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Abstract. The goal of this paper is to develop further the theory of
skew polynomial rings over division rings, using as our main tools the
notions of invariant and semi-invariant polynomials. These notions
arise naturally when one tries to study the algebraic conjugacy classes
(in a suitably generalized sense) of the underlying division ring.

A substantial part of our effort will also be devoted to the investi-
gation of the properties and the characterizations of algebraic deri-
vations, algebraic endomorphisms, and their respective minimal poly-
nomials. This investigation is inade possible by the discovery of

the relationship between polynomial equations and differential equa-
tions, and the relationship between polynomial dependence and linear
dependence. Applications of these results to the study of non-commu-
tative Hilbert 90-type theorems will be presented in a forthcoming
work [LLZ]'

§l. Introduction

Let K be a division ring equipped with a given endomorphism
S: K—> K., By an S-=derivation on K, we mean an additive map
D : K—3> K with the property that D(ab) = S(a)D(b) + D(a)b for all
a, b€ K. For a given indeterminate t, let R =.K[t,S,D] denote
the skew polynomial ring with respect to the triple (X,S,D), consisting

of all left polynomials Zaiti (aie K) which are added in the

(*)Supported in part by N.S.F.
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usual way and multiplied according to the rule ta = S(a)t + D(a) for
any a € K. This definition of skew polynomial rings was first intro-
duced by Ore [0], who combined earlier ideas of Hilbert (in the case

D = 0) and Schlessinger (in the case S = I). Ore lay a firm -founda——
tion for the study of R = K[t,S,ﬁ] by establishing the unique factor-
ization property of R, and using this, he studied, among otﬁer things,
the problem of finding the greatest common divisors and the least N
common multiples of pairs of skew polynomials. Ever since the appear-
ance of Ore's fundamental paper [0], the skew polynomial rings
K[t,S,D] (and their generalizatioﬂé) have played an important role

in non-commutative ring theory. About 15 years after Ore's paper
appeared, Amitsur [A] made 'a basic contributi;n to the study of
K[t,S,D] by pgoving a generalization of a theorem on linear differen-
tial equations in a purely algebraic setting. Through this paper of
Amitsur, the interesting role played by the so-called algebraic deriva-
tions (D is-called algebraic if it satisfies a monic equation

izi aiD = 0 over K) came to 1light. In [A'], Amitsur also
studied, in the special case when S = I, the structure of the 2-sided

ideals in K[;,S,D]; this work has been recently extended to the

general case by Cauchon [C] and Leﬁonnier [Lem] (see also [Ca]).

Our present work is, in many ways, a continuation of the work
on skew polynomial rings cited above. The point of departure is the
introduction of the notion of "evaluation" of skew polynomials f€ R

on the constants a € K. Surprisingly, the .discovery of the right



definition of £(a) came rather late in the game: two pertinent

references are [Sm] and [Lé], but even in these references, the fact
that f(a) amounts to the "evalu#tion" of f at a was_not explicitly
pointed out. In [LLl]’ we rectified this by initiating the notation
f(a) for evaluation, and proved the all-important Product Theorem

[LLl - (2.?i] f;£ the evaluation of a product of two polynomials at

a € K. This notion of the evaluations of polynomials at constants,,
enabled us to gegeralize the theory of Vandermonde and Wronskian

matrices to the non-commutative setting, as in {LLl].

The main goal of the present paper is to study the algebraic
conjugacy classes in a division ring K equipped with (S,D). (We
shall often write (K,S,D) to.refer to this setting.) Recall from

[LLlj that two elements a, b€ K are said to be (5,D)-conjugate

* =
if there exists an element c € K such that b = a© := S(c)ac . +
D(c)c-l. (S,D)-conjugacy being an equivalence relation, we shall
*
write [}S’D(a) = i_ac : ¢ € K }- for the (S,D)-conjugacy class

determined by a. This class is said to be (S,D)-algebraic (or

algebraic for short) if there is a nonzero f € R which vanishes on
S,D . ;

all of /\’’“(a). The (unique) monic f of the least degree with

this property is said to be the minimal polynomial of A%Pa).

Such a polynomial f 1is always right invariant, in the sense that

f-RC R-f. Therefore, the study of algebraic conjugacy classes is
closely tied to the study of right invariant polynomials, which is,

in turn, tied to the study of the 2-sided ideal structure of R.



This paper is organized as follows. 1In h§2, ve first study right
invariant polynomials in R, along with the right semi-invariant poly-

nomials. (We say thaf g € R 1is right semi-invariant if g-KC K-g.)

We recall Cauchon's result on the classification of right invariant
polynomials, and obtain (in the special case when § 1is an automor-
phism) a parallel result on the classification of right semi-invariant

polynomials. In §3, we study Lemonnier's notion of guasi-algebraic

derivations, and characterize in different ways the least possible
degree of the non-constant right .semi-invariant polynomials (if they
exist). 1In §&, we fix our attention on a single (S,D)-conjugacy
class ZSS’D(a) and study the "polynomial dependence'" (or P-depend-
ence) among .elements of ZlS’D(a). It turns out that the P-dependence
among elements of AS’D(a) isi:‘-'controll_ed" by the linear dependence
of elements of K viewed as a right vector space over the division
subring CS’D(a) i= '{0}-Lj-i c E_K* : af = a}. This fact is most
succintly expressed by saying that there is a one-one correspondence
between the lattice of "full" (S,D)-algebraic subsets of é}S’D(a) and
the lattice of finite dimensional right CS’D(a)—subspaces of X (cf.

Theorem 4.5). This one-one correspondence is essentially given by

the process of "exponentiation".

In §5 (which is perhaps the heart of this paper), we take up
in earnest the study of the (S,D)-algebraic conjugacy classes in K.
These classes are characterized in various ways, and their minimal

polynomials are linked to the minimal polynomials of certain algebraic



derivations. This tie between the two kinds of minimal polynomials
is made possible by Proposition 5.8 which establishes the basic rela-
tionship between polynomial equaﬁions and differential equations.

One easily stated result is Corollary (5.12) which says tﬁat K has

at least one (S,D)-algebraic class iff D 1s the sum of an inner

S-derivation an&‘gg_algebraic S-derivation. Among the many

ramifications of our results characterizing the (S,D)-algebraic .,

classes, one finds an interesting relationship between such classes

and the notion of primitive rings: by Corollary 5.23, R 1is a left

primitive riné unless all (S,D)-conjugacy classes are algebraic.

Toward the enq of the paper, we analyze the algebraic classes of K
according as S 1is an automorphism of finite inner order or otherwise.
In the 1aﬁter case, we show thdt there is at most onme (§S,D)-algebraic
class (Theorem (5.25)), while in the fofmer case, we show that, with
possibly one exception, the minimal polynomials of the algebraic
classes are scalar multiples of central polynomials, and tﬁeir degrees
are all divisible by the inner order of S (Theorem (5.28)). Further
results on the criteria for an (S,D)-conjugacy class to be algebraic,
and for two elements in K to be (S,D)-conjugate (proved by using

a certain "Compositg Function Theorem") will be presented in a forth-

coming work [LLZJ.

Since this paper 1is largely a continuation of our earlier work
[L] and [LLi], the notations and terminology in these two papers

will be used rather freely. However, the crucial definitions are



recalled for the convenience of the reader whenever possible. The
definition of the evaluation of a polynomial fE R at a€XK 1is

needed only to the extent that f(a) 1is the unique constant ¢ such

that f(t) € R+(t-a) + c. Whereas this is no doubt the best conceptual

way to understand £(a), we would be remiss if we do not mention at

least once the "computational™ definition of £(a): if £(t) = E: biti,

then f(a) := }E biNi(a), where the Ni 's are defined inductively ke
by: No(a) =1, Ni+l(a) = S(Ni(a))a + D(Ni(a)). Note, however, Fhat
these formulas apply only to the evaluation of f on constants .

An expression such as f(D) (resp. £(S)) shall still have its usual
mea.ning, namely, it stands for the operator E billli (resp. 2 biSi).
The minimal polynomial of D (in case D 4is algebraic) is the monic

polynomial f € R of the least degree such that £(D) = 0 (and

similarly for S).

Ofte.n, we shall have occasion to specialize to the case § =1
(resp. the case D = 0). When we do this, we shall drop S (resp. D)
from our notations. Thus, we shall write K[t.DJ to mean K[t,I,D],
and write K[t,S] to mean K[t,S,O:]. The same conventions will also
apply to AS’D(a) and CS ’D(a). In any case, the abbreviated

notations shall always be clear from the context.

We wish to thank Professor S. Amitsur for pointing out to us
that his theorem on linear differential equations in [AJ can be
proved by using the Density Theorem. Our presentations in the second

half of &5 have taken his insightful comments into account.



