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Abstract. The purpose of this note is two-fold: (1) to study when quasi-Euclidean rings,

regular rings, regular separative rings have the property (*) that each right (left) singular element is

a product of idempotents (2) to consider the question: “when a singular nonnegative square matrix

is a product of nonnegative idempotent matrices?” The importance of the class of quasi-Euclidean

rings in connection with the property (*) is given in [2] where it is shown that every singular matrix

over a right and left quasi-Euclidean domain is a product of idempotents, generalizing the results of

Erdos [6] for matrices over fields and that of Laffey [14] for matrices over commutative Euclidean

domains. We have shown in this paper that quasi-Euclidean rings appear among many interesting

classes of rings and hence they are in abundance. We analyze the properties of triangular matrix

rings and upper triangular matrices with respect to the decomposition into product of idempotents

and show, in particular, that nonnegative nilpotent matrices are products of nonnegative idempotent

matrices. We study as to when each singular matrix is a product of idempotents in special classes of

rings. Regarding the second question for nonnegative matrices, bounds are obtained for a rank one

nonnegative matrix to be a product of two idempotent matrices. It is shown that every nonnegative

matrix of rank one is a product of three idempotent matrices. For matrices of higher orders, we show

that some power of a group monotone matrix is a product of idempotent matrices.

Key words. Singular matrices, product of idempotents, Quasi-Euclidean rings, Nonnegative

singular matrices.
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1. Definitions and Terminologies. An element in a ring R is called von Neu-

mann regular, known as regular (for convenience) if there exists x ∈ R such that

axa = a. If each element of a ring R is regular then R is called a regular ring. An ele-

ment in a ring R is called unit regular if there exists a unit u ∈ R such that aua = a. If

each element of a ring R is unit regular then R is called a unit regular ring. Note that

an idempotent is always a unit regular element. A module M is called an exchange

module if for any module decomposition K = M ′ ⊕N = ⊕i∈IXi with M ∼= M ′ there

exist submodules Yi of Xi such that K = M ′ ⊕ (⊕i∈IYi). Ring theoretic character-

ization of an exchange ring is that a ring R is an exchange ring if for each element
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a ∈ R, there exists an idempotent e ∈ R, such that e ∈ Ra and 1 − e ∈ R(1 − a).

Clearly, every regular ring is an exchange ring. A ring R is called a separative ring, if

for all finitely generated projective R−modules A and B, 2A ∼= A⊕B ∼= 2B implies

A ∼= B. A ring R is called strongly separative if if for all finitely generated projective

R−modules A and B, 2A ∼= A⊕B implies A ∼= B, A ring R is called of stable range

1 if aR + bR = R implies that there exists an element x in R such that a + bx is a

unit. An ordered pair (a, b) is called a quasi-Euclidean pair, if there exits qi ∈ R and

ri ∈ R, such that a = bq1 + r1, b = r1q2 + r2, . . . , ri−1 = riqi+1 + ri+1, . . . , rn+1 = 0,

1 < i ≤ n. A ring R is called quasi-Euclidean if each ordered pair (a, b) ∈ R2 is a

quasi-Euclidean pair. A ring is directly finite if ab = 1, a ∈ R, b ∈ R implies ba = 1.

A ring is said to have IP property if each singular element in the sense of non-zero

divisor is a product of idempotents. A ring is said to have (IP )n if each n×n singular

matrix over R is a product of idempotents. A ring R is called right Hermite if for each

a, b ∈ R, there exists invertible matrix P such that (a, b)P =(r, 0), for some r ∈ R. A

ring R is called right Bézout if the sum of any two principal right ideals is a principal

right ideal. An n×n matrix is called elementary if it is of the form In+ ceij for i ̸= j.

A ring R is a GE2 ring if each invertible 2 × 2 matrix is a product of elementary

matrices and diagonal matrices with invertible entries. It was shown in Alahmadi et

al. [2] that a ring is right quasi-Euclidean if and only if it is right Hermite and GE2.

