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Abstract

We give constructions for the generating character of non-commutative Frobenius

rings, which is used in constructing the MacWilliams relations for a given ring. We

show how to construct this character directly for any finite Frobenius ring and give

examples for various families of Frobenius rings.

1 Introduction

The MacWilliams relations are one of the foundational results of algebraic coding theory.

They relate the weight distribution of a code and the weight distribution of its orthogonal.

∗The author is grateful to the Univeristé d’Artois where he stayed while this work was completed.
†The author is grateful to the Univeristé d’Artois where she stayed while this work was completed.
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These relations were first proven by J. MacWilliams in [8] and [9] for binary codes and this

proof naturally extended first to codes over finite fields and then to codes over Frobenius rings

in [11]. This result is one of the major reasons why coding theorists generally restrict their

alphabets to Frobenius rings. The key element of the MacWilliams relations for Frobenius

rings is to find a generating character for the ring. In [6], the technique for finding this

generating character when R is commutative was described. In the commutative case,

the main tool is the generalized Chinese Remainder Theorem which decomposes arbitrary

Frobenius rings into local Frobenius rings. Then a generating character is constructed for

local rings and the generating character for the ambient ring is constructed via the Chinese

Remainder Theorem. See [4] for a complete description of this technique and for a description

of the use of Frobenius rings in algebraic coding theory. For non-commutative rings there is

no such decomposition into easily handled subrings, which complicates the situation greatly.

In other words, one cannot assume that an arbitrary finite ring has a decomposition into

local rings or any other type of ring with an easily constructed generating character. In

this work, we shall study the construction of this generating character for non-commutative

Frobenius rings. We begin with the necessary definitions both for rings and for codes.

1.1 Rings

For any ring R, we define the Jacobson radical as the intersection of all maximal left ideals

in R. It turns out that this is equal to the intersection of all maximal right ideals as well.

We denote the Jacobson radical by J(R) and note that it is a two sided ideal. The right

socle of a ring R, denoted by soc(R) is the sum of all minimal right ideals. For a complete

description of these ideals and for a reference for the results from ring theory see [7].

LetM be a module. A character ofM is a homomorphism from the additive group (M,+)

to the multiplicative group of nonzero complex numbers. Note that sometimes characters

are understood to have images in Q/Z but we prefer the image to be the nonzero complex

numbers. These maps will also be referred to as “additive maps”. For an R module M , let

M̂ be the set of characters of M . This set is an abelian group: if σ, τ ∈ M̂ , then we define

(σ+τ)(m) to be σ(m)τ(m). Notice that if MR (respectively RM) is a right (respectively left)

R-module, then M̂ is left (respectively right) R module via (r.ϕ)(m) = ϕ(mr) (respectively

(ϕ.r)(m) = ϕ(rm)) where ϕ ∈ M̂ and r ∈ R.

Throughout the paper, we assume that a ring has a multiplicative unity and that all

rings are finite. Rather than providing a definition for Frobenius ring we shall give its char-

acterization as given in Theorem 3.10 in [11]. This states that the following are equivalent

for a finite ring R.

• The ring R is a Frobenius ring.

• As a left module, R̂ ∼= RR.
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• As a right module R̂ ∼= RR.

Hence, we say that a ring is Frobenius when the second or third condition is met. For a

complete description of the classical definition see [3]. Moreover for a Frobenius ring R we

have L(J) = soc(RR) = soc(RR) = R(J). Note that for non-Frobenius rings this is not

necessarily true.

A character χ of a ring R is a right generating character if the mapping φ : R → R̂

defined by φ(r) = χr is an isomorphism of right R modules (where (χr)(x) = χ(rx) for

r, x ∈ R). A character χ of a ring R is a left generating character if the mapping φ : R→ R̂

defined by φ(r) = rχ is an isomorphism of left R modules (where (rχ)(x) = χ(xr) for

x, r ∈ R). Theorem 4.3 in [11] gives that a character χ on R is a left generating character

if and only if it is a right generating character. Therefore, throughout this paper we shall

restrict ourselves to finding right generating characters and eliminate the adjectives right

and left.