.ig‘ Invariant and Semi-invariant Polynomials

In this beginning section, we shall introduce the notions of
right invariant and right semi-invariant polynomials and discuss their
basic properties and characterizations. The important roles played by
these two kinds of polynomials will be clear in the later sections when
we take up the study of algebraic conjugacy classes in division rings.
Throughout this section (and in fact the whole paper), we assume gﬁat:
the data (X,S,D) are given and fixed, where K 1is a division ring,

S 4is an endomorphism of X, and D 1s an S-derivation on K. We
sﬁall always write R for the associated skew polynomial ring

*
K[l:,S,D:I, and write K for the multiplicative group K\-{O} of K.

Definition 2.1. A polynomial i'f(t)€ R 1is called right invariant if

f-R< R-f. (This means that the left ideal R-f 1is a 2-sided ideal

of R.) A polynomial g(t)€ R 1is called right semi-invariant if

g:KC K-g. Left invariant and left semi-invariant polynomials are

defined analogously.

The term "right invariant" is fairly standard in ring theory.
Our choice of the new term '"right semi-invariant™ is based on the
following rationalé: Since R 1is generated as a ring by K and t,
it follows that f &€ R 4is right invariant iff f 1is right semi-invar-
iant and in addition f-t € R-f. This says that right semi-invariance
amounts to "half'" of the condition for right invariance. Also, note
that the nonzero right (semi-) invariant polynomials are closed under

*
multiplication, so they form a semigroup. In particular, if ag K,



then f 418 right (semi-) invariant iff a.f 41s right (semi-) invar-
iant. Because of this, it is géneraliy sufficient to focus our study

of right (semi-) invariant polynomials on the monic ones.

n
Lemma 2.2. For a monic polynomial g(t) = Z aitie R of degree n,

the following are equivalent: e

(1) g 1is right semi-invariant; .

(2) g(t)e = s"(c)g(t) for every c g K;

(3) Sn(c)aj = ii‘ aifj(c) for every j and every c €K, where the
=]

operators {fj} are defined as at the beginning of §2 of [LLl].

Proof. (1)&=(2) follows by observing that, as a left polynomial,
the leading coefficient of g(t)c ds s™(e). (2)&(3) follows

by comparing the coefficients of Sn(c)g(t) ~with those of

g(t)e = iﬁ aitic

i=o
> a3 fod
= a .c)t
feo 1§00
n { s
= i’ (z aifj(c)) e Q.E.D.
i=0 1=]

Note that 1if An+l(c) denotes the (n+l)X (n+l) lower trian-
gular matrix whose (i,j)-entry is f;:i(c) (cf. [LLI: (6.8)] ), then

the condition (3) above can be expressed succintly in the matrix form:

(ao. a1 eee an)An+l(c) = Sn(c)(ao, al, cew an).

This says that (ao, @1y cen an) is a left "eigenvector'" for the

matrix An+1(c) with "eigenvalue" Sn(c).



In the classical cése (5, D) = (I, 0), we see immediately that

the right invariant and right semi-invariant polynomials are just the
polyncmials of the form a -Z aiti, where a € K and all a, 's belong
to the center Z(K) of K. 1In order to get a good perspective on the
general case, ve shall work out below the classes of right invariant
and right semi-invariant polynomials in the cases when D = 0 and when
S = I. Throughout this paper, we shall write I for the inner Qauto-
wmorphism x+—>» axa—l on K associated with a € K*. Also, we shall
write KS- {yeK: S(y) -_.;y} and KD- {yEK: D(y) =0}.

n
Proposition 2.3. Assume that D = 0, and let f(t) = Z aiti€ K[t,S]
i=o

be monic _oi degree n. Then

(1) £ _5;3_ right semi-invariant iff, for any j such that aj ¥ 0,

we have Sn=IaOSJ.

b
(2) £ 1is right invariant iff f satisfies the condition above and

in addition a, € Ks for all j.

3
Proof. (1) Since D = 0, we have fi’ = 0 whenever i3 j. Thus, the
condition in (2.2)(2) simplifies to Sﬂ(t:)aj = aij(c) (Vce k).
1f aj ¥ 0, this amounts to

§%(c) = ajsj(c)a;L = (1, ° sj) (c) (Yece K,
]

i.e. s = I,0° s3. (Note. We cannot rewrite this as S" 7 = I
j j
in general, since S 1is not assumed to be an automorphism. In the

case when § 1s an automorphism, we can prove a much more precise

result: see (2.12) below.)
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(2) We need to work out here the condition for £(t)t € R-f(t), 1i.e.

for f(t)t to be equal to (t+c)f(t) f£for some ¢ € K. Since

n

n+l i ’
(t+c) E(t) = ™ + El (S(ay_;) + ca)t +ca ,
the conditions on c are that a = S(ai) +ca (0£i<n), and ca =0.
1f c # 0, it follows by induction on 1 that all a, 's are zero.

-4y

This 1s not the case as g e 1. Therefore, we must have ¢ = 0 and

the conditions above boil down to aie KS for all 1. Q.E.D.

n
Proposition 2.4. Assume that S = I and let f(t) = z aitiE K[t,D]
: i=0

be monic of degree n. Then

n
(1) f(t) {is right semi-invariant iff ca, = z (j) aiDi—j (c)
; i=3
for all c€ K and all j 2> 0.

(2) f(t) 4is right invariant iff f satisfies the condition above

and in addition aj € KD for all j. Such a polynomial in fact

belongs to the center of K[t,D] .

Proof. (1) Since S =1, f;' boils down to (j) i for i2 j3.

Thus the condition in (2.2)(2) simplifies to the one in (1).
(2) Again, we need to work out here the condition for £(t)t to be

equal to (t+c)f(t) for some c¢ € K. Since

n
n+1l i
(t+e)E(L) = 7~ + i§=1 (ai_l + pa, + Dai) t* + (ca+ba ),

/
the conditions on ¢ are that «ca, + Dai =0 for 0<£i<€n. Since

i
a = 1, this amounts to ¢ = 0 and Dai = 0 for all {i. We have
then f(t)t = tf(t), and since f(t)c = cf(t) also, £f(t) belongs to

the center of K[t,D] . Q.E.D.
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By the above, we expect that there exist many examples of right
semi-invariant polynomials which are not right invariant. Let us now

record some such examples below.

Examples 2.5.

(a) Let D=0, and let S be an automorphism of order 2. Then by
(2.3); t2+a is right semi-invariant for any a € Z(K), but such a
polynomial is right invariant only if our a {is also fixed by S. |
(b) Let S =1, D be a derivation with D2 = 0, and assume that

char K = 2., Then by (2.4) (or by an explicit calculation), tz-l-a is
right semi-invariant for any a € Z(K), but such a polynomial is right

"invariant only if our a 1is also a constant of D.

The fact that we have to work with quadratic polynomials above
has a good reason. In fact, the result below shows that, in the linear
case, "right invariance" and 'right semi-invariance' become synonymous

terms.

Example 2.6. Here, we determine, in the general (S,D)-setting, all the

the (monic) linear right invariant and right semi-invariant polynomials.
Let £f(t) =t - b, where b€ K. Then the following are equivalent:
(1) f(t) 1is right invariant;

(2) f(t) 1is fight semi-invariant;

(3 b€z’ = {aek: a=2a Vce K'}.

We need only show (2)==y (3)=>(1). Assume f 1is right semi-

*
invariant. Then, for any c€ K ,
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S(e)(t - b) = (t = b)e = S(c)t + D(c) - be.

Thus, =-S{c)b = D(c) - bc and hence b = S(::)bc-l + D(r:)t:—1 = b°© .

i.e. bE ZS'D(K). Now assume b € ZS’D(K). By reversing the above
argument, we see that f£(t) is right semi-invariant. We finish by
showing that (t élb)t E R+*(t - b). Assume, for the moment, that

L tomp~t = by,

b # 0. From the equation bb = b, we have S(b)bb
and so D(b) =b's for b' =b - S(b). Of course, D(b) =b'b also

holds for b = 0. Thus, in any case,

(t-b)t = t2 - (S(b) +b")t + b'db = D(b)
= t2 - (S(b)t + D(B)) - b'(t - b)
= t(t = b) = b'(t = Db)
= (¢t -b"'")(t - b)E R+(t - D),
so t-b 4s, in fact, right invariant. Q.E.D.

We have observed earlier that, if g(t) and h(t) in R are
both right (semi-) invariant, then so is g(t)h(t). In the case when

S 1is an automorphism of K, we can prove some variations of this fact,

as in part (3) of the following result.

Proposition 2.7. Let S € Aut(K). Then

(1) f(t) € R 1is right (semi-) invariant iff f is left (semi-)

invariant (cf. [Co': pp.296-29ﬂ );

(2) 1f f 1s right invariant, then R-f = f:R j if f 1is right

semi-invariant, then K-f = f-K.




