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1 Introduction and preliminary remarks

Throughout the paper a ring means an associative ring with unity. For any subset
S of a ring R, r.annR(S) stands for the right annihilator of S in R, i.e. r.annR(S) =
{r ∈ R | Sr = 0}. The left annihilator is denoted by l.annR(S).

A ring R is said to be right zip if, for any subset S of R with r.annR(S) = 0,
there exists a finite subset S0 of S such that r.annR(S0) = 0. In the above definition,
one can equivalently require that S is a left ideal of R. We will often use this
characterization.

The notion of zip rings was introduced by C. Faith in [4] as a specialization
of considerations of Zelmanowitz, J.A. Beachy and W.D. Blair (Cf.[13],[1]). This
paper marked the beginning of the systematic studies of, and posing problems on the
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behavior of the zip property under various algebraic constructions. The subject has
been studied by many authors (see for example [3], [6], [7], [14]). The aim of this
paper is to investigate the behavior of the zip property under various kinds of ring
extensions.

Section 2 is focused on the zip property in the presence of a Hopf algebra action.
It is known that there are deep relations between various algebraic properties of an
algebra A and its subalgebra of constants AH under the action of a finite dimensional
Hopf algebra H. The relations are especially strong when the smash product A#H is
semiprime. We show that a similar situation concerns the right zip property. Namely
AH is right zip if and only if A is right H-zip. We also provide examples showing the
limits of the obtained results. In particular, we show that zip and H-zip properties
of A are not equivalent. This situation differs from other finiteness conditions such
as ACC or DCC on right ideals and their counterparts for H-stable right ideals. As
a side effect we obtain an example of a semiprime ring A acted by a finite group G
such that A has ACC on right annihilators of G- stable sets but it does not have
ACC on right annihilators.

We will work in the much more general context of an action on a ring A into
its subring R, by a set of (R − R)-bimodule maps. This action is defined at the
beginning of Section 2. The reason to work in such generality is twofold. On the one
hand, in this way it is clear which properties are responsible for well behavior of the
zip property, and on the other the general result offers a wider class of applications.

In Section 3 we investigate the behavior of the zip property with respect to local-
ization and matrix ring construction. F. Cedó (Cf.[3]) proved that the zip property
lifts neither to the polynomial ring R[x] nor to the matrix ring Mn(R), for n ≥ 2.
However, in both of these cases, it lifts with the additional assumption that R is com-
mutative (Cf.[1],[3]). The authors of [7] proved similar results for the ring UTn(R) of
all upper triangular matrices over R. In this section we show that, in fact, the ring
Mn(R) is right (left) zip if and only if the ring UTn(R).

We also investigate the zip property of some other subrings of Mn(R). In particu-
lar, we show that the ring R is right (left) zip if and only if the ring DTn(R) consisting
of all upper triangular matrices (mij) such that mii = mjj , for 1 ≤ i, j ≤ n, is such.

Concerning localization, we prove that, if S is a two-sided Ore set of regular
elements of a ring R, then R is right (left) zip if and only if RS−1 is such. Examples
showing that such equivalence does not hold, when S is an Ore set only on one side,
are provided.

In the following two propositions we collect, without proofs, a few basic properties
of right zip rings (see [4] and [3]). Recall that a ring R is left Kasch if every simple
left R-module can be embedded into RR.

Proposition 1.1. (a) Any finite ring is right (and left) zip;

(b) A product of two rings R× T is right zip if and only if R and T are right zip;

(c) Any ring satisfying DCC on right annihilators is right zip;

(d) Any left noetherian ring is right zip;

(e) Any left Kasch ring is right zip.
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Proposition 1.2. Let R be a subring of a right zip ring T . Then R is right zip in
any of the following cases:

(a) Every nonzero right ideal of T intersects R non-trivially, i.e. RR is an essential
submodule of the right R-module TR;

(b) T satisfies the descending chain condition on right annihilators;

(c) T is free as a left R-module.

2 zip-property under G-action

Having in mind relations between the zip property of a ring and its subring of con-
stants under the action of groups or more generally Hopf algebras, we begin this
section with a general notion of an action which is suitable for our purposes.

Henceforth R ⊆ A will denote an extension of rings. We say that a subset
G ⊆ End(RAR) of (R,R)-bimodule endomorphisms of A acts on A into R if, for any
σ ∈ G, σ(1) ∈ R.

A subset S of A is called G- stable if σ(S) ⊆ S, for any σ ∈ G. Notice that, due
to the assumption that σ(1) ∈ R for σ ∈ G, every one-sided ideal of R is G-stable.
Examples of such actions will be presented later in this section. Let us only remark
that if G is a Hopf algebra acting on an algebra A and R = AG is the subalgebra of
constants, then G acts on A into R in the just defined manner.