The following is Corollary 3.6 in [2].

Lemma 1.1. [2] Let χ be a character of a finite ring R. Then χ is a right generating

character if and only if ker(χ) contains no non-zero right ideals.

This lemma gives our most powerful tool in the construction of right generating characters

and we shall use it throughout the paper when proving that a given character is in fact a

generating character.

1.2 Codes

A code over a Frobenius ring R of length n is a subset of Rn. It is said to be a left linear

code if it is a left submodule of RR
n and it is said to be a right linear code if it is a right

submodule of Rn
R. The ambient space Rn has an inner-product defined by

[v,w] =
∑

viwi.

For a code C we define

L(C) = {v | [v,w] = 0,∀w ∈ C} (1)

and

R(C) = {v | [w,v] = 0,∀w ∈ C}. (2)

In [5], it is shown that L(C) is a left linear code and R(C) is a right linear code. When the

ring is commutative these orthogonals coincide and are denoted by C⊥.

For a code over R = {a0, a1, . . . , as−1}, the complete weight enumerator is defined to be

the following polynomial in commuting variables:

cweC(xa0 , xa1 , . . . , xas−1) =
∑
c∈C

s−1∏
i=0

xni(c)ai
(3)
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where there are ni(c) occurrences of ai in the vector c.

If χ is a right generating character then χa(b) = χ(ab), where χa is the character corre-

sponding to the element a of R. We use this to define the matrix T . Let T be the |R| by

|R| matrix given by:

(T )a,b = (χ(ab)) (4)

where a and b are elements in R. It is precisely this matrix T that we use to obtain the

MacWilliams relations for a given ring R. We note here that the ordering of the elements is

arbitrary and must only match the ordering given in the complete weight enumerator.

If (x0, . . . , xk) is a vector we let T · (x0, . . . , xk) = (T (x0, . . . , xk)t)t where M t is the

transpose of the matrixM . The following are the MacWilliams relations as given in Corollary

8.2, [11].

Theorem 1.2. [11] (Generalized MacWilliams Relations) Let R be a Frobenius ring. If C

is a left submodule of Rn, then

cweC(x0, x1, . . . , xk) =
1

|R(C)|
cweR(C)(T

t · (x0, x1, . . . , xk)).

If C is a right submodule of Rn, then

cweC(x0, x1, . . . , xk) =
1

|L(C)|
cweL(C)(T · (x0, x1, . . . , xk)).

It follows from these relations for Frobenius rings, that if C is a left linear code then

|C||R(C)| = |R|n and if C is a right linear code then |C||L(C)| = |R|n. See [3] for a proof of

these facts. This implies that if you can find a linear code and its proper orthogonal whose

cardinalities do not satisfy this then the ring is not Frobenius. Since ideals are codes of

length 1, it is enough to show a left ideal and its right annihilator do not have the product

of their cardinalities equal to the size of the ring to show that the ring is not Frobenius.

Example 1. Consider the ring R = {

(
a b

0 c

)
| a, b, c ∈ Fq}. Here |R| = q3. Consider the

right ideal I = {

(
x y

0 0

)
| x, y ∈ Fq}. This ideal has cardinality q2. Its left orthogonal

L(I) = {

(
0 d

0 e

)
| d, e ∈ Fq} which has cardinality q2. But q2q2 6= q3. Hence this ring is

not Frobenius. In general, the ring of upper triangular matrices is not Frobenius.

Example 2. Consider the non-commutative ring R = {

(
a b

0 c

)
| a, b, c ∈ F2}. One

might naively assume that the additive map χ(

(
a b

0 c

)
) = (−1)a+b+c would be a generating
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character. However, {

(
0 0

0 0

)
,

(
0 1

0 1

)
} is a right ideal of R. The map χ contains this

ideal in its kernel, hence χ is not a generating character. In fact, this ring is not Frobenius

and does not have a generating character.