(3) Let £(t) = g(t)h(t) ¥ 0 in R be right (semi-) invariant.

Then g(t) is right (semi-) invariant iff h(t) .ii'

Proof. (1) By symmetry, it is sufficient to prove the "only if" parts.
Assume f dis right invariant. For any p(t) € R, we can write
p(t)f(t) = f(t)ﬁ(t) 4+ r(t) for some q(t), r(t) € R such that

deg r(t) < deg f(t). (This is possible since S 1s assumed to b% an_
automorphism.) Since £ 4s right invariant, f£(t)q(t) = q'(t)f(c)
for some q' € R. Thus, (p(t) - q'(t))f(t) = r(t). By degree consi-
deration, this implies thatslq'(t) = p(t) and r(t) = 0, and so
p(e)f(t) = £(t)q(t) € £(t)-R, d.e. f(t) d1is left invariant. If

f(t) dis ;ight semi-invariant, the same argument for p(t) a scalar
shows that f 1s also lg;g_séﬁi—invariant.

(2) This is already covered by the argument above.

(3) Assume f(t) and h(t) are both right invariant. Then, for any
p(t) € R, ph = hp' for some p' € R (since h 1is also left invar-

iant). Thus, gph = ghp' = fp' = p"" f for some p'"€ R, since £ 1is
right invariant. Cancelling h on the right, we have gp = p''g .
Since p€ R 1s arbitrary, this shows that g 1is right invariant.
Similarly, if f(t} and g(t) are both right invariant, we can show
that h(t) 1is also right invariant. The arguments for the case of

semi-invariance are almost the same as those given above; we shall

therefore leave them to the reader.

In [C], Cauchon has determined the structure of the right invar-

iant polynomials in R = K[t,S,ﬁ], generalizing earlier work of



Amitsur [Aq in the case S = I. For the convenience of the reader,

we shall recall Cauchon's result, which will be exploited in §5.
Cauchon's result holds more generally for any artinian simple ring K,
but we shall only be concerned with the case when K 1s a division

ring here. Another pertinent reference for the result below is [Ca].

Theorem 2.8. (Cauchon) Let gq(t) be a (monic) nonconstant right

invariant polynomial of the least depree (if it exists). Then any

right invariant polynomial in R has the form q’-h(t)q(t)r where

o2 € K, r=>20 and h(t) is a polynomial in Z(R), the center of R.

Moreover, let ho(t) be a nonconstant polynomial in Z(R) of the

*
least degree (if it exists); then ho(t) = A-q(t)s for some A€ K

and s 21, and ZR) = z(K)g [N ()] where 2(K)g ;= Z(R)NK K.

Prompted by this result, we shall try to determine also the
structure of all right semi-invariant polynomials in R. Our methods
below will lead to such a complete determination in the case when S
is an automorphism of K. (The case when S is not an automorphism
seems to be much more difficult, and will not be attempted here.)

The first step in this analysis is the following.

Proposition 2.9. Assume S € Aut(K), and let p(t) be a (monic) non-

constant right semi-invariant polynomial in R of the least degree

(if it exists.). Then any right semi-invariant polynomial f(t) 1lies

E K[p(t)] = {Zaip(t)i: aiE K} (ﬂg subring_c_:i R generated

by K and p(t)). In particular, deg f must be a multiple of deg p.

—_— — — —— —



Proof. Llet deg p(t) = m >0 and deg £(t) = n. We shall prove the

Proposition by induction on n, the case n = 0 being clear. For
n> 0, write f£(t) = q(t)p(t) + r(t), where deg r(t)< m (or r(t)=0).
Let ¢ € K. Assuming without loss of generality that f 4is monic, we

have f(t)c = Sn(c)f(t) for any c € K, and so

sP(c)q(t)p(t) + ST(e)r(t) = q(t)p(t)c + r(t)c

= q(t)s"(c)p(t) + r(t)c.
Transposition yields
[Sn(c)q(t) % q(t)Sm(c)] p(t) = r(t)e - s™(e)r(t).

By degree consideration, we must have

(%) r(t)e = s7(c)r(t) and

(*%) q(t)s™(c) = s"(e)q(t).

Replacing ¢ by S_m(c) (the fact that S € Aut(K) is needed here),
(**) shows that q(t)-K& K-q(t), i.e. q(t) 1is right semi-invariant.
Using the inductive hypothesis, we have then q{t) € K{b(ti]. From (*),
we see also that r(t) is right semi-invariant. Since deg r(t) < m,

r(t) must then be a constant. Thus, we have
f£(t) = q(t)p(t) + r(t)e K[p(t)]-p(t) + K € K[p(t)]. Q.E.D.

Proposition 2.10. Assume that the above p(t) exists (but not assum-

ing S to be a

—_— —_—

automorphism). Then p(t) 1is unique up to an additive

*
constant. Moreover, for a€ K , p(t) + a 1is right semi-invariant
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m

iff § = Ia (where m = deg p). In particular, p(t) 1is unique

iff Sm is not an inner automorphism.

Proof. Suppose p'(t) 1s another candidate. Then deg p' = deg p = m,
from which we see easily that p'(t) - p(t) 4is right semi-invariant.

i *
Therefore, p'(t) — p(t) = a € K. TFor p(t) +a (a€ K) to be

actually right semi-invariant, we need

s"(c)(p(t) + a) = (p(t) + a)c

= s®(c)(p(t) + a) + (ac - S7(c)a)

for all c€ K, 1.e. Sm(c) = acaﬂl. Thus the necessary and suffi-
cient condition is that s” = Ia . The last statement of the Corollary

now follows immediately from thig:. Q.E.D.

We are now in a position to determine the set of ali right semi-
invariant polynomials in R, in case S 1is an automorphism. Letting
Inn(K) denote the group of inner automorphisms of K, the order of S
in Aut(K)/Inn(K) 1s called the inner order of S. It turns out that
it is this inner order which holds the key to the structure of the set

of right semi-invariant polynomials.

Theorem 2.11, Assume S € Aut(K), and let p(t) be a (monic) non-

constant right semi-invariant polynomial in R of the least degree,

538Y m.

(1) If S has infinite inner order, then the right semi-invariant

polyvnomials in R are precisely those of the form a-p(t)r where

a€ K and r© 2 0.
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) &
(2) Let S be of finite inner order k, say Sk = Iu (u€ K ).

Let d = ged(k, m) and wvrite k = dk', m=dm'. Then the right semi-
invariant polynomials in R are precisely those of the form

(%) 8w 2 g, o FDRK (1

0<i<r 1
i=r(mod k')

wvhere a€ K, é'r =1 and EiE Z(K). ."

Proof. Let f(t)€ R be a monic right semi-invariant polynomial.
Tr

By (2.9), f(t) 4is expressible in the form . aip(t)i, with
i=0

n = deg f = mr, and a, = 1. The right semi-invariance condition

f(t)e = Sn(c)f(t) (Y c € K) now becomes
T s"@apmt = Tapmic= ZasM@pot,

i.e. s“(c)ai - aiSmi(c) for g i€ . Replacing e by & “(cl.
this amounts to _Snﬂml(c)ai = ac (for all ¢ € K). Therefore, in

Case (1), all a, 's must be zero for 1< r, and we get f(t) = p(t)r.

Conversely, of course, all a-p(t)r are right semi-invariant. Now

assume we are in Case (2), and use the notations there. Then, whenever

a, ¥ 0, we have Sn-mi = Ia and therefore the inner order k of S
. i
divides n-mi = m(r-i), and so k' divides r-i. Moreover,

- - _ L] L} - ] 1
gh-mi _ Sk(r i)m'/k = 1(r i)m'/k

ai u

I

: 1 1
implies that ai = £iu(r 1)m’/k for some Ei € Z(K). Therefore,

f(t) has the form (*) (with a = 1). Cotversely, consider any
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i

i =1 (mod k') and £ € Z(K). Writing r-i = k'j, we have

= t
summand fi(t) = £ u(r 1)a'/k p(t)i of (*) where 0 <£i<r,

wi = mr - kjm' , so for any ¢ € K :

3 oI, 5™ oy peeyd

A A G L By e

- g 7L T (™) peny?
u

fi(t)c

. & Ty 1P eyt

i
s™(e) £,(0) .

It follows that any a-Z fi(t) as in (*) 1is right semi-invariant.

Q.E.D.

It is worthwhile to record the simplest manifestation of the

theorem above, in the special case when D = Q. Note that in this

case we can choose p(t) = t.

Corollary 2.12, Assume that S € Aut(K) and D = 0.

(1) If S has infinite inner order, then a-tt (a€ K, r=0)

are all the right semi-invariant polynomials in R = K[t,S].

