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Abstract. We study the interplay between the classes of right quasi-Euclidean
rings and right K-Hermite rings, and relate them to projective-free rings and

Cohn’s GE2-rings using the method of noncommutative Euclidean divisions
and matrix factorizations into idempotents. Right quasi-Euclidean rings are
closed under matrix extensions, and a left quasi-Euclidean ring is right quasi-
Euclidean if and only if it is right Bézout. Singular matrices over left and right

quasi-Euclidean domains are shown to be products of idempotent matrices,
generalizing an earlier result of Laffey for singular matrices over commutative
Euclidean domains.

1. Introduction and Definitions

Inspired by Howie’s work [11] on idempotents in transformation semigroups of
sets, J. A. Erdos [6] proved that singular matrices over a field can be decomposed
as products of idempotent matrices. This was extended in different directions by
several authors (e.g. [1], [3], [13], [7], [21]). The decomposition of 2 × 2 matrices
with a zero row over a commutative Euclidean domain was one of the main steps
in Laffey’s work [13]. In connection with this decomposition, we exploit the gen-
eral notions of right Euclidean pairs and right quasi-Euclidean rings in this
paper. This leads, in §2, to an easy and elementary proof for the idempotent de-

composition of

(
a b
0 0

)
over a possibly noncommutative right quasi-Euclidean ring.

After proving this result, we show in §§2–3 that right Bézout rings of stable range
one are right quasi-Euclidean, and that a general ring is right quasi-Euclidean if and
only if it is a right K-Hermite ring (right Hermite ring in the sense of I. Kaplansky
[12]) and a GE2-ring (in the sense of P.M. Cohn [4]). In §3, it is also proved that
matrix rings over right quasi-Euclidean rings remain right quasi-Euclidean. (Thus,
for instance, Mn

(
Z
)

and Mn

(
Q [x]

)
provide new noncommutative examples of

right and left quasi-Euclidean rings.) However, an example of Bergman in §4 shows
that left and right quasi-Euclidean regular rings need not be Dedekind-finite. In
§5, we revisit the theme of idempotent factorization of matrices, and prove our last
main result (Theorem 25) that, over any left and right quasi-Euclidean domain,
singular matrices are products of idempotent matrices.

A (not necessarily commutative) integral domain R is called a right Euclidean
domain if there is a map φ : R \ {0} → {0, 1, 2, . . . } such that, for any a, b ∈ R
with b ̸= 0, there exists an equation a = b q + r in R where either r = 0, or
φ (r) < φ(b). A right chain ring is a ring whose right ideals form a chain under
inclusion; or equivalently, for any a, b ∈ R, we have either aR ⊆ bR or bR ⊆ aR.
A ring R is called a right Bézout ring if each finitely generated right ideal is
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principal. (For instance, any right chain ring and any principal right ideal ring
is right Bézout.) A ring R is called right K-Hermite (after Kaplansky [12], but
following the terminological convention of [16, I.4.23]) if for every pair (a, b) ∈ R2

there exist an element r ∈ R and a matrix Q ∈ GL2(R) such that (a, b) = (r, 0)Q.
Kaplansky has shown in [12] that any right K-Hermite ring is right Bézout, and
Amitsur has shown in [2] that the converse holds if the ring in question is an integral
domain. Needless to say, similar definitions and remarks can be made when the
adjective “right” is replaced by “left”.

An ordered pair (a, b) over any ring R is said to be a right Euclidean pair if
there exist elements (q1, r1), ... , (qn+1, rn+1) ∈ R2 (for some n ≥ 0) such that
a = bq1 + r1, b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

The notion of a left Euclidean pair is defined similarly. In the following, when we
talk about “Euclidean pairs”, we shall always mean right Euclidean pairs. If all
pairs (a, b) ∈ R2 are right Euclidean, we say that R is a right quasi-Euclidean
ring. Clearly, factor rings and finite direct products of right quasi-Euclidean rings
remain right quasi-Euclidean. For instance, right chain rings and factor rings of
right Euclidean domains are right quasi-Euclidean rings. The notion of (right)
quasi-Euclidean rings was introduced without a name by O’Meara [20], and with
a name (and a somewhat different but equivalent definition) by Leutbecher [17].
More recently, Glivický and Šaroch [8] studied certain special classes of commuta-
tive quasi-Euclidean domains. In both [17] and [8], the authors gave examples of
commutative domains that are quasi-Euclidean but not Euclidean. In §4, we show,
however, that a left quasi-Euclidean domain need not be right quasi-Euclidean, but
it will be right quasi-Euclidean if and only if it is a right Ore domain.

A regular ring is a ring R in which every element a is regular in the sense of
von Neumann; that is, a = ara for some r ∈ R. If r can be chosen to be a unit
for every a ∈ R (or equivalently, every a ∈ R is the product of an idempotent and
a unit), R is said to be a unit-regular ring. Another highly relevant notion needed
for this paper is that of a GEn-ring. Following P.M. Cohn, we let En(R) denote
the group generated by the n × n elementary matrices over R, and let GEn(R)
denote the subgroup of GLn(R) generated by En(R) and the group of invertible
diagonal matrices. If GLn(R) = GEn(R), we say that R is a GEn-ring. For more
detailed discussions on such rings, see [4] and [5].

For any matrix A in an n × n matrix ring Mn(R), we denote by l.ann (A)
( r.ann (A) ) the left (right) annihilator of A in Mn(R). If both annihilators are
nonzero, we say that A is singular. We shall sometimes use (without mention) the
convenient fact that r.ann (A) ̸= 0 if and only Av = 0 for some nonzero column
vector v ∈ Rn. (Of course, a similar fact holds for l.ann (A).) For other notations
and ring-theoretic terminology not defined here, see [14], [15].

2. Euclidean Pairs and Right Quasi-Euclidean Rings

The point in introducing the notion of right Euclidean pairs (rather than just
the notion of right quasi-Euclidean ring) is that we can broadly study such pairs
in any given noncommutative ring R, and try to relate their behavior to the ideal
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theory of R. For illustration, we begin with some simple examples of Euclidean
pairs.