A ring is called projective-free if each finitely generated module is free, of unique

rank. A local ring is projective-free. By a domain we mean a ring (not necessarily

commutative) with no nonzero zero divisors. A ring R is Dedekind finite if for any

a, b ∈ R, ab = 1 implies that ba = 1. A matrix with real entries is called nonnegative

(positive) if each entry is nonnegative (positive). For an element a in a ring R, l(a)

and r(a) will stand for the left and right annihilators of a respectively. For a matrix

A ∈ Mn(R) we will also use, when convenient, l(A) and r(A) for meaning vectors

annihilating A on the left or on the right respectively.

2. Triangular matrix rings and IP. Let us start this section with a brief

analysis of the different IP concepts.

Definition 2.1. Let R be a ring with unity. The ring R is said to be

(a) right ( left) IP if for any a ∈ R, r(a) = {x ∈ R | ax = 0} ≠ (0) (l(a) = {x ∈
R | xa = 0} ≠ (0)) implies that a is a product of idempotents. An IP ring is

a left and right IP ring.

(b) a weak IP (a.k.a. IC rings) if any element a ∈ R such that r(a) ̸= (0) ̸= l(a)

is a product of idempotents.

Obviously an element a that is a product of idempotents different from the unity

has the property that both its left and right annihilators are nonzero. We give some
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properties linking the concepts defined above.

Lemma 2.2.

(a) If R is right or left IP then it is weak IP.

(b) Any integral domain or boolean ring is right left and weak IP.

(c) Any unit regular ring which is weak IP is two-sided (i.e. left and right) IP.

(d) Any two-sided IP ring is Dedekind finite.

Proof. Statements (a), (b) are obvious. Statement (c) is a direct consequence of

the fact that in a unit regular ring an element is a right zero divisor if and only if it

is a left zero divisor. Since a product of idempotents different from 1 is obviously a

left and right zero divisor, an element of a two-sided IP ring is a right zero divisor if

and only if it is a left zero divisor. Statement (d) is then clear.

Idempotent matrices over projective-free rings have special properties. We exploit

this fact in the following proposition. Let us recall that a ring R has the IBN property

if every free R-module has unique rank (the notion is left right symmetric) and it is

directly finite if ab = 1, a ∈ R, b ∈ R implies ba = 1.

Proposition 2.3. Suppose that the n× n matrix ring Mn(S) over a projective-

free ring S has the IP property. Then S is a domain.

Proof. The hypothesis means that every singular n× n matrix can be written as

a product of idempotent matrices. Since the only idempotent elements of S are 0 and

1, we may assume that n > 1.

Let 0 ̸= a ∈ S such that r(a) ̸= (0). Set A =

(
a 0

0 In−1

)
. By hypothesis

A = E1E2 . . . Em, where Ei are idempotents. By Cohn’s result (cf. Proposition 0.4.7,

[5]), each idempotent Ei is of the form PiQi where Pi and Qi are matrices over S of

respective sizes n× ri and ri×n (for some ri < n) such that QiPi = Iri . We thus get

A = P1ΓQm where Γ = Q1 · · ·Pm ∈ Mr1×rm(S). Write, P1 =

(
α

β

)
and Qm = (δ ϵ),

where α is a row of length r1, δ is a column of size rm and β, ϵ are block matrices of

appropriate sizes.

Then by comparing entries in the representation of A we obtain a = αΓδ, αΓϵ =

(0, . . . , 0), βΓδ = (0, . . . , 0)T , In−1 = βΓϵ.

Set Pm =

(
x

y

)
where x is a row vector and y is a block matrix. Since QmPm =

Irm , δx+ ϵy = Irm
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Consider

(
ax

y

)
=

(
a 0

0 In−1

)(
x

y

)
= APm = P1ΓQmPm = P1Γ =(

αΓ

βΓ

)
. Thus ax = αΓ, y = βΓ. Since In−1 = βΓϵ, we obtain y ϵ = In−1.

Since projective-free rings have IBN and every matrix ring over a projective-free ring

is directly finite (cf. [5] where this property is named weakly finite”) we obtain that

rm = n− 1 and ϵy = In−1. Furthermore, δx+ ϵy = Irm = In−1 implies δx = 0 and

then a = αΓδ = axδ = αΓδxδ = 0, as desired.