(2) Let S be of finite inner order k, say Sk = Iu . Then the

ripht semi-invariant polynomials in R are precisely those of the

form a Z c ujtr_kJ » where acg€ K, e ® 1, and Cj € Z(X).

jzo0 3
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§3. Quasi-algebraic derivations

The material in the second half of $§2 calls to attention the

important question: When does there exist a (monic) non-constant right

semi-invariant polynomial in R = K[t,S,D] ? 1In order to give an

answer to this question, we recall the following definition which was

first introduced in the 1984 thesis of B. Lemonnier [Leﬁ].

=
Definition 3.1. An S-derivation D is called quasi-algebraic if
n
there exist a a_ € K with a =1 such that :E: a Di is
1’ e 3 n ; n i=1 i
an inner derivation with respect to the endomorphism Sn. (For instance,

any S-ioner derivation is quasi-algebraic, and so is any algebraic

S-derivation.)

With this defintion, we have the following answer to the question
raised at the beginning of this section, without any assumptions imposed
on S. The equivalence (1)&—» (3) herein is due to Lemonnier [Lem:

Th. (9.21)].

Theorem 3.2. The following are equivalent for R = K[t,S,Q] :

(1) There exists a (monic) non-constant right semi-invariant polynomial

in R g

' n
(2) There exists a polynomial g(t) -‘;: aiti'e R with n2> 1 and
=0
a = 1 such that for any c€ K :

(*) g(t)e = 5" (c)g(t) (mod Ret);

(3) The = S-derivation D is quasi-algebraic.




Because of the intrinsic interest of this result, and because of

the fact that Lemonnier's proof of (1)¢&—>(3) is not easily accessible,

we shall offer a complete and direct proof of the Theorem below.

Proof of (3.2). (1)==>(2) is obvious (see (2.2)(2)).

(2) ==>(3). (*) means that g(t)c and S"(c)g(t) have the same
constant term when both are written out as left polynomials. Therefore, .
going through the proof of (2)4&=>(3) for lLemma 2.2, we can still
compare the constant terms, and thereby ascertain the conclusion

(2.2)(3) for j =0, 1i.e. we'll.have for all c €K :

n < i = i
S (c)ao = ? aifo(c) = Z aiD (e).
=0 i=o
Therefore, i
& i n
(3.3) 2 aD(c) =8(c)a_-ac=D (c) (YceKr,
o o n
i=1 -a_,S
o]
which means, by defintion, that D 1is quasi-algebraic.
(3) —=>(1). Suppose D 1is quasi-algebraic, say with (3.3) holding
for suitable constants a , .. , 8 , with n2>1, a =1. Let
5 o n n
i
g(t) := z ait € R. Then, for any x € K, we have

i=o

(3.4) g(D) (x) = (D o 301) (x) = s“"(:,;)acl .

_ao,s
Replacing x by e¢x (where.c g K), we then have

g(D) (cx) = §7(c)s"(x)a_ = $"(c)e(D) (x).

Therefore, we have an operator equation
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(3.5) g(D)c = S"(c)g(D) (Vecen,

where the constants are thought of as left multiplication operators
on K. This equation holds in the image of the natural ring homomor-

phism
(3.6) € : K[t,5,D)] —> End (K, +)
which sends t to D and sends the constants in K to their left

multiplication operators. We now go into the following two cases.

Case A, ker £ =0 (i.e. D 1is not algebraic). Here, g 1is injective,
so the equation (3.5) pulls back to a polynomial equation g(t)c =

Sn(c)g(t) in K[t,S,DJ, and hence g(t) 1s right semi-invariant.

Case B. ker £ # 0 (i.e. D is-algebraic). Let ker £ = R-h
(using the fact that R 1is a left PID). Then, since ker & is a
2-sided ideal, h # 0 is right invariant, in particular right semi-

invariant. Q.E.D.
We have also the following supplement to the theorem above.

Theorem 3.7. Assume that R has‘3 (monic) non-constant right semi-

invariant polynomial.

(1) Let p(t) be such a monic polynomial of the least degree, say m.

(2) Let p'(t) be a monic non-constant polynomial of the least degree,

say m' , such that p'(t)ec = Sm'(c)p'(t) (mod R-t) (V cé€ K.

(3) Let ajse-+sa €K be such that n 2 1, a = 1, and



12

n

Z 3113‘"L =D 5 9 where n is chosen to be as small as
i=1 -a ,S

o n 4
possible; let g(t) = E at” .

i=0 .
Then we have m =m' =n, p'(t), g(t) are both right semi-invariant,

and p(t) = p'(t) = g(t) (mod K). Moreover, p(t) = p'(t) = g(t)

unless S° is an inner automorphism. If D happens to be algebraic

and S 4is an automorphism, then the degree of the minimal polynomial

for D is always a multiple of m.

Proof. From the proof of (2) ==»(3) in the theorem,we have n< o',
and of course also m'< m. As before, we shall distinguish the
following two cases depending on the behavior of the homomorphism &

in (3.6) :

Case A. ker € = 0. From the "pullback" argument used before, we see
that g(t) and p'(t) are in fact right semi-invariant. Therefore
m<n and hence n< m'€ m now become equalities. By (2.10),

we conclude further that p(t) = p'(t) = g(t) (mod K).

Case B. ker € # 0. Write ker & = R*h where h is the minimal
polynomial of the algebraic derivation D. For the polynomial g(t),

recall that we have the operator equation
g(@)ec = s"(c)g(D) (cf. (3.5))

holding for every ¢ € K. Lifting this equation back to R using the

homomorphism &£ , we have

(3.8) g(t)e - S7(c)g(t) = q_(Dh(t),



where qc(t)e R depends on c. Since h(t) is right invariant,

deg h 2 m. If there exists a ¢ € K such that the 1LHS above 1s

not zero, then, for this ¢, we would have
n > deg (LHS) 2> deg h(t) 2 m,

a contradiction. Therefore, the LHS of (3.8) is zero for all c€ K,
i.,e. g 1is right semi-invariant. Replacing g by p', ve see e
similarly that p' is right semi-invariant. Therefore, we can finish

the argument exactly as in Case -A.

The uniqueness statement in the Theorem now follows from Prop.
(2.10). 1In fact, we are free to change any one of p(t), p'(t) and
g(t) by an .additive constant a;€ K 1ff §" o Ia . Finally, if D
is algebraic (Case B above), its minimal bolynomial h(t), being right
invariant, will be expressible as a (left) polynomial in p(t), in case
S 1is an 'automcrphism (see (2.9)). It follows then that deg h 1is

divisible by deg p = m. Q.E.D.

Corollary 3.9. Assume S is an automorphism, and that D 1is algebraic

with a minimal polynomial h of prime degree f If D 1is not an

inner S-derivation, then no D'r + br_lnr-l + cee + bID wvith r< f

> 3
can be an inner S -derivation, and h(t) has the least degree among

all non-constant right semi-invariant polynomials.

Proof. Keeping the notations in Th. (3.7), we have deg g ldeg,- h.
Since deg h = f is prime and n = deg g ¥ 1, we must have

m=n-=/¢ , which gives the two desired conclusions. Q.E.D.



Having looked at conditions for the existence of non-constant

right semi-invariant polynomials, it is natural to look for conditions
for the existence of non-constant right invariant polynomials (i.e.
for the non-simplicity of R). There seems to be some evidence for

the following

(3.10) Conjecture. R has a non-constant right invariant polynomial

iff it has a non—ﬁonstant right semi-invariant polynomial. Or equiva-

lently (in view of Th. (3.2)), R 1is non-simple iff D 1is quasi-

algebraic.

(Needless to say, the weight of the Conjecture is in the

"LEY part.) ..

Most remarkably, Lemonnier has provéd the truth of this Conjecture
in the case when S 1is an automorphism [Lem]. This result has pro-
vided the strongest evidence for the Conjecture so far. Recall also
(from (2.6)) that if there is a linear right semi-invariant polynomial
f, then £ must be automatically right invariant. Such a polynomial
f exists iff D 1is an inner S-derivation (cf. [LLl: (3.&)(1)]):

in this case, the Conjecture is, therefore, trivially true.

In view of Theorem (3.7), it will be of interest to give as much
information as possible on "the'" polynomial p(t), if it exists. We
shall content ourselves here by dealing with the two key cases
(a) D=0, and (b) S = I. In case (a), we can just take p(t) =t

and (3.7) gives all the desired information. 1In case (b), we have
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the following fairly precisé description of p(t), largely inspired by

ideas in [A'] and in [LM].