The previous example shows that a generating character involves much more than the

additive structure of the ring. More to the point, the fact that a ring is Frobenius and has

a generating character, in some sense, says that the multiplication of the ring works in a

compatible way to the addition in terms of orthogonality. The MacWilliams relations can

be defined simply on the additive group structure, where the orthogonality is determined

via a character table. The ring is not necessary at all. However, we want the orthogonal as

defined by the group’s character table to coincide with the orthogonal as defined canonically

with the ring. When the ring is Frobenius the coincidence of the two orthogonals occurs,

when it is not Frobenius it does not. Namely, the group orthogonal comes from characters

alone whereas the ring orthogonality uses the multiplication in the ring.

Other weight enumerators can be defined over specific rings and MacWilliams relations

can be found for some of these specialized weight enumerators. In general, by collapsing

the elements with an equivalence relation denoted by ≡, we can build a matrix S for the

MacWilliams relations by

Sa,b =
∑
c≡b

Ta,c. (5)

For this construction to be meaningful, we need∑
c≡b

Ta,c =
∑
c≡b

Ta′,c

if a ≡ a′.

Notice that, except for the first row, the rows of the matrix T must sum to 0. Indeed if

a 6= 0, since χ is a generating character, the ideal aR is not contained in ker(χ). Therefore,

there exists b0 ∈ R such that χ(ab0) 6= 1. We then have χ(ab0)
∑

b∈R χ(ab) =
∑

b∈R χ(ab0 +

ab) =
∑

b∈R χ(a(b0 + b)) =
∑

b∈R χ(ab). From this we conclude that
∑

b∈R χ(ab) = 0, as

claimed.

The rows of the matrix S must also sum to 0. For example, the Hamming weight

enumerator equates all non-zero elements in the ring. Therefore, there are two equivalence

classes, 0 and 1. Then we have that
∑

a∈R χ(0a) = |R| and
∑

a∈R χ(1a) = 0. Hence, the

matrix S for the MacWilliams relations for the Hamming weight enumerator is given by:(
1 |R| − 1

1 −1

)
. (6)
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As a small commutative example, consider the ring F2[x]/〈x2〉. Then the matrix T in-

dexed by 0, 1, x, 1 + x is given by

T =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

 .

Equating 1 and 1 + x you obtain the matrix

S =

 1 2 1

1 0 −1

1 −2 1

 .

However, equating 1 and x would give two different results on the row corresponding to

1 and the row corresponding to x. Hence this is not an acceptable specialization. If the

equivalence relation is that two elements are the same if they are equal by left multiplication

of a unit then it is a simple matter to see that one can always construct the matrix S. This

weight enumerator is known as the symmetrized weight enumerator. We shall denote the

matrix S for this weight enumerator by S1. It is also possible to construct the matrix S,

where the equivalence relation is given by two elements a, b are equivalent if a = ±b. This is

known as the symmetric weight enumerator. We shall denote the matrix S for this weight

enumerator by S2.

2 Generating Characters

We begin our study of generating characters with the following lemma which appears as

Example 4.9 (iii) in Wood’s paper [11]. We include the proof since it is constructive and

shows how to construct the generating character.

Lemma 2.1. Let R be a finite Frobenius ring where

R ∼= R1 ×R2 × · · · ×Rs

where Ri is Frobenius for all 1 ≤ i ≤ s. Let χRi be the right generating character for Ri

and let φ : R→ R1 ×R2 × · · · ×Rs be the isomorphism, with φ(a) = (a1, a2, . . . , as). Define

χ : R→ C∗ by

χ(a) =
s∏

i=1

χRi(ai).

Then χ is a right generating character of R.

6



Proof. Assume I is a nonzero right ideal of R. Then I is isomorphic to I1 × I2 × · · · × Is
where Ii is a nonzero right ideal in Ri. Let ai ∈ Ii with χRi(ai) 6= 1. We know such an

ai exists since χRi is not trivial on any ideal of Ri. Let a = φ−1(0, 0, . . . , ai, . . . , 0). Then

χ(a) = 1χRi(ai) 6= 1. Hence χ is not trivial on any right ideal I and hence no right ideal is

contained in ker(χ) which gives that χ is a generating character for R.