We now turn to triangular matrix rings. The upper triangular matrix ring con-

structed over R will be denoted by T2(R). Let us first start with the following easy

lemma. We state it for T2(R) but analogous results hold for Tn(R).

Proposition 2.4. Let R be any ring.

(a) If T2(R) is a right quasi-Euclidean ring, then R is also right quasi-Euclidean.

(b) If T2(R) is a right IP ring, then R is also right IP.

Proof. (a) Let a, b be elements in a ring R. Consider the matrices

A =

(
a 0

0 0

)
and B =

(
b 0

0 0

)
.

By hypothesis, there exist 2 × 2 matrices Q1, . . . , Qn+1 ∈ T2(R) and R1, . . . , Rn ∈
T2(R) such that for any 0 ≤ i ≤ n− 1, we have Ri−1 = RiQi+1 +Ri+1, and Rn−1 =

RnQn+1 where R−1 = A,R0 = B. It is easy to check that for any −1 ≤ i ≤ n we

have (Ri−1)11 = (Ri)11(Qi+1)11 + (Ri+1)11. Since (R−1)11 = a and (R0)11 = b, we

conclude that the pair (a, b) is Euclidean.

(b) The proof is similar to that of the statement (1) above, since r(

(
a 0

0 0

)
) = 0

implies that r(a) = 0 and the (1, 1) entry of an idempotent upper triangular matrix

must be an idempotent element in R.

Remarks 2.5. Unfortunately the same proof does not work in the case of matrix

rings. For instance we don’t know ifM2(R) being right quasi-Euclidean implies that R

is such. The fact that there exist right principal matrix rings over non right principal

rings (cf. [18]), leads to suspicion that the above proposition is not true if we consider

M2(R) instead of T2(R). On the other hand it is well-known that if R is is right quasi-

Euclidean then Mn(R) is also right quasi-Euclidean (cf. [2]). The analogue for Tn(R)

is untrue. Indeed, Z is right quasi-Euclidean and since right quasi-Euclidean rings

are right Bézout, the non principal noetherian ring T2(Z) is not quasi-Euclidean.

Similarly the (right) IP property doesn’t lift from R to T2(R) as is easily seen by

considering T2(k[x, y]) where k is a field.
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As mentioned above, we do not know whether the IP property goes down from

the matrix ring to the ground ring. However, if the ground ring is commutative then

this is true.

Proposition 2.6. If R is a commutative ring and if the matrix ring Mn(R) has

the property that each singular matrix is a product of idempotents, then the ground

ring R has the same property.

Proof. Let a ∈ R be a singular element. Consider the matrix A =

(
a 0

0 In−1

)
.

Since this matrix is singular we can write A = E1 · · ·El where the matrices E1, . . . , El

are idempotent. Taking determinants on both sides we obtain a = det(E1) · · · det(El).

This yields the desired result since, for i = 1, . . . , l, det(Ei) are idempotent elements.

Let us now turn to concrete nilpotent and strictly upper triangular matrices. The

next proposition is valid over any ring.

Proposition 2.7. Let R be a ring and n ∈ N. Any strictly upper triangular ma-

trix (i.e. having zeros on the main diagonal) A ∈ Tn(R) is a product of n idempotent

matrices.

Proof. We proved this statement by induction on the size n of the strictly upper

triangular matrix A. If n = 1, A = 0 and there is nothing to prove. If n > 1, we

can write A =

(
B C

0 0

)
, where B is an (n − 1) × (n − 1) upper triangular matrix

C ∈ M(n−1)×1(R) and the bottom row consists of zeros. We have

A =

(
B C

0 0

)
=

(
In−1 C

0 0

)(
B 0

0 1

)
.

The first matrix on the right side is an idempotent matrix. The induction hy-

pothesis shows that the matrix B is a product of n − 1 idempotent matrices, say

B = E1 . . . En−1. We thus get

A =

(
B C

0 0

)
=

(
In−1 C

0 0

)(
E1 0

0 1

)
· · ·
(
En−1 0

0 1

)
.

