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S1. Introduction

The principal object of study in this paper is the Ore exteqsion (a.*.4. slcew poly-
nomial ring) K[i, ^9, D] over a ditisioo ring I(. Eere ,9 is an endomorphism of I(,
aad D is ar S-derivatioo ou K, that is, D : K 

- 
K is an additive map such that

D(at) : S(a)D(b) * D(a)6 lor a77 a, b e K - By detrition, Il[], S, D] consists of lelt
polynooials t6iti (6i € K) which are added in the usual way a.nd multiplied accord-
ing to the rule Ja : ^9(a)t + D(o) for a.ll o € K, Since the introduction of the ring
Klt,S,Dl by Ore [Or] in 1933, there has been a,n extensive literature on its structure
and applications (often ior more general coefi.cient rings l(). Modern introductions to
the basic facts oû Orc extersiors can be found in the books [Co], [Mc], [Ro] and [JS],
among others.

So far, the theory of Ore erteasious has been focused ol the study of one extension at
a time. However, a careful look at some basic examples suggests that it is also importaai
to study "trarsformêtions' from one Ore exteûsior to ôrotber. In this paper, we shall
forma,lize this idea and ma.ke the flrst systematic attempt to study homomorphisms be-
tween Ore extensions. Às is easily seen, a K-homomorphism { from one Ore extension
K[i', S', D'] to aoother Kli,5, Dl is determiDed by p(r) :: d(t') € K[], S, D], which must

lBoih auihors supported in part by NSF



satislyf p(r)o : s(o)p(r) + D(a) in Klt'S,Dl, for everv a€ K' Such a polvnomial

e(t) ;""ùù; us to make a "cha.uge of va.riables" (from l/ to r ), so we shall call p(l)
'a' 

change-of-uariable polynomial (or cv-polyuomial lol short)' More precisely, we call

p(ù ekV,'S,Dla cv-polynomial with respect to (S',D')' Wlenever such a polynomial

i" g1""",ï" get'a ulique K-homomorphism $: Klt', S', D'1"--'+ K [t, S, D] seûding t' to

p(i, 
"n-.ty] 

for e(l ') : Dbit ' i  e Klt ', ' ' ,D'1, we have /(9) :)ô;p(r)i '  If the cv-

pàiy""*iuf p(i) is uot â constaût' the associated K-bomomorphism f is easily seen

io i" u'n ioj."tlott. It this câse, we caa identifv Klt"S',D'1 with ilr. 6 -- If[p(t)]' the

subrirrg ol k[t, S, D] g"oer"t"d by p(I) over K. We shall spea'k of lf [e(t)] as an Ore

subedension ol I([t. S. D].

Some precursors lor the ootion oI cv-polylomials a're those of ilvariant âjr'd semi_

invariant polynomials. A polynomial 1(l) e KIl, S-Dl is said to be rigàt inoatianl2

n f(ùKl;,5:Dl c Klt,s,Dlf(t), ærd risht semi'intatianl2 i l f(t)K Ç Kl(i) '  These

poiÀ*iat" *i"" ottorally io the study o{ the idea'ls of K!t' S'-Dl: the. minimal polv-

nomials of algebraic (S' D)-conjugacy classes of K' ard lhe a'lseb19i9itr (and quasi-

algebraicity) oI the derivation D (see [Am], [Ca], llel' [Lr] and [L3])' Clearlv, in-

vai-iant po(uomials a,re semi-inva,riant, aod seoi-invariant polynomials ale exactly the

cv-polynomials with respect to (Si,0) fo! some S'. Theæfore, ihe theory ol semi-

inv.ariant polyromials developed in [Lr], lL3] cao be used as a roodel lor the neÎr theory

o{ cv-polyaooials.

Let us aow give a surnoary of the results in this paper. In $2, a'fter giving examples of

cv-polynooials, we study their general ploperties and characterizations' Jt is shown that

o polyio*iol p(t)eKlr,S'Dl is a crpolynomial;fr e$)K Ç Kp(i) + K; uoreover' if

p(i) is not a constant, thet P(r) is a cv-polynooial with lesPect to a ?"?iquely d'elermined

pri" (S', O'). Aaother criterion {or p(t) : 6"1" + " ' + 60 to be a cv-polynomial in

kp,S,l1 i" that the coeficieut vector (ôr,. ' ' ,ô") of p(i) (without- fo) be a commoa

"lefi eigâvector" for a certai:e laaily of n x n. matlices catonically a-csociated with

(K. s.  D).