Example 1. (1) For a, b, q in any ring R, both (bq, b) and (a, 0) are Euclidean
pairs as bq = b · q + 0, and a = 0 · 1 + a along with 0 = a · 0 + 0. If b has a right
inverse c, then (a, b) is a Euclidean pair for all a ∈ R since a = b (ca) + 0.

(2) If (a, b) is a Euclidean pair and q ∈ R, we see easily that (b, a), (a+ bq, b), and
(b+ aq, a) are also Euclidean pairs. From (1) and (2), it follows that, over a right
chain ring R, all pairs in R2 are Euclidean, so R is a right quasi-Euclidean ring.

(3) Let s ∈ R. If (a, b) is a Euclidean pair, then clearly (sa, sb) is a Euclidean
pair. The converse holds if s is not a left zero-divisor in R. To see this, note
that for any right Euclidean algorithm for (sa, sb) (as in (∗) in the Introduction),
the “remainder terms” ri are, by induction, all left divisible by s. Thus, left
cancellation of the factor s from all equations in (∗) will give a right Euclidean
algorithm for the original pair (a, b).

(4) Let (a, b) be a Euclidean pair. Then (u−1au, u−1bu) is a Euclidean pair for
every unit u ∈ R. More generally, if v, w are any right-invertible elements, then
(av, bw) is a Euclidean pair. (The easy proofs are left to the reader.)

(5) If a, b ∈ R are such that a+ bq is right-invertible for some q, then (a, b) is a
Euclidean pair. In particular, if R is any ring of stable range one (in the sense of
[14, Def. (20.10)]), then every pair (a, b) with aR+ bR = R is Euclidean.

This section is devoted to the study of 2 × 2 matrices, with an eye to the
connections between the factorization of such matrices (into idempotents) and the
notions of right quasi-Euclidean rings. In the balance of this paper, we shall use

P.M. Cohn’s convenient notation P (q) :=

(
q 1
1 0

)
∈ GL2(R), which he introduced

in [5, p. 147]. Our first result is the following somewhat tricky lemma on expressing
2× 2 matrices (over any ring) as products of idempotents.

Lemma 2. Let r, q1, ..., qn be elements in a ring R, and let E be a product of k

idempotents (in M2(R)). Then X =

(
1 r
0 0

)
E · P (qn) · · ·P (q1) is a product of

k + n+ 1 idempotents.

Proof. Let E′ := P (qn)
−1E P (qn), which is a product of k idempotents. In terms

of E′, we have

X =

(
1 r
0 0

)
P (qn)E

′P (qn−1) · · ·P (q1)

=

(
1 1
0 0

)(
0 0

qn + r 1

)
E′P (qn−1) · · ·P (q1).

Since E′′ :=

(
0 0

qn + r 1

)
E′ is a product of k+1 idempotents, the proof proceeds

by induction on n. �



4 ADEL ALAHMADI(1), S.K. JAIN(1,2), T.Y. LAM(3), AND A. LEROY(4)

Corollary 3. Let R be a ring and let a, b ∈ R be such that

(
a b
0 0

)
is a product

of k idempotents (in M2(R)). Then for any q ∈ R,

(
aq + b a

0 0

)
is a product of

k + 2 idempotents. In particular,

(
b a
0 0

)
is a product of k + 2 idempotents.

Proof. In view of the factorization(
aq + b a

0 0

)
=

(
1 0
0 0

)(
a b
0 0

)
P (q),

the desired conclusion follows by applying Lemma 2 (with n = 1). �

Next, we recall the following useful definition of P.M. Cohn [5, p. 148].

Definition 4. Let X = {x1, x2, . . .} be a countable set of noncommuting variables,
and let Z ⟨X⟩ be the free Z-algebra generated by X. We define the n -th right
continuant polynomials

pn(x1, . . . , xn) ∈ Z ⟨x1, . . . , xn⟩ ⊆ Z ⟨X⟩

by p0 ≡ 1, p1(x1) = x1, and inductively for i ≥ 2 by

pi(x1, . . . , xi) = pi−1(x1, . . . , xi−1)xi + pi−2(x1, . . . , xi−2).

Thus, p2(x1, x2) = x1x2 + 1, p3(x1, x2, x3) = x1x2x3 + x3 + x1, etc.

We offer now the following characterization result for (right) Euclidean pairs.

Proposition 5. Let a, b be elements in a ring R. The following are equivalent :

(1) (a, b) is a Euclidean pair.
(2) For some n ≥ 0 there exist q1, . . . , qn+1 ∈ R and rn ∈ R such that

(a, b) = (rn, 0)P (qn+1) · · ·P (q1).

(3) For some n ≥ 0 there exist q1, . . . , qn+1 ∈ R and rn ∈ R such that
a = rnpn+1 (qn+1, . . . , q1) and b = rnpn (qn+1, . . . , q2).

Statement (2) above shows, in particular, that every right quasi-Euclidean ring is
right K-Hermite.

Proof. (1) ⇒ (2). As in the definition of a Euclidean pair, we have a = bq1 + r1,
b = r1q2 + r2, . . . , ri−1 = riqi+1 + ri+1, . . . and rn−1 = rnqn+1 (for some n ≥ 0).
For technical convenience, we shall adopt (from here on) the convention that r0 :=
b. If n = 0, the desired equation in (2) clearly holds. In general, we have

(a, b) = (b, r1)P (q1) = (r1, r2)P (q2)P (q1) = · · ·
= (rn, 0)P (qn+1)P (qn) · · ·P (q1).

Reversing the above steps (and introducing the elements rn−1, . . . , r1 along the
way, ending with a = bq1 + r1) shows that (2) ⇒ (1).