Theorem 2.2. Let R be a finite ring. Let θ : soc(R) → C∗ be an additive map such that

ker(θ) contains no one sided ideals and χ be any additive extension of θ to R. Then χ is a

generating character of R and R is a Frobenius ring.

Proof. Since R is finite any one sided ideal of R contains a minimal one sided ideal. So any

extension χ of θ is such that ker(χ) does not contain any nonzero one sided ideal. Lemma

1.1 concludes the proof.

In the next examples, we consider local rings. Here J(R) is the unique maximal ideal

and so R(J(R) is the socle of the ring and is the minimal ideal of the ring.

Example 3. Let F4 = {0, 1, ω, 1 + ω} be the field with 4 elements and R = F4[X, σ]/〈X2〉,
where σ is the Frobenius map. An element of this ring is of the form a0 + a1x where

x = X + 〈X2〉 and a0, a1 ∈ F4. This ring is a local ring where the maximal ideal is the

Jacobson radical with J(R) = Rx = xR = {0, 1x, ωx, (1 + ω)x}. Then R/J(R) ∼= F4. This

ideal is the only non-trivial ideal of the ring and in fact R(J(R)) = J(R) and hence it is a

self-dual code of length 1. See [5] for a detailed study of self-dual codes over non-commutative

Frobenius rings. The additive structure of J(R) is isomorphic to the additive structure of F4

which is F2×F2. Let τ be the character on F4 defined by τ(α) = (−1)b0+b1 where α = b0+b1ω.

Then define θ on the minimal ideal by defining θ(αx) = τ(α). We can extend θ to χ where

χ(a0 + a1x) = τ(a0)τ(a1). Then χ is a generating character of R by Theorem 2.2. In this

ring there are 3 nonzero non units, namely x = {x, ωx, (1 + ω)x}. This leaves 12 units.

Then the matrix S1 for the symmetrized weight enumerator is indexed by 0, 1, x and is given

by:  1 12 3

1 0 −1

1 −4 3

 .

Since the ring has characteristic 2, the symmetric weight enumerator is equal to the complete

weight enumerator so S2 = T.

Example 4. Let R = F4[X, σ]/〈X4〉. As in the above example we let x = X + 〈X4〉. Then

J(R) = Rx = xR and R/J(R) ∼= F4. The ring is a local ring as all right ideals are contained

in the Jacobson radical. We note that R(J(R)) = Rx3 which is isomorphic to F4. Let τ be

the character on F4 defined by τ(α) = (−1)b0+b1 where α = b0 + b1ω. Then θ(αx) = τ(α).

Then we extend this to χ to have χ(a0 + a1x + a2x
2 + a3x

3) =
∏4

i=1 τ(ai) which is an

7



extension of θ. Then χ is a generating character of R by Theorem 2.2. In this ring there are

192 units, and three additional equivalence classes where the equivalence relation is given by

left multiplication by a unit. They are x, x2, x3 with |x| = 48, |x2| = 12, |x3| = 3. Hence the

matrix S1 is a 5 by 5 matrix which can be computed from the 256 by 256 matrix T . This

ring has characteristic 2 so S2 = T .

Example 5. Let A = Fq[x;σ] where q > 2 and σ is an automorphism of Fq of order 2.

Consider R = Fq[x;σ][y;σ′]/(Rx2 + Ry2) where σ′ extends σ via σ′(x) = x. The ring is

a local ring with maximal ideal xR + yR which is then the Jacobson radical. The ring has

cardinality q4. The maximal ideal has cardinality q3. The unique minimal ideal is (xy)R

which has cardinality q. Here we can define a character

χ(a0 + a1x+ a2y + a3xy) =
∏

χFq(ai).

This character is non-trivial on the minimal ideal and hence is a generating character for

R. In this case S2 is not T as in the previous cases. It is a (d q
2
e)4 by (d q

2
e)4 matrix.