In $3, we study the relationship between cv- aad semi-ilvaria.nt polynomials by using

tbe divisioo process. It is showa thal, iJ we didd'e a ct-polynomial by o aeni'ilùariant

polynomial, then lhe remainder is a co-polynomial, and iJ S is en aulotttoîPh;lm' then

ihe qtotient is a semi-iatarianl polynomial. This esseotially reduces the consideration

of cv-polyoomials to that oI semi-inva.riaat polynomials together with cv-polynomia'ls

with àegree less thaa that of a "minima.l" toû-cotstarxt semi-invariant polynomial (if it

exists). In this sectioD' we also obtain sharp quantitative information on the possible

degrees of cv-polynomials in Kll, S, D], in the case when S and D comrrrute'

Using earlier results from [L3] and ll,e1l, existence atd uniquetess theorems orr cv-

polynomials a.re obtaiaed in $4. For instance, if l(lr,S'D] is a simple ring, then the

cv-polynomials attached to a.ny frxed (S', D') are determined up to an additive constarrt'

Ir the existence direction, we shon, that Klt,S,Dl hat a non'lineaî ct'polynornial iff

'?To simplify language, we shail sùppress the a.djective "right" ill the following and simplv speak of

irvariMi and semi-invariaût polynomials.



th-e.S-der ine. t ionDis, ,co-algebraic, , , iothesensethatthereexistconstantsô1,, . .16n

iitl,".a 
,;j,: 

1-1; îll th.,, !!, ô;Di is "" s,-a"'i""iJ" r"" "oi,,l ",,ao*o"pr,i"-;1 i"_.: dï"d;ï"J1ff ,1j:ï-,J"iJË",i*Lrilru ;:"ffi;1,Ë1îï*.1,'"înotion of algebraic derivations.

rn the last_seciion ($b), we study a comparison relationship among aJI ore extensionsover a lxed division ring I(. For two such extensions n, and ,t,ïe define .R/ ( .Rif.there exists an injective K-homomorphism from rR, into A. i*iii l"'"Ër' ,.=,fr1irelatioa, an ore extension r(ft. S. D] i".,,ootIri-ut,, 
"*u"tt;;; d i;;;, 

"r-atgebraic.)If we have the relati or R, = kp,,s;,p,1 S a: 1<Ir,;,;1, i*,,i"",'in* the two oreextensions share many ring-theoretic properties. Firinstance, _" 
"ho* 

th.t R is simpleifi R' is simple, R has a non-con,srant centrar polynomiat iff If has u TLon_consttlntcentrol polunomial, and, also, (und,er a certain mili assu^pt;r;- or' th" inclusion map
! ' - y,,D. il.alseblaic iff D, is aisebraic. If -B <;.4,, iî"ao." oor followin genera.l that r?, a .R. But i{ S is an automorphi"* of ionJ"'iorr"" order (seebelow). or if D is not. a quasi-alcebraic derivation, ïe 

"h"; 
;;;,'S .R J _R, doesioply R' + .R. Toward the end of"$s, we investigate circumstarces under which we canconclude that, if p(l) is a non-lin-eal 

,cv-polyao-iuf of 
-i;*uf 

a"g-"* i" ffp, S,11,thea any non-linea.r cv-polynomia.l ptrt 'i" 
*p.*"ifi" *l orË""_" in p{r} (i.e.P(l).e K[plt)] ). Ir turns out that. urder certain fairly geaeral suÉcient conditions, this

n:"i ilïil::i"'"'"1î"ii?r11;t,;tï tr" """", rlplijl*iu,i"?î"ilu" rhe (u,'ique)

^.. -t1,,:-t:S::l 
[La] to this paper! -we shall presenr further aspects of rhe rheory ofcv-polytroEials. prove a Composite Function Theorem for the eialuation oï skew poly_nomia.ls at cons[aûfs, and aDDlv fhe sofion of cv_polynomials to J";ïo.* ,"""rorr" ofEilbert 90 Theorems for Aul"iàr,,irrg, with S_derivations.