(1) ⇒ (3). For this, we use the elements qi, ri (with rn+1 = 0) in the “division
process” associated with the Euclidean pair (a, b), and prove by “backward induc-
tion” on i that ri = rnpn−i(qn+1, . . . , qi+2). (For i = 0 and i = −1, this will give
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the conclusions in (3), with the convention that r0 = b and r−1 = a.) Indeed, if
the formula is known for the subscripts i and i+ 1, then

ri−1 = riqi+1 + ri+1

= rn[ pn−i(qn+1, . . . qi+2) qi+1 + pn−i−1(qn+1, . . . qi+3) ]

= rnpn−i+1(qn+1, . . . , qi+1),

which gives the desired formula for the subscript i− 1. The converse (3) ⇒ (1) is
proved in the same spirit, by taking the qi’s and rn as given in (3), and defining
the ri’s (for i < n) by the formula ri = rnpn−i(qn+1, . . . , qi+2). The details are
left to the reader. �

Theorem 6. Let (a, b) ∈ R2 be a Euclidean pair. Then

(a) aR + bR = rnR where rn is the element of R obtained in the proof of
(1) ⇒ (2) in Proposition 5.

(b) If rn is either central or not a left zero-divisor in R, then aR∩ bR is also
principal.

(c)

(
a b
0 0

)
is a product of n+2 idempotents in M2(R), where n is the integer

that appears in the definition of a Euclidean pair (cf. the introduction ) .

Proof. (a) is a well known conclusion in college algebra that is routinely proved by
“working backwards” with the division formulas in the definition of a Euclidean
pair given in the Introduction. From a more fancy matrix viewpoint, we can prove
(a) as follows. Recall that in the proof of Proposition 5, (a, b) = (rn, 0)Q where
Q := P (qn+1) · · ·P (q1) ∈ GL2(R), so certainly aR + bR ⊆ rnR. Writing Q−1 =(
x z
y w

)
, we have also rn = ax+ by, so aR+ bR = rnR. Finally, using (either one

of) the assumptions on rn in (b), a matrix argument in the proof of Kaplansky’s
[12, Lemma 3.3] shows that aR ∩ bR = azR, where z is the (1, 2)-entry of Q−1.
(Note that, under the assumptions in (b), Kaplansky’s proof works as long as we
have (a, b) = (d, 0)Q where d ∈ R and Q ∈ GL2(R). In other words, (a, b) need
not be a Euclidean pair.)

(c) We can rewrite the matrix equation for (a, b) above in the alternative form:(
a b
0 0

)
=

(
rn 0
0 0

)
P (qn+1) · · ·P (q1) =

(
1 rn
0 0

)(
0 0

qn+1 1

)
P (qn) · · ·P (q1).

Since

(
0 0

qn+1 1

)
is an idempotent, Lemma 2 shows that

(
a b
0 0

)
is a product of

n+ 2 idempotents in M2(R). �

Remark 7. (1) Statement (c) of the above Proposition was proved by Laffey in

[13, Lemma 2] for matrices of the form A =

(
a b
0 0

)
over a commutative Euclidean

domain R using longer computational arguments (and without the bound n+ 2).
For a concrete example, take (a, b) = (14, 8) over R = Z, for which n = 2, q1 =
q2 = 1, q3 = 3, and r2 = gcd (14, 8) = 2. Applying (c) above and thereafter the
inductive proof of Lemma 2, we get the following factorization of A into n+2 = 4
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idempotents:(
14 8
0 0

)
=

(
1 1
0 0

)(
0 0
2 1

)(
4 3
−4 −3

)(
−7 −4
14 8

)
∈ M2(Z).

But of course, this factorization of A into idempotents is far from being unique.
For instance, here is a shorter factorization (curiously with the same “last factor”):(

14 8
0 0

)
=

(
1 0
0 0

)(
0 1
0 1

)(
−7 −4
14 8

)
∈ M2(Z),

and it can be shown that this is in fact “a shortest” factorization for A.

(2) In the proof of Theorem 6, the element z is the (1, 2)-entry of the matrix

Q−1 = P (q1)
−1 · · ·P (qn+1)

−1. Since P (qi)
−1 =

(
0 1
1 −qi

)
, it is easy to see (e.g. by

induction on n) that z = (−1)npn(q2, . . . , qn+1), where pn(x1, . . . , xn) is the n -th
right continuant polynomial introduced in Definition 4. This expression of z is of
interest, since aR ∩ bR = azR if rn is either central or not a left zero-divisor.

(3) In Theorem 6, the statement (c) is only a necessary but not a sufficient condition
for (a, b) to be a Euclidean pair. To see this, let θ =

√
−5 and R = Z [θ] be the

full ring of algebraic integers in the number field Q [θ]. The Dedekind domain R
has class number 2, and its class group is generated by the ideal −2R+ (θ + 1)R

(see [15, Example 2.19D]). The matrix E =

(
−2 θ + 1
θ − 1 3

)
over R has trace 1

and determinant 0, so E2 = E. Thus, A :=

(
−2 θ + 1
0 0

)
has a simple idempotent

factorization diag (1, 0)E. However, the ideal −2R+(θ+1)R is (by choice) not a
principal ideal. In particular, (−2, θ+1) is not a Euclidean pair over R, according
to Theorem 6 (a).

(4) If the pair (a, b) is left Euclidean instead, a similar decomposition into products

of idempotents holds for the matrix

(
a 0
b 0

)
. We leave the details to the reader.

Using an idea of Zabavsky in [23, Theorem 2] and [24, Proposition 6], we obtain
the following very simple criterion for Euclidean pairs over rings of stable range 1.
(For the notion of “stable range 1”, see [14, Def. (20.10)].)

Theorem 8. Let R be a ring of stable range 1. Then (a, b) ∈ R2 is a Euclidean
pair if and only if the right ideal aR+ bR is principal.