This yields the proof of the proposition.

Remarks 2.8.

(a) It might be of interest to remark that in a regular ring every nilpotent element

is a product of idempotents. This is a result of Hannah and O’Meara (cf.

Lemma 1.2 in [9]).
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(b) A ring R is an n-fir if all right (equivalently left) ideals with at most n

generators are free and have unique rank. If R is an n-fir, then any nilpotent

matrix C ∈ Mn(R) is similar to a upper triangular matrix (cf [5], Proposition

2.3.16) and hence by the above result 2.7 such a matrix is a product of

idempotent matrices.

As a prelude for the last section of this paper let us mention the following result

about nonnegative matrices.

Proposition 2.9. Let A ∈ Mn(R) be a nonnegative nilpotent matrix. Then A

is a product of n nonnegative idempotent matrices.

Proof. Lemma 6 in [12] shows that there exists a permutation matrix P such

that PAP−1 is nonnegative and strictly upper triangular. The above proposition

shows that such a matrix is a product of n idempotent matrices and the proof of

this proposition shows that, since A is nonnegative, these idempotent matrices are

nonnegative as well.

3. IP in Quasi-Euclidean regular rings. Let us start this section by the

following proposition that shows how euclidean pairs belonging to the annihilator

of a matrix A can force a matrix to be a product of idempotent matrices. This

proposition also shows that knowing about the matrices of the form

(
a b

0 0

)
being

product of idempotents is an essential step towards proving that M2(R) is IP.

Proposition 3.1. Let R be a domain such that for any a, b ∈ R the matrix(
a b

0 0

)
is a product of idempotents. Suppose that a matrix A ∈ M2(R) is such that

there exists a right quasi-Euclidean pair (x, y) with (x, y)A = (0, 0). Then A is a

product of idempotent matrices.

Proof. Suppose that the matrix A ∈ M2(R) is such that (x, y)A = (0, 0), where

(x, y) is a right quasi-Euclidean pair. Then there exists an invertible matrix P such

that (x, y) = r(0, 1)P . We thus have r(0, 1)PA = (0, 0). Since R is a domain we

get (0, 1)PA = (0, 0) and hence PA =

(
a b

0 0

)
for some elements a, b ∈ R. Right

multiplying by P−1, we get that PAP−1 =

(
a′ b′

0 0

)
. The hypothesis shows that the

matrix on the right hand side is a product of idempotent matrices. This yields the

proof.
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Recall that an element a in a ring R is (von Neumann) regular if there exists

x ∈ r such that a = axa. A ring is called regular closed if the product of two regular

elements is regular. Our aim is to characterize IP and quasi-Euclidean rings amongst

regular rings.

Proposition 3.2. A regular IP ring is unit regular and hence quasi-Euclidean.

Proof. Let R be a regular IP ring. If a ∈ R is not a unit then either r(a) ̸= (0),

or l(a) ̸= (0). The IP property then implies that a is a product of idempotents. In

particular, it is a product of unit regular elements. Since, by Lemma 3.2 in [8], the

product of unit regular elements of a regular ring is still unit regular, we conclude

that a is unit regular and hence the ring R is a unit regular ring. The last statement

is due to the fact that every unit regular ring is quasi-Euclidean (cf. [2]).

Remarks 3.3.

(a) It can be shown that the conclusion of the proposition is still valid for an IP

ring with the condition that sum of direct summands of a ring is also a direct

summand (this property is known in the literature as SSP property). This

last condition is in fact equivalent to the fact used in the above proof, namely

the product of unit regular elements is a unit regular element.

(b) One may consider simple noetherian QE rings. We know that the Weyl

algebra R = F [x, x−1, σ] is a simple noetherian domain. This is QE and

trivially IP. We do not know if this is (IP )2. Recall that the 2 × 2 matrix

ring over R is a principal right ideal ring ( cf. [18])

(c) Hannah and O’Meara proved (cf. Theorem 2.9 in [8]) that if a ring R is

either unit regular or right self-injective, then an element a ∈ R is a product

of idempotents if and only if

Rr(a) = l(a)R = R(1− a)R (∗)

Coincidently, the same condition characterizes separative rings amongst reg-

ular ones (cf. [3]), more precisely: A regular ring R is separative if and only

if each a satisfying (*) is unit regular.