. rhrougiout this paper, the notatious ard terminology introduced above will remainiu force. At this point, let us also recall a few 
"tfr*ît""a-*ï".i"tiàns to be us.d

i1,ih:.m:In iext. u D = 0, we wrire. K[r,s] r"" Ffis,àf, àâlr-î: ,, *" *"r"
{!1'r] for Klt,I,Dl. For r€l( ', 1, d"nor"" ih. i 'o.i 

""t"-."pii"*.r r( associatedwitb u, deffoed by I"(r) = uxu-r. fi s i" ." 
"";;;""";;;';f,.i,;. inner orrterof S, denoted by o(S), is def,.ed to b. th" 

"-;b"t ;;;;i;.,"*!". o **l ,r,.,
,I 

t" 
:: 

,:*: 
-r!.-orphism: 

if no.such inreger f 
""rJr"l-*" ,.lîi,s) to be co .ln panicular. if S is an endomornlism_whicÈis not ao .rf.-".pii"*. we have bydeîaitioo o(S) = co. An S-derivatior D is said ro b" S:;;'";i;";':D",5 lor some

: I f 
,*h":.. D",s(,.) :: cx _ S(x),c lor all s € K. Oth;, 

";;; 
ring_rtreoreticnotations a.ad terminology follow ihe books cited earrier i" ,ni" r"i".a*ti"".

_The y?+ or this paper was done in part while the secood author visited the Uni-versity of California ar Berleley in tte.sp;og 
""m""t., 

;i 1rrr. ;;;;;; 
""ppori 

rromNSF and FNRS for this visit is gratefully act"nowl"dn"d- '"
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92. CV-Polynomials and Their Characterizations

In the classica.l wort on K[i,S,D], it is well-recognized that ia some special cases a

change of variables can be used to el(press one Ore extension in terms of a simpler one.

Two cases which immediately come to urind are the following:

(2.1) If  D is ,9-iooer, say D = D.,s, then Kli 'S'Dl :  Klt -. ,5).
(2.2) 1l S is an iu:aer autooorphiso of I(, eay 5 : I" (ue K')' thet K[i'S.D] =

KIu-rt,u'r Dl.

We caa look at these identiffcations lrom a sliShtly difierent point of view; namely, in

both cases, we have a.n associated homomorphism between Ore eitensions which turts

out to be a,n isomorphism. In the case (2.1), we have / : Klr', Sl + K[t, S, D] deffned

by6(Da;t ' i ) :Dai(r-c) i ,andir l thecase(2.2),wehavet! :Kl t ' ,u-rDl-KU.S.Dl
deûaed by 

"!(L 
aif i):Dai(u-rt)i.In eacb case, the change of variables is determined

by a,û (5, Dlpolynomial (respectively, t - c a.ûd ù-1, ) which is the image of the rew

variable f' from t,he other Ore extension.

These two basic eramPles suggest holir we cao dea.l with a chauge ol variables frorn

oûe Ore extensioû to another in genenJ. For .R : Klr, S' D] atd À/ : K[r" S" D/],

consider any K-homomorphiso $ z R' + E. Writing p(t) :: $(l') € .R, we have

6G'a): ôe)é@): p(l)a for a.r ly a€K. On the other hand' /( l 'o) :  ô(S'(a){+D'(a)):
S'(a)eQ) + D (a). Therefore, we have the necessary condition:

(2.3) ,p(r)a: S'(a)p(t) + D(a) for ans a€K.

Couversely, il a polyoomial p(t) e R is given satisfying (2.3), where S' is an eodo

morphiso of K a.nd D' is an S'-derivation, then we caû deffne $ t R' -""+ R by

6(L",t'i) = !qp(t)i, and check easily that / is the udque K-homomorphism from

-Ri to .R sending i/ to p(i). This motivates the following crucial deffnition;

Deflnit ion 2.4. A polynomial p(I)eR= Klt 'S'D] satisfying (2.3) is cdled a change-

oJ-aariable polynomial (or ct-polgnomial) reith lespect to (,9,D'). We shall say that
p(1) e E is a cv-polyrromial if it is a cv-polytomial with respect to some pair (S', D').

By au easy degree alguûett, we see that a K-homomorphism $: R' 
- 

R i's

inj eclite ifr the associated cv-polynomial p(f) : ôO') has degree ) 1, and { is sur-
jeciioe (respectively, bijectire) ifr p(t) has degree: 1. These facts will be used fieely in

the rest of the paper.