Of course, not all local rings are Frobenius. Consider the finite commutative ring

F2[x, y]/〈x2, y2, xy〉. This ring has 8 elements, namely R = {0, 1, x, y, 1 + x, 1 + y, 1 + x +

y, x+ y}. The maximal ideal of this ring contains all non-units and is M = {0, x, y, x+ y}.
Here M⊥ = M , but 4(4) 6= 8 and so the ring is not Frobenius. It is instructive to point out

that if one were to naively take the character of the underlying additive structure of this

ring you would have a character defined as follows:

a 0 1 x y x+ y 1 + x 1 + y 1 + x+ y

χ(a) 1 −1 −1 −1 1 1 1 −1
(7)

This does not qualify as a generating character because χ is trivial on the ideal {0, x + y}.
Moreover there are three minimal ideals, namely {0, x}, {0, y}, {0, x + y}. For a character

to be a generating character, one would need χ(x) = χ(y) = χ(x + y) = −1. However, if

χ(x) = χ(y) = −1 then χ(x + y) would have to be 1, contradicting the earlier statement.

This gives an example of why a non-Frobenius ring does not have a generating character

and the MacWilliams relations do not apply. In particular, the orthogonal of all three of

the minimal ideals would be M if the ring were Frobenius.

2.1 Frobenius Algebras

We shall now determine the generating character for Frobenius algebras. For a complete

description of Frobenius algebras, see [7]. Let A be a Frobenius Fq algebra with q = pl.

There is a nonsingular bilinear pairing B : A× A→ Fq with the associative property. It is

known that the functional λ : A→ Fq defined by λ(a) = B(a, 1) has a kernel which contains

no nonzero right ideals, see page 438 of [7]. This gives that there exists a λ ∈ HomFq(A,Fq),
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such that no right ideal I has λ(I) = {0}. Let tr be the trace map from Fq to Fp given by

tr(x) = x + xp + · · · + xp
l−1

where q = pl. Define the map µ : Fq → C∗, µ(x) = e
2πitr(x)

p , for

x ∈ Fq.

The following theorem also appears in [12]. We shall use the proof to describe the gener-

ating characters for finite dimensional Hopf algebras. We include the proof for completeness.

Theorem 2.3. Let A be a Frobenius Fq-algebra with q = pl. Define a character for A as

χ(a) = µ(λ(a)) = µ(B(a, 1)), for a ∈ A. (8)

Then χ is a generating character for A.

Proof. Since the map λ is nontrivial on all right ideals of A we have that the map χ is

nontrivial on all right ideals of A. Then, by Lemma 1.1, we have that χ is a generating

character for the Frobenius algebra A.

This theorem implies that when the bilinear form is known the generating character

follows immediately.

An important particular case of a Frobenius algebra is the case of finite dimensional Hopf

algebras. Two prominent examples in this family are the group algebras of a finite group and

the envelopping algebra of a Lie algebra. In order to get a generating character for a Fp finite

dimensional Hopf algebra it is enough, according to the previous paragraph, to determine a

bilinear pairing from B : H × H −→ Fp which is non-degenerate and associative. This is

classical but let us recall that an element t ∈ H is called a left integral if for every h ∈ H
we have that ht = ε(h)t where ε : H −→ Fp is the counity. Now H∗ = Hom(H,Fp) is also a

Hopf algebra and if f ∈ H∗ is a left integral it is well known that the map B : H×H −→ Fp

defined by B(x, y) = f(xy) is such a pairing.

Let us now analyze the case of a group ring R = kG where k is a finite field and G

is a finite group. Let us recall that kG is a Hopf algera with comultiplication, counit and

antipode given, for all g ∈ G, by

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1.

In kG, the one dimensional k-space of left (right) integrals is given by k(
∑

g∈G g) and in

kG∗ it is kp1G , where p1G is the projection of kG on k1G. The generating character χ of kG

is thus given by χ(a) = µ(p1G(a)).