We now turn to the characterization of right (left) Quasi-Euclidean rings amongst

regular rings. A quasi-Euclidean ring being defined as ring for which every pair (a, b)

is right (left) quasi- Euclidean. We start with the following examples which show, in

particular, that in a regular ring quasi-Euclidean pairs are abundant.

Examples 3.4.

(a) Let a, b be any elements in a ring R such that a ∈ (aR ◦ b)R, where for
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x, y ∈ R, x ◦ y := x + y − xy. Then, the pair (b, a) (and also (a, b)) is a

quasi-Euclidean pair. Indeed let x, y ∈ R be such that a = (ax + b − axb)y.

We then have the euclidean divisions:

b = a(xb− x) + ax+ b− axb and a = (ax+ b− axb)y.

In particular,

• If a = axa is a regular element in R and b is such that ba = axba, or

equivalently (1 − ax)ba = 0, then taking y = a we conclude easily that

the pair (a, b) is quasi-Euclidean.

• if e = e2, r ∈ R are such that be = ebe then, taking a = x = y = e, we

check that the pair (e, b) is quasi-Euclidean. In this respect let us recall

that an idempotent e ∈ R is said to be left semicentral if for any b ∈ R,

we thus get that left semicentral idempotents form Euclidean pairs with

every other element of the ring.

(b) Let a, b ∈ R be such that b(1− b)a = 0 and c := a− ba is a regular element.

Then the pair (a, b) is right Euclidean. Indeed if t ∈ R is such that c = ctc,

we consider the following divisions:

a = ba+ c b = ct+ (b− ct) and c = (b− ct)(−c)

In particular, in a regular ring any pair of elements containing an idempotent

is a quasi-Euclidean pair (take b = b2, in the above equalities).

Theorem 3.5. Let R be a regular separative ring. The following are equivalent:

(i) R is right Hermite,

(i’) R is left Hermite,

(ii) R is right QE,

(ii’) R is left QE,

(iii) Every square matrix over R is equivalent to a diagonal matrix.

(iv) R ⊕ R ⊕ X ∼= R ⊕ Y implies that R ⊕ X ∼= Y for every finitely generated

projective right R-modules X,Y .

(v) R is of finite stable range.

Proof. Let us first notice that the stable range notion can be defined on the right

and on the left, but a well-known theorem of Vaserstein shows that the right and left

stable range of a ring coincide. This is why it is enough to deal with the statements

related to the right different concepts.

(i)⇒(ii) Regular rings are exchange rings and a well-known theorem of Para et al. in

[3] shows that exchange separative rings are GE rings. Since a ring is right QE if and

only if it is right Hermite and GE, we thus get that a regular separative right Hermite

ring is right QE.
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(i)⇔(iii) and (iii)⇔(iv) can be found in [19].

(i)⇔(v) It is part of folklore that Hermite rings are of stable range bounded by 2

(cf.[19]). On the other hand for a separative regular ring the converse is true as

proved in [3].

Remark 3.6. The separative hypothesis might seem to be very restrictive but

let us mention that in fact, as far as we know, there is no known example of a regular

ring which is not separative.

The first part of the following is a folklore.

Lemma 3.7. . A simple right (or left) self-injective is unit regular and hence

right (or left) QE and directly finite.

Proof. Such a ring by Osofsky’s theorem is regular. By invoking a result due

to O’Meara (cf. Theorem 2.8, [8]), every singular element, equivalently, non-unit is

a product of idempotents. Thus each non-unit is unit regular. Thus R is QE and

Dedekind finite.

Remark 3.8. Since the IP property in a ring implies that the ring is directly

finite, the following example shows that a regular QE ring need not be IP ring.

Example 3.9. If R is the ring of linear transformations of an infinite dimensional

vector space and if S is the socle, then using Litoff’s Theorem (cf. [10], p.90 ) R is

QE (without unity), and is regular but not directly finite.