Àt this time, we should remark that our reqrdrement t'ha+' $ : Rt .+ -R be a
homomorphism over K is not strictly oecessary. In general, we can deal with homo-
morphisms 6 : a' 

- -R with the property that 0 :: $lK is êt automorphism ol K.
In this case, ooe car chect as above that p(t) = 60t) is a cv-polyoomial with respect to
(a,6), where o:êStî-r ar,d.6:9DtA-r.Iaiact, { ca,a be {actored as /1 oO where
O ' fr '  + K[r,o,6] is defined by O(!a;i ' r) = l9(a;)ci ,  and /1 : K[a,a,6] --+ .R
is defined by dr(D ôioi) : t 6ip(t)i. The latter map /1 bere is a .If-homomorphism.
Since the homomorphism O can be handled separately, it is suiûcient to worlc with the



-K-homomorphism d1. Therefore, we sha'll locus oùr attentiot on K_hoÉomorphisms in

itr i" n"p"r- ÀII homomorphism" between Ore ectensions considereiL below ui l l  be assuned

to be K -homonorPhisms,

Let us now give a few more examples of chaoging variables beyond the classica'l ones

in (2.1) and (2.2).

(2.5) For ,R: K[1] aad .R': J(lr'], the cv-polvnomials in Ê with respect to (f'0) aie

exactly the polynomia,ls in the center of E'

(2.6) The constant polynomiol P(1) = c€ K C Â is a cv-polynomial wiih respect to

iîib,r' in- 
"" 

: s'ioli + o'(")' {or all c € K, that is, ifi D' : D.'s' In particular'

à"" 
"""",*t 

polyoo*iat in rî is a cv-polynomial' Notice that here S' is cornplelely

uôit"*y,rr,hii" D' is uniquely determioed by S' and c'

(2.?) For any linear polynomial p(t') =$t+c (u€K'), a-routine calculation shows that

i".riÀ" : b'tù.,.,ri"i+ D'(") where S' : 1, o S a,nd D' : uD I D"'s" Therefore'

p(t) is a cv-polynomial with respect to (S"D')'

(2.8) Let p(t) : tôiri be a semi-iuva'ria'at polytomiâl of degree n" Then for anv

àek , e(tjà: "p(r) 
fot some c' aûd a compaxisot of the (left) ,coeficient 

of t" gives

" 
=ï"S;i"ia;t , * otrl * a cv-polynomial with respect to (16"o5"'0) Converselv' anv

".,-poiyoàrniul 
with respect to any (S',0) is clearly a semi-iovariaat polynomial'

(2.s) Let p(l), q(i) e .R be cv-polvnomials with respect to (S/' D') and (S" D") Then

)iijlttrj \J a.à 
" "u-p"tv""*ial, 

with respect to (s',D'+D")' Frorn tlLis' it {ollows

;î" tii' over a field K, the sum of any two cv-polynomials in ll[t' D] ol the same

degree is another cv-PolYaomial.

(2.10) For p(t) =t2 +ce R= Klr,S'Dl' aù easv computatiot Sives

e(l)a = s'(r)p(r) + lDs(o) + sD(a)ll 1(D' + Dqs,)@).

fot any o€ K. Therefore, i{ p(r) is a cv-polynomial, we oust have SD = -DS; and

".""J""f";f 
SD : -DS, therl p(t) is a cv-polyuomial with lespect to (52 

' 
D'? + D"'s")'

O. l7\ I lKisaf ie ldolcharactedst icp>o,aûdE:K[t ,D], thenany"p-polynomial"3
5 arii' i" n is a cv-polynomial, with respect to (I, t ôrDp')' A fuller discussion of this

type of examples câ,rr be lornd at the end ol this section'

Reca.ll that ao S-derivation D is said lo be algebraic if there exists a nonzero

polynomial 9(T) € R such that g(D) = O. Eere, the eraluation of a polynomial 9(J) =

>àtl' e A 
"ri'a 

i" d.ffttud to be the operator 9(D) : D ":9t 
on K' our next

Glw reeults deal with the cha,racterizatioûs of cv-polynomials' The ffrst result says in

pa.rticular that, il p(i) € -R is a not-con-6tant cv-polynomial with respect to (S"D')'

then S' and D' are uaiquely determined by p(1)'{

3This termirology is d]le to orei see lorl

'iiotri ; 
" 

co"risrcnr polpomial i""t"ua, t1"", bv (2 6), D' is uniquclv deielmiDed but S/ is

completely arbitrary.