Proof. The “only if” part is Theorem 6 (a). For the “if” part, assume that aR +
bR = dR for some d ∈ R, and write a = da0, b = db0, and d = ax + by. Letting
c = 1− a0x− b0y, we have dc = d− ax− by = 0, and a0x + (b0y + c) = 1. Since
R has stable range 1, there exists t ∈ R such that u := a0 + (b0y + c) t is a unit.
Left-multiplication by d then yields du = a + byt + dct = a + byt. We have now
a = b (−yt) + du and b = (du) (u−1b0), so (a, b) is a Euclidean pair. �

Corollary 9. (1) (Cf. [23, Theorem 2].) If R is a right Bézout ring with stable
range 1 (e.g. R can be any semilocal right Bézout ring ), then R is right quasi-
Euclidean. (2) If R is a unit-regular ring, then all matrix rings Mn(R) are right
(and left) quasi-Euclidean.
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Proof. (1) follows directly from Theorem 8. For (2), it suffices to handle the case
n = 1, since matrix rings over unit-regular rings remain unit-regular by [9, (4.7)].
For n = 1, the desired conclusion follows from part (1) since von Neumann regular
rings are right (and left) Bézout by [9, (1.1)], and unit-regular rings have stable
range 1 by [9, (7.42)]. �

Of course, if R is a commutative semilocal PID, then R is in fact a Euclidean
domain; see, e.g. [24, Corollary 3]. Indeed, a Euclidean norm φ : R \ {0} →
{0, 1, 2, . . . } is given by defining φ (a) to be the length of a prime factorization of
a ∈ R \ {0}. However, Corollary 9 applies more generally to some classes of rings
which may be noncommutative non-domains.

3. Relations with Cohn’s GE-Rings

In this section, we work out the connections between the class of right quasi-
Euclidean rings and the class of GE-rings introduced by P.M. Cohn [4] in 1966. To
do this, we first recall some of the notations and terminology in Cohn’s book [5].
For any n ≥ 1, we denote by GEn(R) the subgroup of GLn(R) generated by the
n× n elementary matrices and the invertible diagonal matrices. We say that R is
a GEn-ring if GLn(R) = GEn(R). (Note that GL1(R) and GE1(R) are both the
group of units of R, so R is always a GE1-ring.) If R is a GEn-ring for all n ≥ 2,
we say that R is a GE-ring. For instance, if R is a ring with stable range one,
an easy induction argument on n ≥ 1 shows that R is a GEn-ring, so R gives a
quick example of a GE-ring. This class of examples includes all semilocal rings and
all unit-regular rings, according to [14, (20.9)] and [9, (7.42)] respectively.

For the next proposition, we’ll be using again the important matrices P (q) =(
q 1
1 0

)
introduced in Section 2. It is easy to see that P (q) ∈ GE2(R) for all

q ∈ R. Using a general factorization result of Cohn [5] for matrices in GE2(R), we
have the following important addition to Proposition 5 on the characterizations of
(right) Euclidean pairs.

Proposition 10. A pair (a, b) ∈ R2 is a Euclidean pair if and only if (a, b) =
(r, 0)Q for some r ∈ R and Q ∈ GE2(R). In this case, Q can always be chosen
to be in the group E2(R) generated by the 2× 2 elementary matrices over R.

Proof. First assume that (a, b) = (r, 0)Q, where r ∈ R and Q ∈ GE2(R). By
Cohn’s factorization theorem in [5, p. 147], we can write the matrix Q ∈ GE2(R)
in the form diag (u, v)P (qn+1) · · ·P (q1) for suitable q1, . . . , qn+1 ∈ R and suitable
units u, v ∈ R. Thus,

(a, b) = (r, 0) diag (u, v)P (qn+1) · · ·P (q1)

= (ru, 0)P (qn+1) · · ·P (q1),

so (2) ⇒ (1) in Proposition 5 shows that (a, b) is a Euclidean pair. Conversely, if
(a, b) is a Euclidean pair, we can use a sequence of E2(R)-actions on the right of
(a, b) to bring it to either (∗, 0) or (0, ∗). If (∗, 0) is reached, we are done. If we
reach some (0, r) instead, we may further perform the elementary transformations:
(0, r) 7→ (r, r) 7→ (r, 0) to reach the desired form (r, 0). �

By applying the above Proposition to all pairs (a, b) ∈ R2, we retrieve the fol-
lowing characterization theorem of Leutbecher [17] for right quasi-Euclidean rings.
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For the sake of completeness, we include a simple proof using a classical result of
Kaplansky.

Theorem 11. For any ring R, the following statements are equivalent :

(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K-Hermite.
(C) R is a GE2-ring that is right K-Hermite.
(D) For any a, b ∈ R, (a, b) = (r, 0)Q for some r ∈ R and Q ∈ GE2(R).
(E) For any a, b ∈ R, (a, b) = (r, 0)Q for some r ∈ R and Q ∈ E2(R).

Proof. (B) ⇒ (C) ⇒ (D) are tautologies, and (D) ⇒ (B) follows from Kaplansky’s
result [12, Theorem 7.1]. Finally, the equivalence of (A), (D) and (E) is clear from
Proposition 10. �

While Theorem 11 was a relatively easy result, there is yet another characteriza-
tion for the right quasi-Euclidean property in the case of domains, which we’ll now
present. Following [5], we say that a ring R is projective-free if every finitely gener-
ated right (equivalently left) projective module is free of a unique rank. In the case
where such a ring R is a commutative domain, Bhaskara Rao showed in [3, Lemma

1] that, if A =

(
a b
0 0

)
∈ M2(R) is a product of idempotent matrices, then the

ideal aR+ bR is principal. [Thus, for instance, the matrix

(
x y
0 0

)
∈ M2(k [x, y])

(for any commutative ring k ̸= 0) cannot be a product of idempotent matrices.1

The same remark can be made about the matrix

(
2 y
0 0

)
∈ M2

(
Z [y]

)
.] The follow-

ing lemma is a broad generalization of Bhaskara Rao’s result to the noncommutative
non-domain case, with a significantly simplified proof.

Lemma 12. Let R be a projective-free ring and let A =

(
a b
c d

)
∈ M2(R).