2.2 Taft Hopf Algebras

Let us now consider the well-known Taft Hopf algebra T which is neither commutative nor

cocommutative. Let Fq be a finite field with q = pl. For n ∈ N, such that p does not divide

n, we let ζ ∈ Fq be a primitive nth-root of unity. We define T = Fq〈x, g〉/I where I is the
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ideal generated by xn, gn − 1 and xg − ζgx. This algebra can be given the structure of a

Hopf algebra via:

∆(x) = x⊗ g + 1⊗ x, ∆(g) = g ⊗ g ε(g) = 1, and ε(x) = 0.

The antipode S of T is given by S(g) = g−1 and S(x) = −xg−1. It is known that the left

(respectively right) integrals of T is the one dimensional space generated by
∑n−1

i=0 g
ixn−1

(respectively
∑n−1

i=0 ζ
igixn−1). The Taft algebra T is isomorphic to its dual T ∗. The isomor-

phism of Hopf algebras ψ is given by ψ(x) = X and ψ(g) = G with X and G (notice that

G is in fact a ring homomorphism) are defined by

X(gixj) = δ1,j for 0 ≤ i, j ≤ n− 1 and G(g) = ζ−1, G(x) = 0,

where δ is the Kronecker symbol.

The left (respectively right) integrals of T ∗ is the one dimensional space generated by∑n−1
i=0 G

iXn−1 (respectively
∑n−1

i=0 ζ
iGiXn−1). The generating character χ of T is thus given

by χ(x) = µ(λ(x)) = µ(B(x, 1)) = µ(
∑n−1

i=0 G
iXn−1(x)).

It is well known that a restricted enveloping k-algebra of a restricted finite dimensional Lie

algebra over a field (also called u-algebra) is a Frobenius algebra. For more information about

this enveloping algebra u(L) we refer the reader to [10]. If the Lie algebra is L =
∑n

i=1 kai,

where k is a field of characteristic p 6= 0, the restricted enveloping algebra u(L) of L has

a k-basis aI = ai11 . . . a
in
n where 0 ≤ is < p. It is shown in [1] that the element φ ∈ u(L)∗

defined by φ(aI) = 0 for every subset I ⊂ Nn, except for I = p− 1, has φ(ap−11 · · · ap−1n ) = 1.

We then have that u(L)∗ = {aφ | a ∈ u(L)}. This shows that φ is a generating character

over k.

3 The Socle and Generating Characters

Let R be a finite Frobenius ring and let J(R) be the Jacobson radical of R. It is well known

that,

R/J(R) ∼= Mn1(Fq1)×Mn2(Fq2)× · · · ×Mns(Fqs), (9)

where Mni(Fqi) is the ring of ni by ni matrices with entries from the field Fqi (for more details

see [7]). Let us recall that, for q = pe where p is a prime number, the generating character

χFq of Fq is defined by χFq(a) = e
2πit
p where, for a ∈ Fq, t = tr(a) = a+ap+ · · ·+ap

e−1 ∈ Fp.

We now define a generating character σ for R/J by

σ(M1,M2, . . . ,Ms) =
s∏

i=1

χFqi (Tr(Mi)) (10)

where, for Mi ∈ Mni(Fqi), Tr(Mi) is the trace of the matrix Mi. It is easily seen from

Lemma 2.1 that this is a generating character for Mn1(Fq1)×Mn2(Fq2)× · · · ×Mns(Fqs).
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Theorem 3.1. Let R be a finite Frobenius ring. Let χ be any additive extension on

σ : soc(R)→ C∗

defined in Equation 10, then χ is a generating character for R.

Proof. Since the ring is Frobenius we have that R/J(R) ∼= soc(R). We also have that

R/J(R) ∼= Mn1(Fq1)×Mn2(Fq2)× · · · ×Mns(Fqs)

which gives that

soc(R) ∼= Mn1(Fq1)×Mn2(Fq2)× · · · ×Mns(Fqs).

Therefore, we can define σ as in Equation 10 on soc(R). Then Theorem 2.2 gives that χ is

a generating character.

Note that this theorem gives the generating character for any finite Frobenius ring.