Theorem 2.12. Let p(t) :  Dbitt  e R be
d,erhation.
(t) IJ pQ) is a arpolynomial with respect to
and, if n / I, then St : 16. o 5".
(2) If D is nol an algebraic d,eûration, thetu p(t) is
(s' , D') ifr: D' = (p - bo)(D) + Dh ,s, .

q(D)À(a) = À(.g(o))q(D) +À(q(D)(a))  (vaeK),

Proof. Consider the homomorphism À :.R -----+ End(K,+) defined by l(t) : -D,atd for a e K, À(a) : left multiplication by a on K- If p(t) is a cv-polynomial
with respect to (S',D'), the equatiou p(t)o,: S'(a\p(t) *?(a) in E leads to an
opelator equation ?(D))(a) : À(S(a))e(D) + À(D(a)). Er.aluating ar the elemeot 1,
we get p(D)(c) = 9(a)e(D)(1) +D(o)= S,(")b +D,("), since Di(1) :0 for i:1.
Therefore, D'(a) = (e - h)(D)(a) + Dh,s,(a) , as desired. If n ) 1, a compa.rison of the
left coefficients of ," in the equation p(r)a = St(a)p(r) + D(a) gives b"S.(a) = S(a)b"
for every a € K, so we gei S' : l'6" o S'. For (2), we need orly prove the aif' part,
a"ssuûring that D isnot algebraic. Let q(r) =p(t)-60. If Dt: q(D) tDao,s,, then
S@) : D' - D6",5, is a:r S'-derivation, so for any a,b e K, we have q(D)(a6) =
S(d)q(D)(6) + q(DXo) .6. Therefore, we have aû opelaror equatio4

of d,egree

(S, D') ,

n > O, a.nd, let Dt be any S'-

then D' : (p - 66)(D) + Da",s, ,

a co-polynomial wilh respecl, to

which holds ia the image of À, Since D is not algebraic, ) is injective, so (2.13) pulls
bacL to a polynomial equation q(t)a : St(a)q(t) + q(D)(a). There{ore,

(p(t) - ào)a : s'(c)(pQ) - h) + @' - Dù",s,Xo) = s'(a)p(r) + .ry(o) - ha,,

and câJrcellation ol the tern ô6a shows that p(f) is a cv-polyaomial with respect to
(s"D,) .  Q.E.D.

Part (1) of the above Theorem allows us to speêk about ron-constaat cv-polyuomials
without refereuce to (S',D/). It also justiûes the second part of Def. (2.4). We should
note, however, that if D rl algebraic, the sufficieucy part in (2.12)(2) faiis in general.
For instance, i Î  chat K:2,  S:  S'= I ,  Dt:0,  and D l0:  Dr,  the polynomial
p(r) : 13 satisûes the equation in (2.12)(2), but it is rot a cv-polynomial with respect to
(I,0). In fact, if a is any eleoent such that D(a) f 0, wehave t3a: at\+D(a)tt +at3.

Corollary 2.14. Wesag that an injecthte homomorphism $t Kll,,St,D'l - Klt,S,Dl
is homoge*eous if the associated, co-polynomial eQ) :: $(t) hal zero corstù,nt tenù.
In lhis caæ, D and, D are related, bU the eqr,at;on D = e@). Moreouel if À is
as aboue, anil X is the correspond,ing map for lhe ring Klt,S,,Dtl, then we haue a
comtn uta,liv e diaoranl :

r[r,, s,, Dl

Entl ( K, +\

Proof..Setting ô6:0 in (2.12)(r), we get D'=p(D). Froru this, we get À/(t/) -D' : e@): )(p(t)) : )(/(/)). Since Klt,,S',D'l is generated by K and r,. rhe
cornmutativity relation À'= Àod follows. Q.E.D.



Geuerally speaLing, the consideration ol (iajective) homomorphisms betweeo Ore
extensions can be rcduced to the consideratioa of homoaeneous ones. This is shown in
the corollary below.

Corollary 2.15. If  there is an injection $ t 'rom R' = Klt ' ,  S', D') to R: Klt '  S' Dl (d e-

fine'L, by a ct-polynomial p(t) : $(t)), then |here is an Ore eatersiorù Èt : KIt'. S', D')
uith o,n isornorphism d i Ilt -----+ R' such thot H' admits d homogeneors injectioa S1
into R sal isJying $:S7oo-r ,  I f  p( t )  happens lo haue arool  c€Kf then there is
o,lso an Ore eclension F: Klî,  S,Tl uith o,n isomorphism t rE 

- 
B such lhat Rl

hos a homogen.ous in ject ion $,  into R sat ist 'y ing 6=ro6t.