If A = TE for some T,E ∈ M2(R) where E2 = E ̸= I2, then there exists
Q ∈ GL2(R) such that (a, b) = (r, 0)Q for some r ∈ R (and hence aR+bR = rR ).

In particular, if all matrices

(
a b
0 0

)
are products of idempotents in M2(R), R

must be a right K-Hermite ring.

Proof. We may assume that E ̸= 0, in which case the projective-free assumption
on R implies that E = Q−1diag (1, 0)Q for some Q ∈ GL2(R). Then A =

TQ−1diag (1, 0)Q =

(
r 0
s 0

)
Q, where

(
r
s

)
is the first column of TQ−1. Thus,

(a, b) = (r, 0)Q. The rest of the Lemma is now clear. �
Of course, in the Lemma above, the “projective-free” assumption on the ring

R was essential, as we have seen from the example R = Z [θ] (θ =
√
−5 ) given

in Remark 7 (3). Over this non projective-free Dedekind domain, we have the
idempotent factorization(

−2 θ + 1
0 0

)
=

(
1 0
0 0

)(
−2 θ + 1
θ − 1 3

)
.

1After factoring out a maximal ideal, we may assume that k is a field and apply the Quillen-
Suslin Theorem [16, V.2.9] that k [x, y] is projective-free.
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Here, the second idempotent factor on the RHS is not diagonalizable (over R), and
the ideal −2R+ (θ + 1)R is non-principal.

Theorem 13. A domain R is right quasi-Euclidean if and only if R is a projective-

free GE2-ring such that every matrix

(
a b
0 0

)
is a product of idempotents in M2(R).

Proof. The “if” part follows from Lemma 12 and (A) ⇔ (C) in Theorem 11 (even
without the domain assumption on R). For the “only if” part, consider any right
quasi-Euclidean domain R. By Theorem 11, R is a right K-Hermite GE2-ring,

and by Theorem 6 (c), every matrix

(
a b
0 0

)
is a product of idempotents. It only

remains to show that R is projective-free. Since R is right Bézout, it is a right
semihereditary domain, so Albrecht’s theorem [15, (2.29)] implies that every finitely
generated projective right R-module P is isomorphic to J1 ⊕ · · · ⊕ Jk where each
Ji is a finitely generated (and hence principal) right ideal of R. Each Ji is free,
so P is also free. �

Next, we’ll give another application of Theorem 11 by proving that the “right
quasi-Euclidean” property is preserved by matrix ring extensions. This result was
absent from the papers [17] and [8] as Leutbecher, Glivický and Šaroch were pri-
marily interested only in the commutative case of quasi-Euclidean rings.

Theorem 14. (1) If R is a GEkn-ring, then S = Mk(R) is a GEn-ring.
(2) If R is a GE-ring, so is S = Mk(R) for every k ≥ 1.
(3) If R is a right quasi-Euclidean ring, so is S = Mk(R) for every k ≥ 1.

Proof. For (1), consider any matrix A ∈ GLn(S). We may view A as an (invertible)
kn × kn matrix over R. Assuming that GLkn(R) = GEkn(R), A is a product
of kn × kn elementary matrices and invertible diagonal matrices over R. Thus,
we are done if we can show that any elementary matrix B = (Bij) ∈ Mkn(R)
(where i, j ∈ [1, n] and each Bij ∈ S = Mk(R)) is in the group GEn(S). Say
B = Ikn + x epq where x ∈ R, p ̸= q, and epq is one of the matrix units in
Mkn(R). If the non-diagonal entry x does not occur in any one of the Bii’s, then
B is an elementary matrix in Mn(S). Now assume that the entry x occurs in
some Bii. Then the diagonal block Eii is invertible, and the blocks Ejj must be
Ik for j ̸= i. In this case, B is a “diagonal invertible matrix” in Mn(S), so it is
in GEn(S). We have thus proved that S is a GEn-ring.

Clearly, (1) implies (2). For (3), assume R is right quasi-Euclidean. Then R
is right K-Hermite (by Proposition 5), and hence so is S = Mk(R), according to
another result of Kaplansky [12, Theorem 3.6]. Also, R is a GE-ring by Theorem
11, so by part (2) above, S is a GE-ring as well. Applying Theorem 11 again, we
see that S is right quasi-Euclidean, as desired. �

To conclude this section, we’ll prove one more result about the preservation of
the quasi-Euclidean property. This result gives another natural criterion for a ring
R to be right quasi-Euclidean — in terms of the right quasi-Euclideanness of R
modulo its Jacobson radical rad (R) (or any ideal inside this radical).

Theorem 15. For any ideal I ⊆ rad (R), R is right quasi-Euclidean if and only
if R is right Bézout and R/I is right quasi-Euclidean.
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Proof. We need only prove the “if” part, so assume R is right Bézout with R :=
R/I right quasi-Euclidean. Theorem 11 implies that R is a GE2-ring that is right
K-Hermite. Also, if both of these properties can be lifted to R, Theorem 11 would,
in turn, imply that R is right quasi-Euclidean. Now the GE2-property certainly
lifts to R since any U ∈ GL2(R) can be “matched” modulo I with a product
of matrices Ui ∈ GL2(R) each with a unit entry (and any such Ui is easily seen
to be in GE2(R)). Thus, it only remains to lift the K-Hermite property. Given
any (a, b) ∈ R2, we may first write aR + bR = dR for some d ∈ R. Thus,
there exist a0, b0, x, y ∈ R such that a = da0, b = db0, and d = ax + by. For
c := 1 − a0x − b0y, we have dc = 0 and a0R + b0R + cR = R. Since R is right
K-Hermite, it has stable range ≤ 2 by [19, Proposition 8], so R also has stable
range ≤ 2 (in view of I ⊆ rad (R)). Therefore, there exist p, q ∈ R such that
(a0 + cp)R+ (b0 + cq)R = R. As R is right K-Hermite, the right unimodular row
( a0 + cp, b0 + cq ) can be completed to an invertible matrix over R according to
[19, p. 32]. Therefore, (a0 + cp, b0 + cq) can also be completed to an invertible