A map t ∈ End(RAR) is called a non-degenerate trace if t(A) ⊆ R and 0 6= t(I) ⊆
I, for any nonzero one-sided G-stable ideal I of A. Notice that conditions imposed
on t imply that every nonzero one- sided ideal of A has non-zero intersection with R.

Finally, A is right G-zip if for any G-stable left ideal S of A with r.annA(S) = 0
there exists a finite subset S0 ⊆ S such that r.annA(S0) = 0.

Keeping the above notation we have:

Theorem 2.1. Let R ⊆ A be an extension of rings and G ⊆ End(RAR) acts on A
into R. Suppose that there exists a non-degenerate trace t ∈ End(RAR). Then:

(a) If S ⊆ R is such that r.annR(S) = 0, then r.annA(S) = 0;

(b) R is right zip if and only if A is right G-zip.

Proof. (a) Let S ⊆ R be such that r.annR(S) = 0 and U = r.annA(S). U is a right
ideal of A and, for any σ ∈ G, we have 0 = σ(SU) = Sσ(U). This shows that
σ(U) ⊆ U , i.e. U is G-stable. Since we also have 0 = t(SU) = St(U), the hypothesis
that t is non-degenerate implies that U = 0, as required.

(b) First let us suppose that A is right G-zip. Let S ⊆ R be a left ideal of R
such that r.annR(S) = 0. Part (a) above shows that r.annA(S) = 0 and hence also
r.annA(AS) = 0. Notice that σ(AS) = σ(A)S ⊆ AS, for any σ ∈ G. Now, the fact
that A is G-zip implies that there exists a finite subset S′ = {s1, . . . , sl} ⊆ AS such
that r.annA(S′) = 0. Writing elements of S′ as si =

∑li
j=1 aijsij , for 1 ≤ i ≤ l and

aij ∈ A, sij ∈ S, we easily conclude that r.annA(S0) = 0, where S0 = {sij | 1 ≤ i ≤
l; 1 ≤ j ≤ li} ⊆ S. Hence R is right zip, as required.
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Let us now suppose that R is right zip and consider a G-stable left ideal S of
A such that r.annA(S) = 0. If a ∈ R is such that t(S)a = 0 then t(Sa) = 0. On
the other hand, for any σ ∈ G we have σ(Sa) = σ(S)a ⊆ Sa. Hence, the fact
that t is non-degenerate implies that Sa = 0 and a = 0 follows. In other words,
r.annR(t(S)) = 0. By the hypothesis, there exists a finite subset S0 ⊆ t(S) ⊆ S such
that r.annR(S0). Now, the statement (a) gives the thesis.

Let G be a finite group acting on a ring A and R = AG = {r ∈ A | σ(r) =
r, for all σ ∈ G} denote the subring of constants. Then G acts on A into R. The trace
of G on A is the function tG : A → R given by tG(r) =

∑
σ∈G σ(r). Our definition

of a non-degeneracy of the trace differs from the one given by S. Montgomery in
the book [10]. Namely, tG is non-degenerate in the sense of [10] if and only if it is
non-degenerate in our sense and R = AG is a semiprime ring. It is known (Cf. [10])
that the trace is always non-degenerate, in the sense of [10], provided R is semiprime
and either R is |G|-torsion-free or G is X-outer. Theorem 2.1 leads the following
corollary.

Corollary 2.2. Let G be a finite group of automorphisms of a ring A such that the
trace tG of G on A is non-degenerate. Then AG is right zip if and only if A is right
G-zip.

The following example shows that the assumption on the trace of G is essential
in Theorem 2.1 even in the case of an action of a finite group.

Example 2.3. Let K be a field of characteristic different from 2. Let R = K[x1, x2, . . . ]
and I be the K-linear vector space with basis {vi | i ≥ 1}. We define a structure of
an (R−R)-bimodule on I by setting

xkvl = vlxk =

{
vk if k = l
0 else

.

Consider the commutative ring A = R ⊕ I with I2 = 0. The map σ : A→ A defined
by σ|R = idR and σ|I = −idI is an automorphism of A of order 2. Moreover AG = R,
where G = < σ >.

Let X = {xi | i ≥ 1} and S = AX. Then S is a G-stable ideal of A. Since
S contains X, r.annA(S) = 0 and it is easy to check that any finite subset of S
has nonzero right annihilator in A. Thus A is not right G-zip, however the ring of
constants AG = R is a domain, so it is right zip.

Let tG denote the classical trace of G, i.e. tG = idA + σ. Notice that tG(I) = 0
(but tG(S) = RX).

The following example offers a ring A acted by a cyclic group G of order 2 such
that A is right zip (so it is also right G-zip) but the ring of constants AG is not right
zip.