Theorem 3.11. (S = I) Let p(t) = Zaiti be a monic non-constant

right semi-invariant polynomial of the least degree, say m. (We are

assuming that p(t)- exists.) Then:

(1) D(ai) =0 for i=1,2,...,m, and D(ao) € Z(K), the center of K.
_— - b — !

i e
(2) If char K=p >0, then p(t) has the form Z citi + a,
i=o0 i
where ¢, € Z(K)Y K., and D(a ) € Z(K). Moreover, z: pP = p i
B G p 22 P&, =D L6y -a_
(3) If char K =0, then p(t) =t + a and D = D—-a ”

0
Proof. Since S5 = I, to say that a polynomial is right semi-invariant
simply means that it commutes with constants (see(2.2)(2)). To prove (1),
the crucial -observation is that atp(t) - p(t)t commutes with constants.

In fact, for any c€ K,

[ep(e) = p()e] e = tep(t) - p(t) (et + D(c))

(3.12) ctp(t) + D(c)p(t) - p(t)ct - p(t)D(c)

c [ep(e) - p(o)e] .

On the other hand,

o mtl m m=-1
tp(t) p(t)t =t + a qt (D(am_l)+am_2)t i i
m+l m
t am_lt = e s
m-1 .
= Z D(ai)tl
1=0

has degree < m. Thus, (by the minimal choice of m), tp(t) - p(t)t
must be a constant (namely, D(ao)). This gives D(ai) =0 for 121,

s
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and (3.12) gives D(a )€ Z(K).

(2) By (2.4)(1), we have .
! 1-§ ' s B
(3.13) ca, = Z ( .)a D" “(c) for any c€ K, and jZ 0.
] = Vi1
For j = 1, define-the polynomials
LR 1-j
(t) := Z (J) at € K[t,D] with -

P
i .
(3.14) 1=3

deg pj(t)é m - j< m,

Calculating as in [LM: pp.1255-1256], we can check via (3.13) that
each pj(t) (1€j<m) commutes with constants. By the minimal choice
of m, we must have then pj (t) = aj € Z(K) (in addition to aj & KD

which we prdved in (1)), and frow.(3.14), we see that

(3.15) (i) a, =0 V1,3 suchthat 1£j<igm.
J
Exactly as in [LM], we conclude from this that, when char K = p > 0,

aj # 0 (j21) can occur only when j 1is a power of p. Therefore, p(t) has
i i
P

k k
the form Z citp +a, and it follows from (3.3) that Z cy

i=o " i=o0
is equal to the inner derivation D_a . (Aside from the constant term

) o
a p(t) is a "p-polynomial" in the sense of Ore [0'].)

(3) Now assume char K = 0. 1In this case, setting i =m in (3.15),
we have (?)am = 0 whenever 1< j<m. Since a = 1, the only
way for this to be possible is when m = 1. Thus, p(t) =t + a s

and by (3.3) (for instance), we have D = D_'a . Q.E.D.
o
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i&. P-dependence and linear dependence

We begin by recalling some basic notions from [L]. These
notions were introduced in [L] in the case D = 0, but they are
equally meaningfgl in the general case. A set A c K 1is called
(S,D)-algebraic (ér just algebraic if (S,D) is clear from the con-
text) if there exists a nonzero polynomial f(t)e R = K[t,S,D] S_L!l‘C.h
that £(A) = 0. In this case, the monic f of the least degree with

£(A) =0 is called the minimal polynomial of A , and the rank of A

is defined to be the degree of such an f. The basic properties devel-
oped in [L] for minimal polynomials carry over without change to the
(S,D)-setting. In particular, the minimal polynomial f for an (S,D)-
algebraic set A\ has always ‘E‘completg factorization (t-al)...(t-an)
in K[t,s,ﬁ] where each 8 is (5,D)-conjugate to some element of A,
and any zero of f 4is also (S,D)-conjugate to some element of A

1f /A 1is (S,D)-algebraic, an element b€ K 4is said to be P-dependent

(or polynomially dependent) on /\ 1if every polynomial vanishing on A

also vanishes on b (or, equivalently, the minimal polynomial of 2\
vanishes on b). By what we said above, such an element b must be

(5,D)=-conjugate to some element of A

In this section, we shall focus our attention on subsets
. AS,D '
of a fixed (S,D)-conjugacy class (a). Llet C denote the
s,D *
(S,D)-centralizer C ' (a) = {U} U {CE K : a“ = a} of a.
Then C 1is a division subring of K (see [LL].])’ and K may be

viewed as a right vector space over C. In this section, we shall show



that there is a very close relationship between P-dependence for

elements in AS’D(a) and right C-linear dependence for elements
of K. The basic tool needed to establish this relationship is the
idea of an “"exponential space" introduced (though without such a name)

in [LLl]: for any polynomial f(t)€ K[t,s,D], let
(4.1) Bf, &) = {0} U {yex': £ - o}. it

This is easily seen to be a right C-vector space, henceforth called

the exponential space of f at a. In [LLI: Th. (4.2)] , we have
proved the basic inequality dimc E(f, a) € deg £ (which, in the
special case a =0, boils down to Amitsur's Theorem in [A]). We shall-

now explore some consequences of this important inequality.

: _ .
‘Proposition 4.2. Let Y be any subset of K , and let .aY denote

{ay: y € Y}. Then aY is (Ss,D)-algebraic iff span(Y) is finite

dimensional over C := CS’D(a). (Here, span(Y) denotes the right

C-vector space of K spanned by Y.) Furthermore, in this case,

rank (aY) = dim_ span(Y).

C
Proof. For the “"only 1f" part, let £ E R = K[t,S,D] be the minimal

polynomial of aY . Then Y < E(f, a) and so

dimC span(Y) < deg f = rank (aY) < o0,

Conversely,'suppose span(Y) has right C-dimension n< o0 and let

Yyreees¥y € Y form a C-basis for span(Y). Fix a polynomial

y
g € R {0} of degree £ n such that g(a i) =0 for i1i=1,2,...,n



(see [L : Prop. 6]). Then yiE E(g, a) for all {1 dimplies that
YC E(g, 2) &and so g(aY) = 0. This shows that aY is (5,D)-

algebraic with .rank (aY)$ deg g £ n= dimc span(Y). Q.E.D.

*
Proposition 4.3. Let Y& K be such that a = AP ’D(a) is

X is P-dependent on a'

*
(s,D)-algebraic. - Then, for any x€ K, a

iff x € span(Y).
-

Proof. First assume x g€ span(Y). Consider any f € R such that

f(aY) = 0. Then Y < E(f, a)  implies that span(¥) € E(f, a). There-
fore, x € E(f, a), 1i.e. f(ax) = (0, This shows that a* is P-dependent
on aY. Conversely, assume a* is P-dependent on aY. Then rank {aY, ax}
= rank (a__Y) and so, by the Proposition above, w.;_ have dimc span{Y, x}

= dim_ span(Y). This clearly“fmplies that x € span(¥).  Q.E.D.

Definition 4.4. An (S5,D)-algebraic set A is said to be full

if every x€ K which is P-dependent on /) actually belongs to A,

From what we said earlier about minimal polynomials, it follows

readily that an (S,D)-algebraic set A is full iff /\ consists

of all the zeros of its minimal polynomial in K.

Theorem 4.5. Let a€ K be given and let C = CS’D(a). Then there is

a one-one correspondence between the full (5,D)-algebraic subsets of

AS’D(a) and the finite dimensional right. C-linear ‘subspaces g_f_ K.

Moreover, this one-one correspondence preserves inclusion and rank.

Proof. For a finite dimensional right C-subspace Y U { 0} C K,
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we associate the (S,D)-algebraic subset aY of AS’D(a). We claim

that aY Efull. Indeed, let 2z 'be an element of K which is

P-dependent on aY. Then 2z 4is a zero of the minimal polynomial
' ®

of aY, and so z € AS-'D(B). Write 2z = a~ where x € K. By

Proposition (4.3), we must have x¢€ span(¥) = Y l:) {0} and so

a* € aY , as desired. Next, we have to show that Y U {0}  — aY

& L
a

gives the desired one-one correspondence. First, suppose aY - 3

where Y U {0}, Y'U {0} are both finite dimensional right

C-subspaces of K. Then for any” y € Y, we have al =a for some

y'€ Y'. But then, conjugating by y'_l, we get a = (ay)y' =
ay'-bly (see [LL : (2.6)]), so y*yec, t.e. yeyceyU{0}.
This shows that Y€ Y' and so by symmetry we must have Y = Y'.
Finally, let A be any 'f‘ull (S,D)-algebraic subset of AS'D(a),

say with minimal polynomial £. Then A consists of all zeros of f.

Let Y :=-{y€ K*: aye A} . To show that YL.J{O} is a right
¥
1

C-subspace of K, let Yi» ¥, € Y and € C. We have f(a 7) =

. c1s C5

f(a 2) =0 so Yy» y2€ E(f, a), which implies that ylt:l+y2t:2 €
16179252

E(f, a)« I Y19+, # 0, we'll have f(a ) = 0 and so

y,c,+y,C

a 177272 € A. By the definition of Y, we have then ylcl+y2c2 € Y.