Proof. Let ôo be the constant term of p(1). Since (l' - bo)a = S'(o)(t' - 6o) +
(D'- D5,s,)(a), we can take Dt : Dt - Dho,s, aad deûne the isomorphism a in the

Corolla.ry by o(rt) : t' - h. W" then define 6, I'y 6tQ") : p(t) - k' and gci ihe

desired cornmutativity relation $ = $1 o o-r . For the second part of the Corollary,
suppose that p(c):0. Then we can express p(l) in the form o"(r-c)"+...+.z1(t c) '
for suitable constants d.r's (see Footnote (5)). Now let t be D - D",s and deffne r

Q.E.D.

To introduce the text result, reca.ll that, for any o € K, ,'o : t;-o /j (rr)t., wheæ

f: € End(K'+) is trhe sum of all possible prcducts with j factors oI S and i -j
fictors o{ D (see [L1: $2]). Ler M^(a) denote the tr x rù rnatrix whose (i.jlentry is

1;@) (t 11, i  !  zr), çhere, of course, l j(a) is ta.ken to he zeto i I  i  < j , i .e. M"(a) ls a
lowe! triaûgular matrix. The next result gives, a.mong other information, arr eigenvector
iaterpretatiou for the coefficient vector (61 , . . . , ô" ) of a cv-polynomial p(l ).

?heorern 2.16. Let p(t): t6it i  €R be a polynomial of degree n /O. Then the

fo I I o uing ar e e quio alent:
(r) p(l) is a co-polgnomial.
(2) For ans a e K, and, j  = 7,2,.. . , tu, we hate l i=1b;f)(a) = ô"5"(4)6;rôj.
(3) (h,.. . ,6") is a left eigenaector for eoch malrix M"(a) (aeK).
(4\  p( t )K cKp(t)+K.
I f  then cond,it ions hold,, then up(t\tc is also a cu-polynomial, for any u, c€K.

Proof. If p(i) is a constant polyoomial (n:0), (1), (4) a.lways hold, and (2), (3) hold
vacuously. In tb,is case, the last statement of the Propositioo is trivia.l. in view of (2.6).
Therefore, in ihe following. we may assnme that n à 1.

(1)=+(2) Let p(i) be a cv-polynomial, say with respect to (5',D'). For any a€ K, we
have

by r(1) = t - c, and {2 by fz(t ') : aT I ... . '  
" '1'

(2.r7 ) p(t)a =lbitia:lb;\fj(a)ti - t (t ô,/j("))rr.
;=0 i=0 j=o

sThis means thai p(.) = 0, \,,,here the evaluaiion of skew polynomials at coustaûts is æ deffred in
[Lr]. Eow€v€!, the geueral theory oI evaluation developed in [L1] b noi needed here, as one can simply
iDt€rp.ei p(.) = 0 æ syins ihat 

"(r) 
hæ a li8ht faior (t -c) in ,R. This is how ihe condition p(c) = 0

is ùsed in the p.oof of this Corollay.



On tle other ha.nd,

(2.18) p(t)a = St(a)p(t) + D(a): ô"s"(a)ù"1 L bjt i + D,(o),

by (2'12)(1). comparing the coeftcients of.r j (r < j < n), rve get the identities in (2),(We obsewe io passilg tbat, if we compat" the 
-o"taot 

co"ft"i.îf" iu"tuud, w" g"t orr".more the equarion O':(p_h)(O) i Du,", io (2.12X1).j
(2)+(3) ra matrix notation' the equatioas in (2) can be expressed in the form

(\' " '  ,b")M"(o): ù..s"(a)6;r (6,, . . . ,6.),
soforeach aeK,(u'...,b.) is aleft eigeavectorror M"(o) v.ith eigervâ.lue ù"s"(o)ô;r.
(3)-(4) For each o € lf, we have ]b,,. . .,,b-)M"(") : B(d)(6,. . . ,b^) tor some ,,eigen_
vùrc" B(a)eK. Therefore, for 1 J j 5! n, we have fi=,''i,i;tr1.'l,B@16j. Apptyingthis to the equation {2.12) {after isoraorog !tre constan! term). we have

p!)o €f ,BG)bj t j  +KcKp(r)+K, foranv aeK.