Question 1: If a ring is nonsingular right QE, what about its maximal right

ring of quotients?

We remark that if R is right QE, then the same is true for any Ore localization of R

with respect to regular elements (cf. [2] ).

Question 2: Let R be unit regular, hence right and left QE ring. Is the right

max ring of quotients QE?

4. Nonnegative Matrices. In this section we shall be working in the real n-

dimensional vector spaces. We are interested in representing rank one nonnegative

matrices as product of nonnegative idempotent matrices. Let us collect in the follow-

ing lemma some preliminary facts. For more details the reader may consult [11]. For

two column vectors x, y ∈ Rn, we denote x ·y = y ·x the usual dot product, sometimes

also written as yTx. Notice that the n × n matrix xyT is idempotent if and only if

x · y = 1.
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Lemma 4.1. Let M ∈ Mn(R) be a nonnegative matrix of rank one. Then there

exist nonnegative column vectors a, b ∈ Rn such that M = abT . Let β be the nonneg-

ative real number given by β = bTa = a · b. Then:

(a) if β = 0, M is a product of two nonnegative idempotent matrices,

(b) if β > 0, M = βxyT where x, y are nonnegative vectors such that yTx = 1

(i.e. the matrix xyT is an idempotent matrix). In this case, the matrix M

is a product of two nonnegative idempotent matrices of rank 1 if and only if

there exist nonnegative vectors a,b, c, d such that βxyT = (abT )(cdT ) where

a = x, d = y, b · a = 1, d · c = 1 and β = b · c.

Proof. The existence of nonnegative vectors a, b ∈ Rn such that M = abT is

obvious. Let us prove statement (a). We write a = (a1, . . . , an), b = (b1, . . . , bn) and

choose i ∈ {1, . . . , n} such that ai ̸= 0. Since bTa = 0, we must have bi = 0. Define

x =
√
αa, y = 1√

α
b and e = 1

ai
√
α
ei, where α = bT b and ei = (δi1, . . . , δin) is the

standard unit basis vector of Rn. We then have yT y = 1, eT y = 1
αai

eTi b =
1

αai
bi = 0,

(y+e)T y = yT y+eT y = 1 and also (y+e)Tx = yTx+eTx = bTa+ 1√
αai

eTi x = ai

ai
= 1.

This shows that x(y + e)T and yyT are nonnegative idempotent matrices. One also

has (x(y + e)T )(yyT ) = x((y + e)T y)yT = xyT = abT = M . This yields the proof.

The first part of statement (b) is easily checked if we define x = 1√
β
a and y = 1√

β
b.

Suppose now that we can express βxyT with yTx = 1, x ≥ 0, y ≥ 0, as a product of

two nonnegative rank one matrices and write:

βxyT = (abT1 )(c1d
T ), (4.1)

where b1.a = 1 = d.c1. This implies by postmultiplying with y that β(yT y)x =

(bT1 c1).(d
T y)a and so x and a are parallel vectors. Set a = k1x. Similarly, d = k2y,

where k1 > 0 and k2 > 0

Equation 4.1 gives βxyT = (k1xb
T
1 c1k2y

T ) = ((bT1 c1)k1k2)xy
T .

By equating scalars, β = (bT1 c1)k1k2. Choose b = b1k1 and c = c1k2. We then obtain

(xbT )(cyT ) = x(bT c)yT = (bT c)xyT = k1k2b
T
1 c1xy

T = βxyT . Moreover bTx =

k1b
T
1 x = bT1 (k1x) = bT1 a = 1, similarly yT c = 1 and β = b · c. This proves that

by suitably choosing the vectors b and c , we can express βxyT as a product of

idempotents (xbT ) and (cyT ) where β = b · c.

The fact that the conditions stated in (b) are sufficient is clear.

We shall characterize those nonnegative β for which the rank one matrix M =

βxyT , where x and y are nonnegative vectors, is a product of two nonnegative idem-

potent matrices. The above lemma 4.1 shows that we can restrict our study to the

case when β > 0.
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We now introduce some notation which will be helpful in the proofs of the lemmas

and theorems that follow.