Example 2.4. Let K be a field and I be the ideal (XiXj | 1 ≤ i ≤ j) of the free K-
algebra K〈X1, X2, . . .〉. Let R be the K-algebra K〈X1, X2, . . .〉/I and put, for i ≥ 1,
xi = Xi + I.
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Since for any nonzero element w ∈ A there exists an index l >> 0 such that
xlw 6= 0, the set S = {x1, x2, . . . } has zero right annihilator in R. On the other
hand, for any finite subset S0 of S, there exists k > 1 such that S0xk = 0. Thus R is
not right zip.

Let A = R[Y ]/J , where J denotes the ideal (Y 2, x1Y, x2Y, . . .) of the polynomial
algebra A[Y ].

Suppose now that characteristic of K is different from 2. Let σ be the automor-
phism of R[Y ] given by σ|R = idR and σ(Y ) = −Y . Since σ(J) = J , σ induces an
automorphism, also denoted by σ, of the algebra A = R[y], where y = Y + J . Using
y2 = 0, one can see that A<σ> = R.

Notice that A = K ⊕M , where M denotes the ideal (y, x1, x2, . . .) of A, My = 0
and every element c + w, 0 6= c ∈ K,w ∈ M is regular in A. Therefore, if S is
a subset of A such that r.annA(S) = 0, then S is not contained in M so it has to
contain a regular element. Thus A is an example of a right zip algebra such that the
subalgebra of constants A<σ> = R is not right zip.

A classical result of J.Fisher (Cf.[5]) says that if a modular lattice L is acted by a
finite group G of automorphisms and the sublattice LG of fixed elements satisfies any
of a large class of chain conditions (including ACC and DCC), then L satisfies the
same condition. This theorem applies to the lattice of right ideals of a ring R acted
by a finite group G and shows that R has ACC (DCC) on right ideals if and only if
it has the same property for G-stable right ideals. The following example shows that
even if the G action is as good as possible i.e. A is semiprime and |G| is invertible in
A, then the fact that A is right G-zip does not imply that A is right zip.

Let us also recall (see 5.8[10]) that when A is as described above and AG is right
(left) noetherian, then so is A. In Example 2.5, AG is a domain so it is right zip but
A is not right zip. In particular, DCC on right annihilators does not lift from AG to
A.

Example 2.5. Let K be a field and define A = K〈Xi, Yj | i, j ∈ N〉/I where I is
the ideal generated by all monomials XiXj and YiYj with 1 ≤ i ≤ j. Notice that the
algebra A is the free product of two copies of the algebra R from Example 2.4.

As usual we denote xi = Xi + I and yi = Yi + I, for i ∈ N. Let σ be the K-
automorphism of A given by σ(xi) = yi and σ(yi) = xi, for all i ≥ 1 and G =< σ >.
Then:

(a) r.annA(γ, σ(γ)) = l.annA(γ, σ(γ)) = 0, for any nonzero γ ∈ A;

(b) Nonzero elements of AG are regular in A (and hence AG is a domain, so it is
right zip);

(c) Let tG = idA + σ. Then tG(I) 6= 0, for any nonzero one-sided ideal I of A. In
particular, the trace tG is non-degenerate;

(d) A is a semiprime algebra which is right G-zip but it is not right zip;

(e) Neither DCC on right annihilators nor the right zip property lifts from AG to
A.
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Proof. Let us define the degree of a word in xi’s and yi’s as the number of letters
which appear in its reduced presentation. Notice that for two words v, w, either
deg vw = deg v + degw or vw = 0. The degree of nonzero elements from K is set
to be 0. For 0 6= γ ∈ A, the degree deg γ of γ is the minimal degree of nonzero
monomials appearing in γ.

(a) Let us first remark that, for s ≥ 1 and a nonzero word m ∈ Axs, we
have r.annA(m) =

∑
j≥s xjA. Similarly if m ∈ Ays, then r.annA(m) =

∑
j≥s yjA.

This implies that for any nonzero word m, r.annA(m,σ(m)) = 0 as contained in∑
j≥s xjA ∩

∑
j≥s yjA = 0.

Let 0 6= γ ∈ A and r ∈ A be such that γr = σ(γ)r = 0. We claim that r = 0.

If deg γ = 0 we can write γ = k + s and r = k′ + s′ where 0 6= k ∈ K, k′ ∈ K
and s, s′ are elements of the ideal of A generated by the set {xi, yi | i ≥ 1}. From
γr = 0 we immediately get that k′ = 0. Let m′ denote the sum of monomials of s′ of
minimal degree. Since either sm′ = 0 or all monomials from ss′ have degree greater
than deg s′, the equality γr = ks′+ ss′ = 0 implies that ks′ = 0. This leads to s′ = 0
and hence r = 0. Notice that we actually proved that any element with nonzero
independent term is right regular in A. Using a similar argument on the left, one
can check that such an element is also left regular.