lil-jl]-T" 
.11,, 

",, 
K, 

,:. have uuiquely derermined constarts cr, c2 € lr such
i:;,ryt: 

=-2r(!,,1,",. 
!t"":, î" need to use rhe assumprion that n > 1.) Detneot.r : al aûo ,'(aJ = a2. usinS the associativity of .R, it is easy to check that5' is an endomorphiso of ?{, aad a, i" un S,-a*lrltro" 

"i 
?lrîîi"r..e, p(t) is acv-polynomial, with respect to (S/,Di).

The last part of the Theorem lollowg aow by â.r âpplicatior of the criterion (4), sincewe have (zp(r) + c)K c a(K p(t) + K) + "K ç iG;a;;;"Ji"l" -" 
s.u.".

, Because of the Iast part of (2.16), it is usualry sufficient to \À,ork with rnoaic ct_polynomials. The characterizario" 1a; fo" 
"rr_potyrroJJ" JÀi"oî"i*o"st and the

1lost h-aûdy. 
- 
It suggests, in fact, that we' can d"no" 

" 
ootioi oiiir,-.t"-"ot",, in zr_rings. Eere, following p. M. Cohn, w^e :ay.r!lr a ring .4 is a k--r;"; r1; is given wirha subring isomorphic tro (a.nd identiûed;1U.f 

.1:"3".f"r;"r'l i*'"".0. ,f_""*.4. letussay thùt, s isa (Àaht) cu-element if AiI tK çKgii. i lom this g"neral
l9]f". 

it fotlows.readily rhar. if ,4, Ç { *. r--;"s., if"o u", J*.o, , u r, *a cv-ele@ent of .4/ itr it is a cv_elemeal of .4. Comia! i."t to tl"'""ttiog of 
"t"*polyuomial rings, this observatioo translates into tfr" f"'Uorrios ,,"""f; iand otherwisenon-tdvial) statemeû! on cv_polyaomials ,roa"",. 

"Àoog" or uJ'rii""l '

c::ol1y 2.Le. Let 4 : K[t', s', D,l
u;th él t ' )  = p(t) .  Then s(t ' ) '= Lbtr :
619) = | b,p(t l i  is a cu-polynomial in

- 
K[I,S.,D] be an injeclire homomorphism,

lla 
c -polynoûial in K[f -S'. D,l tff i ts imoge

.- 
Toj:nclld: this section, let us point out some nice applications oI the formulasr"a = fi=o liG)tj.In rhe specia.l 

"as" wl,"n SD = D;, *1"n"î^i; J'11s,a,-, n1{ has 
_characteristic 

p >0, then li' = 0 whenever 0 <j <pi,and therefore, we havef'a= Sp'(a)tp' + Dpt (a) lol utt oe f. fni" shows that:



Exarnple 2.2o, IJ SD : DS and. char K : P, then, t'or each i > 0, ,p' € J(lt. S. D]
is a cr-polgnorni,al ui lh respect to (SP ,De').

To generate more exa.ûples of this ûature, let 1{ be a ffeld oI characteristic P, arrd
S = I. For aûy (usual) derivation D we get lrom the above (t ôitp')a, = o(t 6irp') +
(LbiDP')a for any o € K. Therefore, any "ppolynomial" t ôirp' i6 a cY-polynomial
with respect fo (I,Db;Df ). More generally, the sâ.rne argument shows that:

Example 2.2L, For any f ield. K ol characterisl ic p > 0' i f  p(t) e Klt,S,Dl i t  any

cv-polynomialui lhrespeci to(1,D), thenDbip(t)e ' isacu-polynomialui lhrc lpectto
(r,DbtD'P').