• Let V be an n-dimensional real vector space with n > 1. V+ shall denote the

set of all nonnegative vectors in V and V++ shall denote the set of all positive

vectors of V .

• For 0 ̸= v ∈ V+, define Sv = {w ∈ V+ | v · w = 1} Notice that w ∈ Sv if and

only if vwT is an idempotent.

• For any nonzero v ∈ V we denote its orthogonal space by v⊥. Remark that

ṽ = 1
v·vv ∈ Sv and it is easy to see that Sv ⊆ ṽ + v⊥.

Since for any fixed vector v and arbitrary vector w ∈ Sv, vw
T is an idempo-

tent, w may be called an idempotent companion of v. Note that v ∈ Sw if

and only if w ∈ Sv.

• For x, y ∈ V , define

∆x,y = {β ∈ R | b · c = β for some (b, c) ∈ Sx × Sy }

• For a pair of idempotent companions x, y of nonnegative vectors, define

βi(x, y) = 1/(xiyi) if both xi, yi are nonzero and ∞ otherwise. We may

shorten the notation to just βi when (x, y) are fixed.

• We also define Supp(x, y) = {i | xiyi ̸= 0}.

Lemma 4.1 shows that a nonnegative matrix of rank one M = βxyT , where

x · y = 1, decomposes as a product of two nonnegative idempotent matrices of rank

one if and only if β ∈ ∆x,y. The next theorem gives a description of ∆x,y and hence

gives exact characterization when such a decomposition is possible.

Theorem 4.2. Given a pair of nonnegative idempotent companions x, y ∈ V+,

we set β∗(x, y) = max{βi(x, y) | for i = 1, · · · , n}.

Then we have:

(a) If β∗(x, y) = ∞ and Supp(x, y) has at least two elements, then ∆x,y = [0,∞).

(b) If β∗(x, y) < ∞, then ∆x,y = [0, β∗(x, y)].

(c) If Supp(x, y) is a singleton, then ∆x,y = [1,∞). Note that if we want to

express M = βxyT as a product of two idempotents then β ∈ ∆x,y takes no

values in the interval [0, 1).

Theorem 4.3. Suppose that (x, y) is a pair of idempotent companions. Then

βxyT can always be expressed as a product of three idempotent matrices for every

nonnegative β ∈ R.

Proof of Theorem 4.2

(a) Suppose that for three different i, j, k in {1, 2, · · · , n} we have : xiyi ̸= 0 ̸=
xjyj and xkyk = 0.
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We have exactly three cases:

• xk = 0, yk ̸= 0. Then we see that

x

(
1

xi
ei + 2ykβek

)T (
1

2yk
ek +

1

2yj
ej

)
yT = βxyT .

Thus β ∈ ∆x,y for all 0 ≤ β ∈ R. This clearly shows that ∆x,y = [0,∞).

• xk = yk = 0. Here we see that

x

(
1

xi
ei + βek

)T (
ek +

1

yj
ej

)
yT = βxyT .

Thus β ∈ ∆x,y for all 0 ≤ β ∈ R. This clearly shows that ∆x,y = [0,∞).

• yk = 0, xk ̸= 0. Follows similar to the first item above.

(b) We now have xi ̸= 0 ̸= yi for all i = 1, · · · , n. Set vi = 1
xi
ei and wi =

1
yi
ei for

all i = 1, · · · , n. We note that

1

xiyi
xyT =

(
xvTi

) (
wiy

T
)
for all i = 1, · · ·n

Thus βi(x, y) =
1

xiyi
are clearly in ∆x,y.

Note that every v ∈ Sx is uniquely expressible as v =
∑n

i=1 λivi where λi ≥ 0.

Moreover, the condition x·v = 1 implies that
∑n

i=1 λi = 1. After a similar observation

with Sy, we claim that for any (b, c) ∈ Sx × Sy we have b =
∑

i pivi and c =
∑

i qiwi

such that
∑

i pi =
∑

i qi = 1 and thus

b · c =
n∑

i=1

βi(x, y)piqi.