matrix U =

(
a0 + cp b0 + cq

∗ ∗

)
over R. Since dc = 0, it follows that

(d, 0)U = (d (a0 + cp), d (b0 + cq) = (a, b),

so (a, b)U−1 = (d, 0). This checks that R is right K-Hermite, as desired. �

4. Issues of Left-Right Symmetry and Dedekind-Finiteness

In the study of right Euclidean pairs and right quasi-Euclidean rings, the question
of left-right symmetry comes up naturally. To begin our considerations on this issue,
we first point out that, in general, a left Euclidean pair (a, b) ∈ R2 need not be
right Euclidean. For instance, let R be the ring of 2× 2 lower triangular matrices
over a field k. If we consider the matrix units e = E11 and r = E21, then the
relation re = E21E11 = E21 = r shows that (e, r) is a left Euclidean pair. But it is

easy to see that the right ideal eR+ rR =

(
k 0
k 0

)
is non-principal, so (e, r) is not

a right Euclidean pair by Theorem 6 (a). While this example was on the element
level, we will show by another example below that, in general, left quasi-Euclidean
rings also need not be right quasi-Euclidean — even in the case of domains.

Example 16. Let σ be a non-surjective endomorphism of a field k, and let R
be the domain k [x, σ] of twisted polynomials in x over k (defined by taking
xa = σ(a)x for all a ∈ k). It is well known that R is a left Euclidean domain
with respect to the usual degree function; in particular, R is a left quasi-Euclidean
domain. Now, take any element a ∈ k \ σ (k). It is easy to see that axR∩ xR = 0,
and that the right ideal direct sum axR + xR is non-principal. Thus, R is not
right Bézout, and hence not a right quasi-Euclidean domain. Indeed, while (ax, x)
is (obviously) a left Euclidean pair, it is not a right Euclidean pair by Theorem 6.
Also, note that R being a left PID implies that it is a projective-free ring; see, for
instance, [15, Theorem 2.24]. Thus, by Lemma 12, the fact that axR+ xR is non-

principal implies also that the matrix A =

(
ax x
0 0

)
is not right-divisible by any

idempotent matrix (other than I2). In particular, A is not a product of idempotent
matrices over R. We note, however, that for any two elements a, x in any ring, the
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“other” pair (xa, x) is always a right Euclidean pair (with the “division process”

stopping in one step). According to Theorem 6 (c), the matrix B =

(
xa x
0 0

)
should be a product of two idempotents, and indeed, B =

(
1 x
0 0

)(
0 0
a 1

)
. As

for the matrix C =

(
x xa
0 0

)
(obtained by permuting the two columns of B),

Corollary 3 guarantees that C is a product of four idempotents. For such an
explicit factorization, see [1, Lemma 1 (b)]. But curiously enough, C turns out to
be a product of two idempotents too! We leave this as an exercise for the reader.

In the standard theory of right rings of quotients (see, e.g. [15, §10B]), an inte-
gral domain R is said to be right Ore if rR ∩ sR ̸= 0 for any nonzero r, s ∈ R.
Intuitively speaking, what “went wrong” in Example 16 above was that the left
Euclidean domain in question failed to be a right Ore domain. With such a “re-
alization”, we can then try to exploit Theorem 11 to prove a result on “partial”
left-right symmetry of the quasi-Euclidean property of rings. Part (A) of the fol-
lowing result is basically the same as Zabavsky’s [24, Proposition 9]. However, the
proof given below for this part is shorter and more conceptual.

Theorem 17. (A) A left quasi-Euclidean ring R is right quasi-Euclidean if and
only if it is right Bézout. In particlar, a regular ring is left quasi-Euclidean if and
only if it is right quasi-Euclidean.
(B) A left quasi-Euclidean domain R is right quasi-Euclidean if and only if it is a
right Ore domain.

Proof. (A) For the first statement, the “only if” part is true (without any “left” as-
sumption on R ) by Proposition 5 (2), since right K-Hermite rings are right Bézout.
Conversely, if R is left K-Hermite and right Bézout, then R is right K-Hermite
by a result of Menal and Moncasi [19, Proposition 8(ii)]. Adding a GE2-ring as-
sumption on R and applying Theorem 11, we arrive at the “if” part of the first
statement in (A). The second part of (A) follows trivially from the first part since
any regular ring is left and right Bézout (by [9, Theorem 1.1]).

(B) According to [5, Prop. 2.3.17], the statement (B) is true for domains if “quasi-
Euclidean” is replaced throughout by “Bézout”. Thus, by Amitsur’s result in [2]
(see also [1, Theorem 16]), (B) is true (for domains) if “quasi-Euclidean” is replaced
throughout by ”K-Hermite”. Therefore, again by adding the GE2-ring assumption
on R and applying Theorem 11, we arrive at the desired conclusion in (B). �

We complete this section by addressing the question of Dedekind-finiteness for
quasi-Euclidean rings. Recall that a ring R is called Dedekind-finite if, for any
a, b ∈ R, ab = 1 ⇒ ba = 1. This property was mentioned several times in Kaplan-
sky’s paper [12]. However, Kaplansky left open the question whether left or right
K-Hermite rings would satisfy this finiteness property. The answer to this ques-
tion turns out to be ”no” — even for left and right quasi-Euclidean regular rings,
according to the following example kindly communicated to us by G. Bergman.

Example 18. Let A be the power series ring k [[x]] over a field k, and let K =
k ((x)) be the Laurent series field, which is the quotient field of A. Instead of
working with Endk(A) (the full ring of k-vector space endomorphisms of A),
Bergman has introduced in [10, Example 1] the following celebrated subring:
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(A) R = { f ∈ Endk(A) : ∃ f0 ∈ K such that (f−f0)(x
nA) = 0 for some n ≥ 1}.