We have clearly aY = A and by Proposition (4.2), dimC Y U {O} =

rank /A € o0. The proof is now complete.

In [L] , 1t was shown that many of the key facts on linear
dependence and bases in linear algebra have-valid analogues for

P-dependence and P-bases. (All arguments in [L:] extend without



change to the (S.D)—settiﬁg.) The above results giving the explicit
relationship between P-dependence and linear dependence have Qow
explained why such a close analogy should exist. Actually, this
relationship has alreaay been exploited in [LL1= Th. (4.45] in our
computation of #he:;ank_of an (S,D)-Vandermonde matrix. The work

we did in this section gives a fuller treatment of the ideas involved,

and makes explicit the one-one correspondence in Theorem 4.5 above.

31
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§5. Algebraic Conjugacy Classes

We begin with a few basic observations.

Lemma 5.1, Let f€ R = K[t,S,D] be a right semi-invariant polynomial.

If a€ K 1is such that f(a) = 0, then f£(AS'D(a)) = 0.

=
Proof. For any c € K, we have f(t)c = c'f(t) for some c'e R
1
depending on c¢. Using the Product Theorem [LLl: (2.7)] to evaluate
the two sides of this equation at a, we get f(ac)c = c'f(a) = 0,

# *
and so f(ac) = 0 for every c€ K. Q.E.D.

Lemma 5.2. Let A be an (S,D)-algebraic subset of K which is

closed under (S,D)-conjugation. (This means that A is the union

of a finite number of (S,D)-can_{u‘gacy classes of K.) Then the minimal

polynomial f(t)€ R of A 1is a right invariant polynomial.

Proof. Consider any h(t)€& R. 1If we can show that f(t)h(t) wvanishes
on A » then we will have f+h € R-f as desired. Llet b be any
element of A . By the Product Theorem again, we have

0 1f h(b) = 0,

(£h) (b) = { 2
f(b)e if c := h(b) # 0.

In the second case, since b € A implies that b € A, f(bc) is

also zero, and so fh vanishes on all of A 4 Q.E.D.

Proposition 5.3. Let A PEE_ full (S,D)-algebraic set (in the sense

f (4.4)) with minimal polynomial f € R. Then the following are equi-

valent:



(1) A 1s closed under -(S,D)-conjugation;

(2) f is right invariant;

0

(3) f 1is right semi-invariant.

Proof. (1)=>(2) 4s given by the preceding lemma, and (2)=—> (3)
is obvious. For (3):(1), let a € /\ and consider any conjugate

a® of a. Since we assume f 1s right semi-invariant, f(a) = 0 ‘

implies that £(a°) = 0 by Lemma 5.1. The fact that /\ 1s full
means that A consists of all the zeros of f. Therefore, we have

a e A. Q.E.D.

n

Proposition 5.4. Let A\ be a finite disjoint union U AS ’D(ai).
i=1

Then the following are equivalent:

(1) Ai_s_ (S,D)-algebraic;
(1) each  AP(a)) (1€i€n) is (S,D)-algebraic;

(2) There is a nonzero right invariant polynomial which is a common

left multiple of all t - a

(3) There is a nonzero right semi-invariant polynomial which is a

common left multiple of all t - ay (1<1i<n).

If these conditions hold, the monic f£(t) of the least degree as in

(2) (or (3)) is exactly the minimal polynomial of A Furthermore,

the minimal polynomials fi of AS’D(ai) pairwise commute, and we

have f(t) = fl(t)....fn(t).

[Note. In the standard terminology of [J: p.38], the condition

n
on the a, 's in (2) is that the left ideal’ () Re(t-a;) be bounded.
i=1
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In this case, the Corollary asserts that the "bound" of nR-(t-ai)

is given by R-f, and that this is also the product of the bounds of

R-(t-a,) (1€1€n). ]

Proof of (5.4). (1) (1') follows from the fact that the union of

a finite number of algebraic sets is algebraic. But we can also avoid

using this fact by proving (1') == (2) and (3) —> (1), for then

1.

we'll have a complete cycle of implications

L= Q") = 2) = 3) = (1).

(1Y) ==3(2) Lek fi be the minimal polynomial of AS’D(ai) . By

(5.3), each f, is right invariant. It follows that f ....fn is

i 1

right invariant and is a left multiple of each of fi' Since fi is

a left multiple of t-ai, fl'

...fn gives the candidate for (2).
(3) =—=>(1) Let g(t) be a right semi-invariant polynomial as in (3).
Then g(a)) =0 (1€1€n) implies that g( AS’D(ai)) =0 by (5.1),

and so g(A) = 0.

The above arguments also suffice to show that the monic f(t) of
the least degree as in (3) (or (2)) is exactly the minimal polynomial
of A , and that such an f is a right factor of fl""fn' Since
by the Union Theorem iﬁ [L] (which extends verbatim to the (S,D)-
setting) rank A = En: rank AS’D(ai) = i deg fi , 1t follows

i=1 i=1

that f = f 'fn' Applying this in the case n = 2, we conclude

ll-l.

further that fifj = whenever 1 ¥ j, since both sides of the

fjfi
; . ; AS'D s,D
equation give the minimal polynomial of (ai) UA (aj). Q.E.D.



Before we proceed further with our treatment of algebraic conju-

gacy classes, let us recall some facts from [LLl] in a form most

suitable for applications in this section.

%
Lemma 5.5 Let p(t) € K[t,5,D] and y€ K. Then

(1) pM ) = p0)y ;

(2) If D=0, then p(S)(¥ = p(1)y. (Here, 17 = s(y)y "2)

Proof. (1) has been shown in the proof of Cor. 4.3 of [LLi].

For (2), first note that Ni(l% =1 for all 1> 0. (The Ni 's are
the generalized '"power functions" with respect to (S,D): see [LL1:§2])
From [Lle Prop. (2.9)(1)] applied to the special case D = 0, we
have then Ei(ly)y = Si(y) for all 1 2 0. (This can also be checked

by a direct calculationf) Thusf:if p(t) = EZ aiti , we have
i
P = Zasty) = 2 aN Ny = ey, Q.E.D.
let a € K be a fixed element. Then, for any cé€& K,

(t-=a)c = S(c)t + D(c) - ac
= S(c) (t-a) + S(c)a - ac + D(c)

= S(c)(t-a) + D'(c),

(D denotes the S-inner derivation of K

where D' :=D - D
a a,s

5 -
]
sending y to ay - S(y)a.) Therefore, we have a well-defined ring

homomorphism

(5.6) A : x[t',s,0] —> k[t,s,0]
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vhich is the identity on K and sends t' to t-a. Clearly A is
an isomorphism of rings (with the inverse isomorphism sending t to
t'+a). Let g(t') be any polynomial in K[t',S,D'], and let

£(t) = A@t")) e k[t,s,0]. Then

( { £(t) = A(g(t")) = g(A(t")) = g(t-a), and
5.7)

et = ATNE@) = (AN = £(e'+a). \,

As we have observed in [Lle §2], the division ring of constants of
D' is just C := CS’D(a). The following lemma provides the basic link
between the solutions of polynomial equations and the solutions of

differential equations in K.

i *
Proposition 5.8. For f € _K[t,S,D] as above, and any y€ K , ve have

g(D")(y) = f(ay)y. In particular, the exponential space E({, a) is

exactly the right C-vector space of solutions (in y) of the differ-

ential equation g(D')(y) = O.

Proof. We first show that, for any b€ K, we have f£(b) = g(b-a).
(This is a special case of a more general result called the "Composite

Function Theorem" in [LLZ]') In fact, write

£(t) = q(t)(t-b) + £(b) where q(t) € K[t,s,D].
Applying the inverse isomorphism A-l, we get

g(t') = q(t'+a) (t'-(b-a)) + £(b) in K[t',s,p"].

Therefore, by the Remainder Theorem (applied to K[t',S,D']),
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f(b) = g(b-a). Now, let b = ay, where y € K . Since

D'y L = [D6y) - (ay-sy)a]y?

=dy ! - a+ s(yay?t

-a - a,

we get f(ay) = g(ay-a) = g(D'(y)y—l). Therefore, by (5.5)(1)

(applied to g(t')E K[t',S,D']), we have RY

£(a)y = g(D'(y)y—l)y =g(d") (). Q.E.D.

Remark 5.9. S. Amitsur {A] has shown that the solutions of the
differential equation g(D')(y) =0 form a fight C~vector space of
dimension < deg g. (Anitsur's originai arguments worked only in the
case when S 1s an aptcmorphi;;: A more general argument establishing
the result for any endomorphism S can be found in [Co: p.BS].)
Assuming this result, the above Proposition leads to another proof of
the fact that, as a right C-vector space, E(f, a) has C-dimension

< deg f (=deg g). This proof is somewhat different in spirit from the

proof we gave earlier in [LLl: Th. (4.2)].