Suppose deg γ = l ≥ 1. Let us write γl = γl1+· · ·+γls for the sum of all monomials
from γ of degree l and rm for the sum of all monomials of r of degree deg r. Since,
by hypothesis, we have γr = σ(γ)r = 0 we also have γlrm = σ(γl)rm = 0. Notice
also that the sum

∑s
i=1 γliA is direct, since all monomials γli’s are distinct and have

the same degree. This, in particular, implies that γl1rm = σ(γl1)rm = 0. However
γl1 is a monomial and we have seen above that this implies that rm = 0 and hence r
must be equal to zero. This shows that r.annA(γ, σ(γ)).

Now if r ∈ l.annA(γ, σ(γ)) we have rγ = rσ(γ) = 0 and hence also rγ = σ(r)γ = 0
i.e. γ ∈ r.annA(r, σ(r)) and what we just proved implies that if γ 6= 0 then r = 0

(b) Let 0 6= γ ∈ AG. Then γ = σ(γ) and the statement (a) shows that r.annA(γ) =
l.annA(γ) = 0.

(c) Notice that, if tG(m) = m + σ(m) = 0, for an m ∈ A, then σ(m) = −m.
Thus, the statement (a) yields that if 0 6= m ∈ A satisfies tG(m) = 0, then m is (left
and right) regular in A.

Let I be a left ideal of A such that tG(I) = 0. Assume that 0 6= m ∈ I, then,
as we just noticed, m is regular. Since x1m ∈ I and x1(x1m) = 0, we must have
x1m = 0. This contradiction shows that t(I) 6= 0, for any nonzero left ideal I of A.

A similar argument applied to right ideals shows that t(I) 6= 0, for any nonzero
right ideal I of A. This completes the proof of (c).

(d) Statements (b) and (c) imply that every nonzero G-stable one-sided ideal of
A contains a regular element. In particular, if the prime radical B(A) of A would be
non-zero, it would contain a regular element. Thus B(A) = 0, i.e. A is semiprime.

Obviously A has to be right G-zip, since every G-stable left ideal of A contains a
regular element.

Taking S = {xi | i ≥ 1} and applying the same arguments as in Example 2.4, one
can check that A is not right zip.

(e) By (b), the subalgebra of constants AG is a domain, thus has DCC on right
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annihilators. The fact that every ring with DCC on right annihilators is right zip
and the statement (d) complete the proof of (e).

In the next proposition we show that Theorem 2.1 can be applied to infinite
groups of automorphisms (so there is no natural trace map in that case).

For a ring R and natural number n, Mn(R) will denote the n × n matrix ring
over R and {eij | 1 ≤ i, j ≤ n} will stand for the set of matrix units of Mn(R).
We will consider R as embedded in Mn(R) via diagonal matrices. Let us define
t : Mn(R) → R by setting t((mij)) = diag(m11,m11, . . . ,m11). Notice that t is a
homomorphism of (R−R)-bimodules.

Proposition 2.6. Let G be the set of (or the group generated by) all inner automor-
phisms of Mn(R) adjoint to all elements of the form 1 + ekl, where 1 ≤ k, l ≤ n and
k 6= l. Then R is right zip if and only if Mn(R) is right G-zip.

Proof. First let us observe that any G-stable left (resp. right) ideal of Mn(R) is of
the form Mn(I), where I is a left (resp. right) ideal of R. To this end, let L be
a G-stable left ideal of Mn(R). For any 1 ≤ k, l ≤ n with k 6= l, we have L =
(1 + ekl)L(1− ekl) = L(1− ekl). Hence, for any M ∈ L, Mekl = M −M(1− ekl) ∈ L.
This gives also Mekk = (Mekl)elk ∈ L. Therefore, for M = (mij) ∈ L, we get
mije11 = e1iMej1 ∈ L. The above easily yields that L = Mn(I) where I is the left
ideal {m11 ∈ R | M = (mij) ∈ L} of R. Similar arguments prove the statement for
right G-stable ideals of Mn(R).

Now it is clear that for any nonzero G-stable one-sided ideal L of Mn(R) we have
0 6= I = t(L) ⊆ L, where I is the one-sided ideal of R such that L = Mn(I). Thus t
is a non-degenerate trace and Theorem 2.1 gives the thesis.

Let us notice that in the case R is an algebra over a field of nonzero characteristic
p dividing n then the trace from the above proposition is still non-degenerate but
this would not be the case of the usual trace map.

