) Similarly, if S = 1d we obviously have S(M(?)) = M(?) and condition d)
of the above theorem is satisfied.
3) More generally if S is the inner automorphism I, of R induced by an
invertible element ¢ € R or if D = Dy.g for some b in R then standard
changes of variables show that R[{,S = I, D] = R[i', D' and R[1, S, Dy.5] =
R[1", D"] and hence the above theorem still applies.
4) We expect the conclusions of theorem 2.10 above to be true when S and
D commute but one case is missed : the case when SD = DS, deg M (1) =
1, S(M(1)) # M(1) and neither S nor D is inner on R, we cannot find an
example satisfying all these conditions.(Notice that Lemma 1.5 (ii) shows
that in such an example both § and D are inner on T').
5) The results of this section suggest that the same decription of
Spec(o(R[t,S,D]) as in the above theorem should hold for arbitrary Ore
extension R[{, S, D]. Notice that such description exists if and only if every
P € Spec,(R[1,5, D)) is closed.
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