Let j be chosen such that βj(x, y) ≥ βi(x, y) for all i = 1, 2, · · · , n. We claim

that

max{b · c | (b, c) ∈ Sx × Sy} = βj(x, y) = β∗(x, y).

Let b =
∑

i pivi and c =
∑

i qivi be a pair of idempotent companions in Sx × Sy.

We have:

b · c =
∑
i

(piqi)(vi · wi)

and since vi · wi = βi(x, y) ≤ βj(x, y) for all i, we get:

∑
i

(piqi)βi(x, y) ≤

(∑
i

(piqi)

)
βj(x, y) ≤ βj(x, y).
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The last inequality follows from Cauchy-Schwartz: (
∑

i(piqi)) ≤ 1. By rearrang-

ing the indices, we may assume that j = 1, so that β1(x, y) = β∗(x, y). It remains to

show that all values in [0, β1] are in ∆x,y.

Let t ∈ [0, 1] ⊂ R.

Consider (b(t), c(t)) = ( t
x1
e1 +

1−t
x2

e2,
1
y1
e1) ∈ Sx ×Sy. It is clear that b(t) · c(t) =

tβ1 and thus as t varies in [0, 1] we get the interval [0, β1] ⊂ ∆x,y.

(c) In this case, by reordering the numbering, we may assume that x1y1 = 1 and

xiyi = 0 for all i ≥ 2. Then any (b, c) ∈ Sx×Sy satisfies b = 1
x1
e1+v and c = 1

y1
e1+w

where v, w are vectors with nonnegative coefficients in the span of e2, · · · cn. It follows
that b · c ≥ 1. This completes the proof of Theorem 4.2.

Proof of Theorem 4.3 Let (x, y) be a pair of nonnegative idempotent com-

panions and 0 ≤ β ∈ R. We show that β ∈ Sx × Sy.

By renumbering if necessary, we may assume that x1y1 ̸= 0. There are exactly

three possibilities.

1. y2 = 0.

2. x2 = 0.

3. x2 ̸= 0 ̸= y2.

We give explicit description of each of the three idempotents whose product equals

βxyT .

Case 1. Observe that

βxyT =

[
x

(
1

x1
e1

)T
] [

(βx1e1 + e2) e
T
2

] [(
e2 +

1

y1
e1

)
yT
]

Case 2. Observe that

βxyT =

[
x

(
1

x1
e1 + e2

)T
] [

e2 (e2 + βy1e1)
T
] [( 1

y1
e1

)
yT
]

Case 3. Observe that

βxyT =

[
x

(
1

x1
e1

)T
] [

(βx1y2e1 + e2) e
T
2

] [( 1

y2
e2

)
yT
]

This completes the proof of Theorem 4.3.

Our result has some impact on group-monotone matrices. Let us first recall that

a group-monotone matrix A is a direct sum of matrices of following three types (some

types may be absent) (see Theorem 1 [11]).
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(I) βxyT where β > 0, x, y are positive vectors such that yTx = 1

(II) d× d block matrix of the form
0 β12x1y

T
2 0 ... 0

0 0 β23x2y
T
3 ... 0

... ... ... ... ...

... ... ... ... ...

βd1xdy
T
1 0 0 ... 0

 where βij > 0 , xi, yj are positive

vectors such that yTj xi = 1

(III) Zero matrix.

We can now state the following corollary.

Corollary 4.4. Let A be a group-monotone matrix. Then a power of A is a

product of 3 nonnegative idempotents matrices.

Proof. Since d th power of the type (ii) matrix is a product of diagonal block

matrix with blocks of rank one on the diagonal, it follows from the above Theorems

4.2 and 4.3 that Ad is always product of 3 idempotent matrices and is a product of 2

idempotent matrices under some conditions.

We conclude this section by asking an open question.

Question 3: Let A =

(
0 βxyT

γuvT 0

)
be a 2 x 2 block matrix having (1,2)

and (2,1) entries as nonnegative rank one matrices and let the other two block entries

be zero. Is this a product of nonnegative idempotent matrices?

We may mention that it suffices to answer the above question when (1,2) and

(2,1) entries in the Question 3 are nonnegative idempotent matrices.
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