We have seen in Example 2.5 that the right zip and the right G-zip properties
are not equivalent when G is a finite group acting by automorphisms. Another such
example, in the case of nonzero characteristic, can be obtained as follows: F. Cedó
[3], using a result of G. Bergman [2], proved that there exists a K-algebra D which is
a domain such that Mn(D) is not right zip. Let K be a field of nonzero characteristic
and consider R = Mn(D) the K-algebra constructed by F. Cedó. Notice that the
group G from Proposition 2.6 is then finite and this proposition implies that R is
right G-zip. We believe that it would be worth not only to know that such a domain
D exists but also to have a concrete example. Let us notice that if D is such, then
D can not be embedded into division ring, as otherwise Mn(D) would be a subring
of simple artinian ring thus it would be left and right zip.

Theorem 2.1 can be also applied in more general setting of actions of finite di-
mensional Hopf algebras. Let H be a finite dimensional Hopf algebra over a field K
and A be a left H-module K-algebra. Recall that this means that A has a structure
of a left H-module such that the action of H on A behaves well with respect to the
coproduct and the co-unity of H. For more information on this topic the reader may
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consult [11]. The subalgebra AH of constants consists of all elements a ∈ A such that
h · a = ε(h)a, for any h ∈ H, where ε denotes the counit of H.

It is known that H admits a nonzero left integral t, i.e. an element 0 6= t ∈ H
such that ht = ε(h)t, for any h ∈ H and the map t̂ : A→ A defined by t̂(a) = t · a is
a homomorphism of (AH −AH)-bimodules with values in AH .

We close this section with the following special case of Theorem 2.1.

Corollary 2.7. Let H be a finite dimensional Hopf K-algebra and A a left H-module
algebra. Suppose that t ∈ H is a left integral such that t̂(I) 6= 0, for any nonzero
H-stable one-sided ideal I of A. Then A is right H-zip if and only if AH is right zip.

Let us remark that, due to Lemma 4.4.6. of [11], the assumptions of the above
corollary are fulfilled when the smash product A#H is a semiprime algebra.

Moreover, it is known that when A is semiprime then A#H is semiprime in any
of the following cases:
(i) H = KG is a group algebra and |G|−1 ∈ K (Cf.[11]);
(ii) H = (KG)∗ is the dual of a group algebra and |G|−1 ∈ K (Cf.[11]);
(iii) H is any semisimple Hopf algebra and A satisfies a polynomial identity (Cf.[9]).

It is an open problem, posed by M.Cohen, whether A#H is semiprime provided
A is semiprime and H is semisimple.

In the case H = (KG)∗, Corollary 2.7 can be read as follows:

Corollary 2.8. Let G be a finite group with the neutral element e and A =
⊕

g∈GAg
be a G-graded K-algebra. Suppose that every nonzero one-sided homogenous ideal
has nonzero intersection with Ae. Then Ae is right zip if and only if any homoge-
nous left ideal of A having zero right annihilator contains a finite subset S such that
r.annA(S) = 0.

3 Localization and matrix rings.

In this section we investigate the behavior of the zip property for other kinds of ring
extensions. We begin with the following technical observation, which appears to be
useful in applications.

Proposition 3.1. Let R ⊆ A be a ring extension such that:
(i) R is essential as right R-submodule of A;
(ii) r.annR(I ∩R) = 0, for any left ideal I of A such that r.annA(I) = 0.
Then R is right zip if and only if A is right zip.

Proof. Proposition 1.2 and the assumption (i) imply that R is right zip provided A
is such.

Suppose R is right zip. Let I be a left ideal of A with r.annA(I) = 0. Then, by
(ii), we can pick a finite subset I0 of I ∩ R such that r.annR(I0) = 0. Observe that
r.annA(I0) has to be equal to zero, as every nonzero right ideal of A has nonzero
intersection with R. This shows that A is right zip in this case.
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Notice that the above proposition applies when R ⊆ A is a ring extension such
that, for any left ideal I and right ideal J of A, one has I = A(I∩R) and J = (J∩R)A.
Therefore, as a corollary, we obtain the following theorem.

Theorem 3.2. (1) Let S be a two-sided Ore set of regular elements of a ring R.
Then R is right (left) zip if and only if the ring of quotients RS−1 is right (left)
zip;

(2) The ring Mn(R) is right (left) zip if and only if UTn(R) is right (left) zip.

Proof. (1) It is known and easy to check that if S is a right Ore set of regular elements
of a ring R and J is a right ideal of RS−1, then J = (J ∩R)RS−1. Moreover, when
S is a two-sided Ore set, then the rings RS−1 and S−1R are isomorphic. Therefore,
in this case we also have I = RS−1(I ∩R), for any left ideal I of Q. Now, the thesis
is a consequence of Proposition 3.1.