Namely, we explicitly construct the generating character for the socle. Then the additive

structure of the ring is a finite abelian additive group. Therefore, it is a trivial matter to

extend the map σ to the entire ring additively.

Corollary 3.2. Let R be a finite local Frobenius ring. Let χFq be the standard character on

the field of order q. Let χ be any additive extension of χFq : soc(R)→ C∗ to R. Then χ is

a generating character for R.

Proof. The proof is the same as Theorem 3.1, noting that R/J(R) is a finite field of order

q if R is a local ring.

Example 6. Let R = {

(
a b

0 c

)
| a, b, c ∈ Fq}. Then we have that J(R) = {

(
0 b

0 0

)
| b ∈

Fq}. This gives that soc(R) = R/J(R) ∼= Fq × Fq. For (α, β) ∈ Fq × Fq, α = a0 +

a1p + · · · + ae−1p
e−1, β = b0 + b1p + · · · + be−1p

e−1, τ(α, β) = ξ
∑

ai
p ξ

∑
bi

p = ξ
∑

ai+bi
p . Then

σ(

(
0 b

0 0

)
) = ξbp. This then gives the generating character χ on R. For the equivalence

relation where a ≡ b if a = µb for some unit b we have 6 classes, namely

{

(
0 0

0 0

)
}, {

(
1 0

0 1

)(
1 1

0 1

)
}, {

(
1 0

0 0

)
}, {

(
0 0

0 1

)(
0 1

0 1

)
}, {

(
0 1

0 0

)
}, {

(
1 1

0 0

)
}.

Using these to index the matrix we get that

S1 =



1 2 1 2 1 1

1 0 −1 0 −1 1

1 0 −1 0 −1 1

1 −2 1 −2 1 1

1 −2 1 −2 1 1

1 0 −1 0 −1 1


.

This ring has characteristic 2 so S2 = T.
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Note that if the ring is not Frobenius then this is not possible to apply the theorem since

R/J(R) is not necessarily the socle. Therefore, we cannot say that the socle is isomorphic

to the direct product of matrix rings and so we cannot define σ on the socle. For example,

consider the non-Frobenius ring R = {

(
a b

0 c

)
, a, b, c ∈ F2}. This ring is not Frobenius and

therefore does not admit a generating character. However, R/J(R) ∼= F2×F2 has a (unique)

generating character defined via,

σ((0, 0)) = 1, σ((0, 1)) = σ((1, 0)) = −1, σ((1, 1)) = 1.

Concretely, J(R) = {

(
0 0

0 0

)
,

(
0 1

0 0

)
} and

R/J(R) = {

(
0 0

0 0

)
,

(
1 0

0 0

)
,

(
0 0

0 1

)
,

(
1 0

0 1

)
}.

However, this is not the socle of the ring and the so the map cannot be extended. For

example, if one were to define χ to be as given on R/J(R) and extend it to the whole ring

defined by

χ(

(
0 1

0 0

)
) = −1, χ(

(
1 1

0 0

)
) = 1, χ(

(
0 1

0 1

)
) = 1, χ(

(
1 1

0 1

)
) = −1.

Then χ would be trivial on the ideal

{

(
0 1

0 0

)(
1 1

0 0

)(
0 1

0 1

)(
1 1

0 1

)
}

and so would not be a generating character.

4 The Hull of the Jacobson Radical

We have shown the importance of finding an additive map on the socle of the ring that

contains no non-trivial ideals. There is an ideal possibly smaller than the socle which can

serve a similar purpose. We now describe that ideal.

For R a finite ring and I a left ideal of R, let H(I) = I ∩ R(I). The notation here is

inspired by the use of the hull when using codes to study designs, which is defined to be

C ∩ C⊥.

Theorem 4.1. Let R be a finite Frobenius ring. Then H(J(R)) is a self-orthogonal two

sided ideal with the property that H(J(R))2 = 0.
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Proof. First, H(J(R)) is the intersection of two sided ideals and is therefore a two sided

ideal. Let a ∈ H(J(R)) then a ∈ J(R) and a ∈ R(J(R)) which implies a2 = 0 so that the

ideal is self-orthogonal, namely it is contained in its right orthogonal.