This definition makes sense since, by multiplication, any f0 ∈ K maps A linearly
into K. Similarly, all elements of A map A into A, so we may view A as a subring
of R. In [10] (where Bergman’s example first appeared; see also [9, Example 4.26]),
it has been shown that R is a regular ring that is not Dedekind-finite. It turns
out that R is a left and right quasi-Euclidean ring. In view of Theorem 17, it
suffices to show that R is left quasi-Euclidean. Since elements of R are vector
space endomorphisms of A, we can speak of their kernels and images. We first
prove the following crucial fact about right divisibility in the ring R :

(B) For any f, g ∈ R, f ∈ Rg if and only if ker (g) ⊆ ker (f).

It suffices to prove the “if” part, so assume ker (g) ⊆ ker (f). Since R is a regular
ring, we may assume that g is an idempotent. (If g = ghg ∈ R, simply replace g by
the idempotent hg without changing Rg or ker (g).) Then A = im (g)⊕ ker (g).
As the equation f(a) = fg (a) holds trivially for both a ∈ im (g) and a ∈ ker (g) ⊆
ker (f), it holds for all a ∈ A. Thus, f = fg ∈ Rg.

We’ll now prove that every (f, g) ∈ R2 is a left Euclidean pair. let φ : R → K
be the ring homomorphism which sends any f ∈ R to the (uniquely determined)
Laurent series f0 ∈ K in the defining equation (A) above. Since φ is a homomor-
phism onto a field, a single elementary transformation will bring the pair (f, g)
into one where one of the components is in ker (φ). Thus, we may assume, say,
φ (g) = 0; in particular, dimk im (g) < ∞. Now we’ll add to g the endomorphism
xnf where n is chosen large enough so that xnA∩ im (g) = 0. Then we claim that

(C) ker (g + xnf) = ker (f) ∩ ker (g).

It suffices to prove the inclusion “⊆”. For any a ∈ ker (g + xnf), we have g(a) +
xn(f(a)) = 0. Since xnA ∩ im (g) = 0, this implies that g(a) = f(a) = 0, so
a ∈ ker (f)∩ker (g). Having proved (C), we deduce from (B) that f ∈ R (g+xnf),
so another elementary transformation brings (f, g + xnf) to (0, g + xnf), which
proves our claim that every pair (f, g) ∈ R2 is left Euclidean.

Remark 19. Since Bergman’s ring R above is left (and right) quasi-Euclidean, it
is also left (and right) K-Hermite, so it has stable range ≤ 2 (and hence equal to 2)
by a result of Menal and Moncasi [19, Proposition 8(i)]. Thus, R gives an example
of a ring with stable range two that is not Dedekind-finite. The existence of such
examples was noted earlier by Menal-Moncasi [19, Example 1] and Stepanov [22],
but it is worth noting again that Bergman’s example is a regular GE-ring with both
left and right division algorithms for arbitrary pairs of elements.

5. Singular Matrices over Quasi-Euclidean Domains

In this final section, we return to the theme of the factorization of singular
matrices over right quasi-Euclidean rings. Before we treat the case of n×n matrices,
we first prove the following result on 2 × 2 matrices which generalizes Laffey’s
Lemma 2 in [13] as well as Theorem 10 of Alahmadi-Jain-Leroy in [1], upon noting
that it applies to both right Euclidean domains and right chain domains (which
were the cases treated in [13] and [1]).
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Theorem 20. Let R be a right quasi-Euclidean domain and let A ∈ M2(R) be
such that l.ann (A) ̸= 0. Then A is a product of idempotent matrices.

Proof. Say (x, y)A = 0 where (x, y) ̸= (0, 0). By Theorem 6 (a), xR + yR ̸= 0 is
a principal right ideal. Since R is a domain, we can find α, x′, y′ ∈ R such that
(x, y) = α (x′, y′) and (x′, y′)A = (0, 0) with x′R+y′R = R. Applying Proposition
5 to the Euclidean pair (x′, y′) (and noting that the “rn” in the proof of Theorem
6 is now a unit), we see that (x′, y′) is the first row of an invertible matrix,2 and
therefore also the second row of an invertible matrix, say P . Then (x′, y′)A =

(0, 0) implies that PAP−1 has the form

(
a b
0 0

)
. By Theorem 6, PAP−1 and

hence A are products of idempotent matrices in M2(R), as desired. �
Note that the “domain” assumption in this theorem cannot be removed. Indeed,

if R = R1 × R2 is left and right quasi-Euclidean where each Ri is a nonzero
ring, then any matrix A ∈ M2(R1) ⊆ M2(R) is left (and right) annihilated by
the identity matrix in M2(R2) ⊆ M2(R). But of course A may not be a product
of idempotent matrices over R1 (let alone over R ). The same remark on the
essentialness of the domain assumption applies also to most of our results in the
rest of this section.

The generalization of Theorem 20 to matrices of arbitrary size (Theorem 25
below) can be obtained along the same lines as in Laffey’s Theorem 2 in [13] and
Theorem 22 of Alahmadi, Jain and Leroy in [1]. Note that in both of these references
the matrix in question is assumed to be singular, in the sense that its left and right
annihilators are both nonzero. In Proposition 22 below, we’ll show that, over
a right quasi-Euclidean domain R, a matrix A ∈ Mn(R) is already singular if
l.ann (A) ̸= 0. To see this, we first prove the following lemma which holds without
a domain assumption on R.

Lemma 21. Let R be a right quasi-Euclidean ring. Then

(a) For any A ∈ Mn(R), there exists an invertible matrix P ∈ Mn(R) such
that AP is lower triangular.

(b) Let T = (tij) ∈ Mn(R) be a lower triangular matrix with at least one zero
entry on the diagonal. Then r.ann (T ) ̸= 0.