(2) Let A = Mn(R) and T = UTn(R). For any right ideal J of A, we have∑n
k=1 Jekn ⊆ J ∩ T and J ⊆ (

∑n
k=1 Jekn)A ⊆ (J ∩ T )A ⊆ J .

Similarly, when I is a left ideal of A, then I ⊆ A(
∑n

j=1 e1jI) ⊆ A(T ∩ I) ⊆ I.
Now the statement (2) is a consequence of Proposition 3.1.

F. Cedó [3] investigated the relation between zip property of a ring R and the
matrix ringMn(R). Parallel results, for the ring of upper triangular matrices UTn(R),
were obtained by C.Y. Hong, N.K. Kim, T.K. Kwak, Y. Lee in [7]. The above theorem
says that the results are, in fact, equivalent.

In examples below we will be using skew polynomial rings and in this context
it is more natural to consider left zip property. If someone wants to obtain similar
examples on the right hand side, it is enough to consider skew polynomial rings with
coefficients written on the right of the indeterminate.

If α is an automorphism of a ring R and W denotes either the skew polynomial
ring R[x;α] or the skew Laurent polynomial ring R[x, x−1;α], then W is free as a
left and right R-module. Thus, Proposition 1.2 and its left hand version yield that
if W is zip on one side, then the base ring R is also zip on the same side.

Let σ be an endomorphism of R. Then the skew polynomial ring R[x;σ] (with
coefficients written on the left of the indeterminate) is free as a left R-module. Thus,
when R is not right zip, then also R[x;σ] is not right zip. If, in addition, σ is injective
but not onto, then the right R- submodule M of R[x;σ] spanned by all powers of x
is free but M 6= R[x;σ]. In the following example we show that in such a situation it
may happen that R[x;σ] is left zip (but it is not right zip), but nevertheless R is not
left zip. This example will be used later on for showing that the zip property does
not have to be preserved under one-sided localization.

Example 3.3. Let K be a field and R a commutative K-algebra with basis {1} ∪B,
where B = {ei | i = 1, 2, . . .} and ei’s are orthogonal idempotents (i.e. R is isomor-
phic to subalgebra with unity of

∏∞
i=1K generated by

⊕∞
i=1K). Then l.annR(B) =

r.annR(B) = 0 and l.annR(F ) = r.annR(F ) 6= 0, for any finite subset F of B. Thus
R is neither left nor right zip.

Let T = R[x;σ], where σ is the K-endomorphism of R defined by σ(ei) = ei+1,
for any i ≥ 1. Notice that each element w(x) of T can be written in a form w(x) =
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k(x) + b(x) where k(x) ∈ K[x], b(x) ∈ IT and I is the ideal of R generated by the set
{ei}i≥1. Then e1tIT = 0 and l.annT (w(x)) = 0 if and only if k(x) 6= 0. This implies
that T is left zip. Notice also that T is not right zip, as otherwise, by Proposition
1.2(c), R would be right zip.

When S is a left Ore set of regular elements of R, then R is essential as a submod-
ule of a left R-module S−1R. Thus, if S−1R is left zip, then so is R. The following
example shows that the reverse implication does not have to hold, when S is not a
two- sided Ore set of R (compare with Theorem 3.2).

Example 3.4. Let T = R[x;σ] be the ring defined in Example 3.3. It is known
that S = {xi}i≥1 is a left Ore set in T and S−1T is isomorphic to the skew Laurent
polynomial ring R̂[x, x−1;σ] (Cf.[8]), where R̂ is the K-algebra with basis {1} ∪ {ei |
i ∈ Z} and σ is the K-automorphism of R̂ given by σ(ei) = ei+1, for all i ∈ Z.

Let C = {ei}i∈Z. Notice that l.annS−1T (C) = 0 and l.annS−1T (F ) 6= 0 for any
finite subset F of C. This implies that S−1T is not left zip. However, we have seen
in Example 3.3, that T is left zip.

Let DTn(R) denote the subring of UTn(R) consisting of all matrices (aij) ∈
UTn(A) such that aii = ajj , for all 1 ≤ i, j ≤ n. In Theorem 5 of [7] the authors gave
a relatively long, computational proof of the fact the ring R is right zip if and only if
the ring DTn(R) is such. In another theorem they proved also that R is right zip if
and only if the factor ring R[x]/(xn) is right zip. Both extensions of R are examples
of the situation of an over-ring T of R such that T = R ⊕ I for a certain two-sided
nilpotent ideal I of T . In general one can not suspect that the zip property of R
and that of T = R ⊕ I are related in this situation. Notice that Example 2.3 offers
a commutative domain R such that T = R ⊕ I is not right zip and I2 = 0. The
following example shows that the right zip property does not pass from T = R ⊕ I
to R. In this example also I2 = 0.