Theorem 4.2. If R is a local Frobenius ring then H(J(R)) = R(J(R)) = soc(R).

Proof. First since the ring is Frobenius, we have that R(J(R)) = soc(R). The ideal J(R) is

the unique maximal ideal in a local ring R so R(J(R)) must be contained in J(R) which

gives the result.

Theorem 4.3. Let R be a finite Frobenius ring. If τ is an additive map, τ : R → C∗ such

that τ is non-trivial on right ideals in H(J(R)), then τ is non-trivial on all right ideals in

R.

Proof. The socle soc(R) is defined as the sum of the minimal right ideals of R. Hence any

minimal right ideal must be contained in the right socle. Any minimal right ideal I of R

must have an ideal I ′ which is I ∩ J(R), but I is minimal which means I = I ′. Therefore

the ideal is in both J(R) and R(J(R)) = soc(R). This gives that any minimal right ideal in

R is a minimal right ideal in J(R) ∩R(J(R)) = H(J(R)) which gives the result.

Theorem 4.4. Let R be a finite Frobenius ring. If H(J(R)) contains no non-trivial right

ideals then any non-trivial additive map τ defined on the additive group of H(J(R)) extended

to the additive group of R forms a generating character for R.

Proof. If H(J(R)) contains no non-trivial right ideals then τ cannot be trivial on a non-

trivial right ideal of R. Since the map is defined non-trivially on the additive group of

H(J(R)) it does not contain this ideal in its kernel.

Example 7. Let us consider the ring R = F2[X]/(Xn). We have that J(R) is the ideal

generated by x = X + (Xn). The ring R is in fact a local ring and H(J(R)) is the ideal

generated by xn−1 i.e. H(J(R)) = {0, xn−1} which is a minimal ideal in R. The only additive

map τ defined on H(J(R)) is given by τ(0) = 1 and τ(xn−1) = −1.

The conditions of Theorem 4.4 occur often. For example, for local rings, we have that

H(J(R)) is the unique minimal ideal. Then it contains no non-trivial ideals. If R = Mn(Fq)

then J(R) = {0} giving that H(J(R)) = {0} and therefore it contains no non-trivial ideals.

Theorem 4.5. Let R be a finite Frobenius ring and I be any two sided ideal of R. Then

R(H(I)) = L(H(I)) = I +R(I).

Proof. We have that since H(I) = I ∩R(I) then I +R(I) ⊆ R(H(I)). Then

|R(H(I))| = |R|
|H(I)|

=
|I||R(I)|
|H(I)|

=
|I||L(I)|
|H(I)|

= |L(H(I))| = |I +R(I)|.

Then since we have containment and the cardinalities are the same the ideals must be

equal.
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In particular, R(H(J(R))) = J(R) + soc(R). Notice that we are using heavily that the

ring is Frobenius in that we often use that for a left linear code C of length n, we have that

|C||R(C)| = |R|n. In the case of the previous theorems, the codes are of length 1.

Corollary 4.6. Let R be a finite Frobenius ring. If J(R) + soc(R) is a maximal ideal of R

or J(R) + soc(R) = R then any non-trivial additive map τ defined on the additive group of

H(J(R)) extended to R forms a generating character for R.

Proof. If J(R) + soc(R) is a maximal ideal then R(H(J(R))) is a maximal ideal and so

H(J(R)) is a minimal ideal. If J(R) + soc(R) = R then H(J(R)) = {0}. In both cases, the

result follows from Theorem 4.4.

5 Conclusion

Generating characters for finite Frobenius rings are the key to finding the MacWilliams

relations for codes over a specific ring. The MacWilliams relations are one of the founda-

tional results of algebraic coding theory. In fact, we only study codes in spaces where the

MacWilliams relations exist. In this work, we have shown how to construct a generating

character for an arbitrary Frobenius ring and we have given numerous examples of finding

generating characters for specific rings. We have also identified another ideal which allows

us to find generating characters based on maps from this ideal.
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