Proof. (a) follows from Proposition 5 (2) and Kaplansky’s result [12, Theorem 3.5].
The proof of (b) proceeds by total induction on n. The case n = 1 being trivial,
we may assume that the conclusion is true for matrices of smaller size than n× n.
If t11 ̸= 0, then ti+1,i+1 = 0 for some i ≥ 1. In this case, the conclusion is
at hand by applying the inductive hypothesis to the southeast (n − i) × (n − i)
corner of A. Thus, we may assume that t11 = 0, in which case A has northwest

2×2 corner

(
0 0
t21 t22

)
. Since (t21, t22) is a right Euclidean pair, Proposition 5 (2)

shows that there exist an invertible 2 × 2 matrix P and an element r ∈ R such

that (t21, t22)P = (r, 0), and hence

(
0 0
t21 t22

)
P =

(
0 0
r 0

)
. For the invertible

block matrix Q := diag (P, In−2), the product TQ remains lower triangular, with
diagonal entries 0, 0, t33, . . . , tnn. By the case we have already dealt with, (TQ) v =

2As a cautionary note to the reader, we point out that, over a noncommutative ring R in
general, not every right unimodular pair can be realized as a row of a matrix in GL2(R).
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0 for some column v ̸= 0. Since v ̸= 0 ⇒ Qv ̸= 0, we have r.ann (T ) ̸= 0, as
desired. �
Proposition 22. Let R be a right quasi-Euclidean domain and A ∈ Mn(R). Then
l.ann (A) ̸= 0 implies that r.ann (A) ̸= 0.

Proof. Let P ∈ Mn(R) be an invertible matrix such that AP = T is lower tri-
angular. Let wA = 0 where w is a nonzero row vector in Rn. This implies that
wT = 0. Since R is a domain, some element on the diagonal of T must be zero.
Lemma 21 (b) then shows that r.ann (T ) ̸= 0, and hence also r.ann (A) ̸= 0. �
Remark 23. (A) Classically, the conclusion of Proposition 22 is well known to be
true for matrices A over a commutative ring; see, e.g. McCoy’s book [18, p. 161].
However, we’ll see in (B) below that this conclusion is not true in the noncommu-
tative case, even for 2× 2 matrices over domains.

(B) We note that the converse of Proposition 22 is not true either. To give an
example for this, it is convenient to “switch sides”. The opposite ring version
of Proposition 22 says that, over a left quasi-Euclidean ring R, r.ann (A) ̸= 0 ⇒
l.ann (A) ̸= 0 (for any A ∈ Mn(R)). However, for the left (quasi) Euclidean domain

R = k [x, σ] in Example 16, the matrix A =

(
ax x
0 0

)
(for any a ∈ k \ σ(k) ) is

left-annihilated by diag (0, 1), but r.ann (A) = 0 since (as we have pointed out
earlier) axR ∩ xR = 0.

We have nevertheless the following obvious consequence of Proposition 22.

Corollary 24. Let R be a right and left quasi-Euclidean domain. For any
A ∈ Mn(R), we have r.ann (A) = 0 if and only if l.ann (A) = 0.

We can now state the final result in this paper.

Theorem 25. Let R be a right and left quasi-Euclidean domain. Then every
matrix A ∈ Mn(R) with l.ann (A) ̸= 0 (equivalently, r.ann (A) ̸= 0) is a product
of idempotent matrices.

With the 2× 2 case already settled in Theorem 20, the proof follows along the
same lines as in Laffey’s Theorem 2 in [13] and Theorem 22 of Alahmadi, Jain
and Leroy in [1]. We remark, however, that Bhaskara Rao has shown in [3] that
the conclusion of Theorem 25 is not true even over commutative principal ideal
domains.
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[8] P. Glivický and J. Šaroch: Quasi-Euclidean subrings of Q [x]. To appear in Comm. Algebra.
[9] K.R. Goodearl: Von Neumann Regular Rings. Krieger Publishing Company, Malabar, Florida,

1991.

[10] D. Handelman: Perspectivity and cancellation in regular rings. J. Algebra 48 (1977), 1–16.
[11] J.M. Howie: The subsemigroup generated by the idempotents of a full transformation semi-

group. J. London Math. Soc. 41 (1966), 707–716.
[12] I. Kaplansky, Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464-491.

[13] T. J. Laffey: Products of idempotent matrices. Linear and Multilinear Algebra 14 (1983),
309–314.

[14] T.Y. Lam: A First Course in Noncommutative Rings. Second Edition, Graduate Texts in
Math., Vol. 131, Springer-Verlag, Berlin-Heidelberg-New York, 2001.

[15] T. Y. Lam: Lectures on Modules and Rings. Graduate Texts in Math., Vol. 189, Springer-
Verlag, Berlin-Heidelberg-New York, 1999.

[16] T.Y. Lam: Serre’s Problem on Projective Modules. Monographs in Mathematics, Springer-

Verlag, Berlin-Heidelberg-New York, 2006.
[17] A. Leutbecher: Euklidischer Algorithmus und die Gruppe GL2. Math. Ann. 231 (1978),

269–285.
[18] N. McCoy: Rings and Ideals. Carus Mathematical Monographs, Math. Assoc. America, 1948.

[19] P. Menal and J. Moncasi: On regular rings with stable range 2. J. Pure Applied Alg. 24
(1982), 25–40.

[20] O.T. O’Meara: On the finite generation of linear groups over Hasse domains. J. reine angew.
Math. 217 (1964), 79–128.

[21] W. Ruitenburg: Products of idempotent matrices over Hermite domains. Semigroup Forum
46 (1993), 371–378.

[22] A.V. Stepanov: A ring of finite stable rank is not necessarily finite in the sense of Dedekind.
Soviet Math. Dokl. 36 (1988), 301–304.

[23] B.V. Zabavsky: Reduction of matrices over Bezout rings with stable rank not higher than 2.
Ukrainian Math. J. 55 (2003), 550–554.

[24] B.V. Zabavsky: Diagonalizability theorems for matrices over rings with finite stable range.
Algebra and Discrete Math., no. 1 (2005), 151–165.

1. Department of Mathematics, King Abdulaziz University, Jeddah, SA. 2. Depart-

ment of Mathematics, Ohio University, Athens, OH, USA. 3. Department of Mathe-
matics, University of California, Berkeley, CA, USA. 4. Department of Mathematics,
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