Example 3.5. Let K be a field and R = K〈x1, x2 . . . | xixj = 0, 1 ≤ i ≤ j〉 be the
K-algebra defined in Example 2.4. We have seen that R is not right zip.

Let I be a one dimensional K vector space with the basis {x0}. Then I has a
structure of an (R − R)-bimodule given by xix0 = x0xi = 0. Let T = R ⊕ I, with
I2 = 0 and F be a subset of T such that r.annT (F ) = 0. Then, as xix0 = 0, for
any i ≥ 1, F has to contain an element of the form k + w, where 0 6= k ∈ K and
w ∈

∑∞
i=0 xiT . Then r.annT (k + w) = 0, i.e. T is right zip.

In the remaining part of the paper we will concentrate on the description of the
right zip property of such T = R⊕ I under some additional assumptions. The above
examples show that the nilpotency of the ideal I is not enough to guarantee relations
between zip properties of R and T . Therefore, in order to get positive results, we will
add some extra assumptions on annihilators (Cf. Theorems 3.10 and 3.13). With this
perspective let us mention, without proof, the following lemma in which we analyze
different ways of expressing the condition that we will meet in these theorems.

Lemma 3.6. Let R ⊆ T = R ⊕ I be a ring extension where I is an ideal of T such
that In = 0 for some n ≥ 2. Then the following are equivalent:
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(i) l.annR(In−1) = 0, i.e. In−1 is faithful as a left R-module;

(ii) l.annT (In−1) = I;

(iii) For every 1 ≤ k ≤ n− 1, Ik/Ik+1 is faithful as a left R-module;

(iv) For every 1 ≤ k ≤ n− 1, l.annT (Ik/Ik+1) = I.

We begin our investigations on the behavior of the zip property of extensions
R⊕ I with the following general observation.

Proposition 3.7. Let R ⊆W be a ring extension. Suppose that W can be embedded,
as a left R-module, in a free left R-module. If W is right zip, then so is R.

Proof. Let F be a free left R module such that RW ⊆R F and S be a subset of
R such that r.annR(S) = 0. Then, the freeness of RF implies that r.annF (S) = 0.
Hence also r.annW (S) = 0, as W is a submodule of RF . Thus, if W is right zip, we
can find a finite subset S0 of S with r.annW (S0) = 0. This gives the thesis.

As a direct application of the above, let us record the following corollary.

Corollary 3.8. Let W be a subring of Mn(R) containing R (as diagonal matrices).
If W is right zip, then so is R.

Lemma 3.9. Let n ≥ 2 and T = R⊕I, where I is an ideal of T such that In = 0 and
l.annR(In−1) = 0. If R is right zip then, for any subset S of T such that r.annT (S) =
0, there exist finite subsets S̄0 = {r1, . . . , rm} ⊆ R and S0 = {r1 +w1, . . . , rm +wm |
ri ∈ S̄0, wi ∈ I} ⊆ S such that r.annR(S̄0) = 0 and r.annT (S0) ⊆ I.

Proof. Suppose R is right zip. Let S be a subset of T such that r.annT (S) = 0. Then
there are an index set A, elements ri ∈ R, wi ∈ I, for i ∈ A, such that S = {ri +wi |
i ∈ A}. Let us set S̄ = {ri | i ∈ A} and J = r.annR(S̄). Since I is an ideal of T
and In = 0, we have IJIn−1 = 0. Hence SJIn−1 = S̄JIn−1 = 0. This shows that
JIn−1 ⊆ r.annT (S) = 0. Consequently J = 0 as, by assumption, l.annR(In−1) = 0.
Now, since R is right zip, there exists a finite subset S̄0 = {r1, . . . rm} ⊆ S̄ such that
r.annR(S̄0) = 0. Let us define S0 = {r1 +w1, . . . , rm +wm | ri ∈ S̄0, wi ∈ I} ⊆ S and
let r + w ∈ r.annT (S0), where r ∈ R and w ∈ I. The equality (ri + wi)(r + w) = 0
implies that rir = 0, for any 1 ≤ i ≤ m. This means that r ∈ r.annR(S0) = 0 and
shows that r.annT (S0) ⊆ I as required.

Theorem 3.10. Let n ≥ 2 and T = R⊕ I, where I is an ideal of T such that In = 0
and l.annR(In−1) = 0. Suppose that, if Ikv 6= 0, for some 1 ≤ k ≤ n− 1 and v ∈ I,
then IkSv 6= 0, for any subset S of R with r.annR(S) = 0. If R is a right zip, then
so is T .

If additionally, for any subset S of R r.annI(S) = 0 provided r.annR(S) = 0, then
R is right zip if and only if T is right zip.