Combining the preceding results with those of §4, we can now
give some additional.criteria (to (5.4)) for a given (S,D)-conjugacy
class ZSS'D(a) to be algebraic. Since CS’D(a) is just the division
ring of the constants of the S-derivation D' := D - Da,S , the
equivalence of (2) and (3) below is well-known (dating from the work of

Amitsur [A]). However, we'll prove this afresh as our arguments will
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also yield the exact information relating the minimal polynomials of

algebraic conjugacy classes and those of algebraic derivatioms.

Theorem 5.10., For a € K, the following are equivalent:

1)y AS*®) is (s,D)-algebraic;
@ [xk: 'L:S’D(a)]'r-t < o0

(3) D' :=D =~ D, is an algebraic S-derivationm.

»S
If these conditions hold, then

rank AS’D(a) = [K CS'D(a)]rt = deg (min. poly. of D').

Moreover, if f(t) € K[t,S,D] is the minimal polynomial of AS ’D(a),

then the minimal polynomial of D' in K[t',5,0'] 4s given by

£CEY # a). - i

’ *
Proof. Let Y = K . Then ZSS‘D(a) is just aY. Since span(Y) = K
as a right CS’D(a)-vector space, (1)¢_:> (2) follows from Prop.

(4.2). The last part of this Proposition also gives the equality

rank As'n(a) = [K H CS’D(a)]rt .

(1)=—=(3) For the minimal polynomial f(t) of As’n(a), we have
E(f, a) = K. Llet g(t') = f(t'+a) € K[t',S,D'] so f and g are
related as in (5.7). Then Proposition (5.8) gives g(D') = 0, so

D' 1is algebraic.

(3)==p(1) 1let’ g (t')€ K[t',s,D'] be the minimal polynomial
of D'. Then by (5.8) again, we have E(fo, a) = K where fo(t) 1=
go(t-a) (=) K[t,S,D]. This means that fo(ay) =0 for all yE€ K*,

S,D . ;
so A (a) 1is (S,D)-algebraic.
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Combining the arguments in the last two paragraphs, it is now

clear that g = g€ k[er,8:0"). Q.E.D.

Let us now record a few consequences of the Theorem. As we have
already pointed out, the following consequence (corresponding to the

case a = 0) 1is lai'gely'classical: et [A] and [LeJ.

Corollary 5.11. D 4is algebraic iff [K. s R‘D]< oo 1iff the logarit'}‘iinic'L

s,D
derivatives with respect to D form an (S,D)-algebraic class A7),

In this case, the minimal polynomial g(t) € K[t,S,D] of D 4is equal

to the minimal polynomial of AS'D(O). In particular, g splits com-

pletely in K[t,S,D], and an element b€ K is a logarithmic derivative

with respect to D iff g(b) = 0.

Next, note that the Theorem yields a criterion for the existence

of an (S,D)-algebraic class:

Corollary 5.12. K has an (S,D)-algebraic conjugacy class iff D is

the sum of an inner S-derivation and an algebraic S-derivation.

, then AS'D(a) = {al

[Remark. If D is inner, say D =D 3

a,s
is obviously an algebraic class. On the other hand, if D is algebraic,

then AS'D(O) is an algebraic class (see (5.11)). 1In general, if

D = D g% D' where D' is an algebraic S-derivation, then (by the

Theorem) AS’D(a) is an algebraic class; moreover, an easy calcula-

L
tion shows that ﬂS’D(a) = a + AS’D (0).]

1f K Iis a field and S = I, then D s - 0 for every a€ XK.

a,

In this case, the Theorem gives the following:
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Corollary 5.13. Let K be a field, and S = I, Then & derivation D

on K 4is alpebraic iff one (or all) of the (I,D)-conjugacy classes

is (are) algebraic.

To put Theorem (5.10) in perspective, note that, in the_classical
case when (8,D) = (1,0), the condition that zﬁs'n(a) be algebraic
means simply that a i1s algebraic over the center F of K, and

“As
rank AS’D(a) is then given by the field extension degree [F(a): F]
(see [L: p.202]). In this case, the equality [K :C(a)] = [F(a): F]
1s well-known, and is usually stated as a part of the Double Central-
izer Theorem. Thus, the Theorem we proved above may be viewed as an

extension of some of the consequences of the Double Centralizer Theorem

to the (S,D)-setting.

Example, Let K be the division ring of the real quaternions and let
S=1, D=0, and a = -i. Then A°'P(a) 4is (S,D)-algebraic (by
the above) with minimal polynomial f(t) = t2+1 € K[t]. From (5.10),
it follows that the minimal polynomial for the inner derivation

' = — -
D 0 D—i,I Di,I is

g(t') = £(t'-1) = (t'-i)2 + 1 = t'2 -it' - t'i
t'2 - it' - (it' + D'i)

t'2

= 24t" e k[e*,0'].

Next, we shall obtain an analogue (and supplement) to Th. (5.10),

in the case when D = 0. Let a€ K be given, and assume a ¥ O.

Since we now assume D = 0, we have
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(a-lt)c = _a_IS(c)t = abls(c)a-a_lt (for any c € K*).

1

Writing I _, for the inner automorphism which sends x to a “xa,

1
a _~
we have then (a lt)c = S(c)t where S =1 _10 S. Therefore, we have
a
a well-defined ring homomorphism

(5.14) [".: K[t,5] —> K[t,s]

which is the identity on K, and sends t to a-lt. As was the case

for /A 1in (5.6), [" is an isomorphism, with its inverse sending

t to at. For any h(?)E K[E,E], define

£(t) := [T((®) = h(a"'t), so that
(5.15) {

n(®) = [ THE) = £(aT).

-

We have now the following analogue of Proﬁ. (5.8).

Proposition 5.16. (D = 0) With the above notations, we have

f(ay)y = h(S)(y) for any y€ K . In particular, the exponential

space E(f, a) 1is exactly the right CS(a)-vectDr space of the solu-

tions (in y) of the equation h(3)(y) = 0. [Note. By (5.8), E(f, a)

ds also the solution space of the differential equation 1;;(-~Da S) {y)=0,

vhere g(t') = £(t'+a). ]

Proof. Proceeding as in the proof of (5.8), we can show that
f(t) = h(a—lt) —— h(a—lb) for every b€ K. (Again, this
is a special case of the Composite Function Theorem in [LLz].) Now

o> -~ *
applying Lemma (5.5)(2) to h(t)€ K[t,S],' we have, for every y€ K :



h®) ) = hEy Dy
= £(a5(y)y Dy
= f(a-a-ls(y)ay-l)y
= f(a)y,
as desired. | Q.E.D.

"We have now the following refinement of Th. (5.10) in the case

D=0 (and S any endomorphism of K).

*
Theorem 5.17. (D =0) For a€ K, the following are equivalent:

(1 A’ = {S(C)ac_l : cE K*} is S-algebraic;

(2) [K : Cs(a)]rt < o0 (where Cs(a) = ‘{CE K : S(c)a = ac)} )

(3) D__ g is an algebraic S-derivation;
- .
(4) The endomorphism S = I _ ;¢S is algebraic.
a

1f these conditions hold, and f(t)€& K[E,S_J is the minimal polynomial

S . . s 1
of A"(a), then the minimal polynomial of D-a,S in K[t ’S’D—a,S]

is f(t'+a), and the minimal polynomial of s in K[-E,g_l is f(at);

-
moreover, S and S must be automorphisms of finite inner order.

Proof. The equivalence of (1), (2), (3) and the relation between the

minimal polynomials of AS (a) and D__ follow by specializing

S
3
(5.10) to the case D = 0. The equivalence of (1) with (4) and the
S ~
relation between the minimal polynomials of /N(a) and S now

follow similarly by applying Proposition (5.16). By [L; Lemma 5] 5

f(t) has the form (t:-al)....(t-an)(-:i([t,S] for suitable aiEAS(a)-
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Therefore, f(t) has constant term b = ayeeea ¢ 0. By (2.3)(1), it

follows that Sn = Lb , So S 1is an automorphism of finite inner order
dividing n. Since %’ has the same inner class as S, the same holds

~
for sS. Q.E.D.

Remark 5.18. It follows easily from the above that the S-inner deri-
1 L]
vation D-—a,S satisfies a polynomial g(t')e€E K[t ’S’D—a,S] 1ff the

endomorphism E =1 __lnS satisfies the polynomial h(‘{)=g(a(?-1))€ K['E,E}
a

Letting a = 1 in Theorem (5.17), we get:

= *
Corollary 5.19. (D = 0) The set {S(c)c : : c€K } is S-algebraic

15t [K : k%] < o0, 1ff S -1 1is an algebraic S-derivation, iff

S is an algebraic endomorphism. For any of these conditions to hold,

S must be an automorphism of fimite inmer order.