Proof. Suppose that R is right zip and S ⊆ T is such that r.annT (S) = 0. Then,
making use of Lemma 3.9 we can pick finite subsets S̄0 = {r1, . . . , rm} ⊆ R and
S0 = {r1 + w1, . . . , rm + wm | ri ∈ S̄0, wi ∈ I} ⊆ S such that r.annT (S0) ⊆ I and
r.annR(S̄0) = 0.
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Assume 0 6= v ∈ r.annT (S0) ⊆ I. Since I is nilpotent and v 6= 0, there exists
k ≥ 0 such that Ikv 6= 0 and Ik+1v = 0. Then 0 = IkS0v implies IkS̄0v = 0 as
Ik+1v = 0. However, the hypotheses show that IkS̄0v 6= 0. This contradicts the
assumption that v 6= 0 and yields that r.annT (S0) = 0. This shows that T is right
zip in this case.

Suppose now that T is right zip and r.annI(S) = 0, for any subset S of R with
r.annR(S) = 0. Let S be a subset of R such that r.annR(S) = 0 and S(r + w) = 0,
for some r ∈ R and w ∈ I. Then, as Sr ⊆ R,Sw ⊆ I, Sr = Sw = 0. This shows
that r.annT (S) = 0. Since T is a right zip ring, there exists a finite subset S0 of S
such that r.annT (S0) = 0. Then clearly r.annR(S0) = 0, i.e. R is right zip.

Let us remark that the additional assumption in the above theorem holds when
I is isomorphic as a left R-module to a submodule of a free left R-module.

For n = 2 the above theorem gives the following:

Corollary 3.11. Let T = R⊕ I, where I2 = 0. Then:
(i) If R is right zip and l.annR(I) = 0, then T is right zip.
(ii) If I is a free left R-module, then R is right zip if and only if T is right zip.

With the help of Theorem 3.10 it is easy to construct extensions of commutative
domains which are right but not left zip.

Proposition 3.12. Let R be a commutative domain with an (R,R)-bimodule I such
that: RI is torsion free (i.e. if rw = 0 and 0 6= r ∈ R, then w = 0). Then the ring
T = R⊕ I, where I2 = 0, is right zip.

If additionally, there exists a subset S of R such that l.annI(S) = 0 and l.annI(S0) 6=
0, for any finite subset S0 of S, then T is not left zip.

Proof. By Corollary 3.11, T is a right zip ring.

Let S ⊆ R ⊆ T be a subset satisfying assumptions. Let a ∈ R and w ∈ I be
such that 0 = (a + w)S. Then a = 0 and w = 0, as aS ⊆ R, wS ⊆ I. However, by
assumption, every finite subset S0 of S has nonzero left annihilator in T . Thus T is
not left zip.

Let K be a field, R = K[xk | k ≥ 0] and I be the K-linear space with basis
{vij | i, j ≥ 0}. Then I has a structure of (K[x],K[x])-bimodule given by

xlvij = vl+i,j , for any l ≥ 0 and vijxk =

{
0 if k ≤ j
vij if k > j

.

Notice that R, I and S = {xk | k ≥ 0} satisfy the assumptions of the above proposi-
tion. Thus the ring R⊕ I, with I2 = 0, is right but not left zip.

The following theorem nicely fits to subrings of matrix rings.

Theorem 3.13. Let T = R⊕I. Suppose that T , as a left R module, can be embedded
into a free left R-module, l.annT (In−1) = I and l.annT (I) = In−1, for some n ≥ 2.
Then R is right zip if and only if T is right zip.
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Proof. Suppose that R is right zip. Let S be a subset of T such that r.annT (S) = 0.
Then, making use of Lemma 3.9 we can pick finite subsets S̄0 = {r1, . . . , rm} ⊆ R
and S0 = {r1 +w1, . . . , rm +wm | ri ∈ S̄0, wi ∈ I} ⊆ S such that r.annT (S0) ⊆ I and
r.annR(S̄0) = 0.

Let 0 6= v ∈ I be such that S0v = 0. I is nilpotent, thus, multiplying v on the right
by suitable element from I we may assume vI = 0. Hence, by assumption v ∈ In−1
and Iv = 0. Therefore S̄0v = 0. Let RM be a free R-module such that RT ⊆R M .
Working in M it is clear, as r.annR(S̄0) = 0, that v = 0. This contradiction yields
that r.annT (S0) = 0 and shows that T is right zip.

The reverse implication is given by Proposition 3.7.

Applying the above theorem to DTn(R) = R⊕I, where I is the ideal of all strictly
upper triangular matrices of DTn(R) and to R[x]/(xn) = R⊕ (x+ (xn)), we directly
get the following corollary.

Corollary 3.14. (a) (Theorem 5 [7]) DTn(R) is right zip if and only if R is right
zip;
(b) (Proposition 9 [7] ) R[x]/(xn) is right zip if and only if R is right zip.
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