(If S is assumed to be an automorphism of K to begin with, the

implication that [K - KS]HC © —> S has finite inner order is, of

course, a well-known fact in the Galois theory of division rings (see,

e.g. [Co: p.&?]) .

Going back to the general (S,D)-setting, let us now give some
simple characterizations for the minimal polynomials of the (S,D)-

algebraic conjugacy classes in K.

Theorem 5.20. For a monic non-constant polynomial f(t) € R, the

following are equivalent:
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(1) £(t) 41is the minimal polynomial of an (s,D)-algebraic conjugacy

class AS'D(E);

(2) f£(t) 1is right invariant, has a zero in K, and has no proper

left or right factor which is right invariant;

(3) £(t) 1is right semi-invariant, has a zero in K, and has no proper

right factor which is right invariant.

Proof. (2)=—=>(3) 1is a tautology.
(3) = (1) Let a€ K be aroot of f. Then by (5.1), f(AS’D(a))

= (0 and so f is right divisi.ble by fo' the minimal polynomial of

1}

AS*P(ay. since £ is right invariant, (3) implies that £ = £ .

(1)—=>(2) We already know that f is right invariant, and that

f has a root (namely, a ). GConsider the simple left R-module V =
R/R-(t-a). We shall identify V with K via the correspondence
-g(_t)}—-} g(a). Viewing K as a left R-module through this identifi-
cation, the action of a polynomial g(t)€& R on an element c & K*

is given by
(5.21) g(t)¥ c = g(t)e | . = 8@@d)e,

by the Product Theorem in [LLl: (2.7)] . In particular,

1

ann_ V

R {S(t)ER: g(ac)=0 VCEK*}

{ g e rR: g AV @) = o}

R-f .

(5.22)

1]

Therefore, V 1is a faithful simple left i{/R-f—module. Since R/R-f

is artinian, it follows that R/R-f 1s a simple ring. This means
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that R-f 1is maximal as a 2-sided ideal in R, and so £ has no
proper right factor which is right invariant., It follows from this

that f has also no proper left factor which is right invariant. Q.E.D.

The observation we made in the proof above about the simple left

R-module R/R-(t—a). (for any a) have also some other consequences
I I3 S’D

which are worth recording. If a 1is such that Z} (a) 1is not .

(S,D)-algebraic, the first two equalities in (5.22) would show that

R/R+(t=a) 1is a faithful simple left R-module. Therefore, we have:

Corollary 5.23. R = K[t,S,D] 1s a left primitive ring unless all

(8,D)-conjugacy classes are algebraic. (In particular, K[t] is a

left primitive ring unless K 1is algebraic over its center.)

Also, whether ZSS’D(a) is algebraic or not, for any poly-
nomial g(t) € R, the annihilator of g on K identified with V =

R/R:(t-a) as a left R-module is (by (5.21)) exactly
{O}U{ce K* : g(ac) = 0} = E(g, a).

This gives a very interesting new interpretation for the exponential
space E(g, a), which was pointed out to us by Professor S. Amitsur
during the Conference. In fact, as Professor Amitsur further pointed
out, the fact that dimC E(g, a)< deg g for C = CS’D(a) can be
deduced from the Jacobson-Chevalley Density Theorem, upon noting that
C 1is isomorphic to EndR V as a ring of right operators on V.

This deduction is a rather illuminating exercise which we shall leave

to the reader. Let us now make two additional remarks. First, in the
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case when [}S'D(a) is algebraic with minimal polynomial f, the

Artin-Wedderburn Theorem implies that
R/R-£ ¥ End, (R/R-(e-a)) F M@,

where n = [K H C]ft = deg f. Secondly, whether ZES’D(a) is

algebraic or not, it is also possible to derive from the Density

Theorem some of the key facts in §4 relating the P-dependence of

elements 1n ZS?'D(a) te the right C-linear dependence of the
elements of K. However, we do not feel justified to include the

details of these alternative proofs here.

To conclude this section, we shall now combine Theorem (5.20)
with Cauchﬁn's result (Theorem 5:8) to derive some more interesting
information on the minimal polynomials of (s,D)-algebraic classes.
We first make the following easy observation on Z(R) (the center

of R = K[t,S,D]) which is essentially well-known:

Lemma 5.24. If Z(R) contains a polynomial h(t) = o "t + ....

of degree n 21, then s" = I, and S(x¢) =of.

Proof. For amy c €& K, we have ot e JE sl e .
Comparing leading coefficients, we get Ci—lSn(c) = ccx_l , SO

s" = 1, . Similarly, (™4 L)t = b e 4+ ..., ) leads
to s(ahy = x7h, Q.E.D.

In case D=0 and S is not an automorphism of finite inner

order, we have shown in Theorem (5.17) that K has only one S-algebraic
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conjugacy class, namely, éf(ﬂ) = -{0}, with minimal polynomial t.
Using Cauchon's Theorem (2.8) and Theorem (5.20), we can now generalize

this fact to the case where D need not be zero.

Theorem 5.25. Assume that S 1is not an automorphism of finite inner

order. (This includes the case when S 1is not onto.) Then there is

at most one (S,D)-algebraic class ZXS’D(a), and if such a class'

exists, its minimal polynomial f(t) 1is a non-constant right invariant

polynomial of the least degree.,

Proof. Look at an algebraic class ZSS’D(a) with minimal polynomial
f(t), and let q(t) be a monic non-constant right invariant polynomial
of the 1eagt degree, as in (2.8). Since by (5.24) there is no non-
constant central polynomial, (2.8) and (5.20) imply that £(t) = q(t);

in particular, ZXS’D(a) is unique (if it exists). Q.E.D.

Remark 5.26, It can be shown that the f£(t) above has, in fact,

minimal degree among all non-constant right semi-invariant polynomials.

We shall not prove this fact here since it does not follow directly

from the techniques developed in this paper.

Finally, we treat the case when S 1is an automorphism of finite

inner order.

Theorem 5.27. Let S be an automorphism of finite inner order k.

s
Then, for all (S,D)-algebraic classes A *P(a) with possibly one

exception, the following holds:
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(1) The minimal polynomial £(t) of ZBS’D(a) lies in K-Z(R);

(2) f(t) commutes with all monic right semi-invariant polynomial; and

(3) The rank of A°’’(a) is divisible by k.

Finally, the rank of any (S,D)-algebraic class is divisible by

deg q(t), where q(t) is a monic non-constant right invariant

polynomial of the least degree.

1.
Proof. By (2.8), the minimal polynomial £(t) of any algebraic class
S,D : T : A

A%'2(a) has the form o -h{t)q(t)", where o€ K, h(t) € Z(R)
and r 2> 0. Bringing (5.20) to bear, we see that f(t) is either
equal to q(t) or o+ h(t). Thus, with the possible exception of

one class, [}S’D(a) has minimal polynomial f£(t) = x+h(t) =
af(ct_ltn + +4+. ), where n = deg h. By (5.24), we must have

. s,D

s =1, and S(ot) =o/, The former implies that n = rank A’*7(a)
is a multiple of the inner order k of §. To prove the property (2),

let g(t) be any monic right semi-invariant polynomial, say of

degree m. Then we have

s™(e¢ ) g(t)h(t)

g(t)f(t) = g(t)ax h(t)

n
I

& h(t)g(t) = £(t)g(t),

as claimed. Finally, since in any case £(t) is either ol-h(t) or
q(t), the last part of Cauchon's Theorem (2.8) implies that n = deg f

is always divisible by deg q. Q.E.D.

Note that part (2) above strengthens the fact, first proved in

Proposition (5.4), that the minimal polynomials of two distinct (S,D)-
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algebraic classes always commute. This fact is now an obvious conse-
quence of (5.27) (2) vhen S 1is an automorphism of finite inner order,
and, in view of (5.25), is vacuous when S is not an automorphism

of finite inner order.

0f course, in.Theorem (5.27), an "exceptional" (S,D)-algebraic
class may indeed exist, and it would behave somewhat differently frgm
the other algebraic classes. For instance, let K be a field with
an automorphism S of order k, and let F = KS. Then, in the

notation of (2.8) (with D = 0), we have q(t) = t, ho(t) = tk in

R = K[t,S], and Z(R) = F[tk]. Any class Z}S(a) with a& K  has

rank k and minimal polynomial tk - NK/F(a)l (see [L: p.208]),

but the "exéeptional“ class zﬁg(ﬂ) = ~iq}- has rank 1 and minimal
polynomial q(t) = t. The former kind of minimal polynomials clearly
all belong to Z(R), but q(t) = t does not. In fact, t fails to
commute with all monic right semi-invariant polynomials: for instance,
k

t° + a (a€ K) is always right semi-invariant, but t does not

commute with it unless ag F.
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