$3. Relaiions Betveen C\/- and Semi-invariant Polynomials

Since cv-polynomials a,re geaera.lizatiôns of semi-invariant polynomials, it is of in-
terest to investigate the relatiotship between these two classes. In the theory of semi-
invariaat polyoomials, it is iopolta.tt to ffx a (monic) semi-inva,riant polynornial o{
the sma.llest degree ) 1, and study the other semi-invaria.nt polynomials via this fixed
polynomial. As it turas out, this polynomial is also useful in studyiag the class of cv-
polynomials. On the other haod, a cv-polynomia.l of the least degree ) 2 (if it exists)
plays an important role too, though in general this polynomial may have lower degree
than the semi-invariaot polyaoaial of ihe least degree mentiooed above. In this section,
we shall give quantitative iu{ormation oa the degrees of these key polynomials, and de-
scr:ibe some methods Ior tbe determination of cv-polynomials in general. In the case
when ^9 is èn aùtomorphism and SD = DS, we shall obtain rather explicit information
on the structure of a.ll cv-polynomials.

Throughoutthissection,weshallworkinsideaffxedOreextension.R:I{ lr,S,D].
Our basic tool is the following result concelnitg the division of a cv-polynomial by a
semi-invariant polyûo.ûia,l in rR.

Proposit ion 3.1. Lel lU) € R be a monic serni- iw:ario.nt polgnomial ol degree rn)- 1.
Let p(t) e R uith p(t) = qG)fQ) + r(t) uheft ' l .es 

r(t) < rn. Then:

(f) e(i) is a &-polgnoî7ial ui lh respect to (S,D') ; tr r( l)  is a cr-polynornial with
respect to (S' ,  D') and, q(t)S*(a) = St(a)r1() for aII a € K .
(2) Il eQ.) is 0" Ieft multiple ol fQ), then p(t) is a cu-polynomial if it is temi-inoariant.

Nou assurne lhat p(t) is a cu-polynomial and that S is an automorphism, Then

(3) q(l) ;s semi-inoariant.
(+) If  deg p(t)2n and, r(t)Ç.K, then o(S)<æ and. deg p(t)= degr(r) (mod o(S)).

Proof. (1) Assuûe that p(l) is a cv-polyaomial with respect to (S',D'). Then. for
aoy a € K, we have p(t)a = S'(a)p(t) + D (a) : S'(o)q(t)f (t) + ls'(a)r(t) + D'(a)1. On
the other hand, .p(r\a: (t(t)f(t)o. + r(t)a: q(t)9"(a)f(t) + r(t)a- By the tniqueness
ol the division a.lgorithm, we have

(3.2) r(t)a = s'(a)r(r) + Ù(a), and.



(3.3) q(r)s-(4) : s'(4)q(r).

ConverselS if tbese equations hold Ior all o Ê K, then, from the above, it also follows
ihat p(t)o : S(d)p(l) 1-D(a), so p(l) is a cv-polynomial with respect to (5',D').

(2) It suinces to prove the "only il' part. If p(f) is a cv-polynomial with respect to
(S',D'), say, and it is a left multiple ol /(l), then r(r) = 0 iD the above, and (3.2)
shows thôt D/: 0. Therelorer p(t) is semi-irvariaui.

Now assume that p(i) is a cv-polynomial and that S is a.n automorphism,

(3) Any eleoent of I( can be expressed i:r ihe foro S*(o) for sorne o e K. From
(3.3), we ca.n then conclude that q(f) is a semi-iavariant polynomial.

(4) Here we assuûe that n :deg p(r) ) rn, aad tbat È :deg r(l) ) 1. Let 6, c be
respectively the leadirg coeftcieois of p(r) and r(r). Applyiûg (2.12)(1) to p(t) and
r(l), we have S' = 15 o S" : /" o St , and therefore S"-&: Io-'.. Since zlrn>Â,it
lollows that o(S) < oo and that n = ft (mod o(^9)). Q.E.D.

Theorem 3.4. Assume that S is an aulornorphism. Let l(t) be a montc senLt-
inaariant polynomial oJ minimal d,egree m/7, ond, Iel p(l) be any æ-polynornial , say
of d,egree n 2 7. Then:
(7) p(t) can be representeil in the form 1i1.1 cif(t)' + r(t), uherc q e K and, r(t) is
tt co-polynomial of d,egree < m, In po iculaq if n / m, then mln.
Q) A o(s) : æ anil n I rn, then p(t) is the sum of a semi-inoariant polynomial and
a cotusrLm.
(3) If n ! m, then nldeg P(t) lor ang co-polynomial P(t) ol d,egree / n. In parlicular,
if n ! n, then nlm.

Proof. (1) We roay assuûe that n ) rn, for otherwise (1) is obvious. lrydte p(t) =
q(r)/(r) { r(i), where des r(r) < rn. By (3.r)(3), q(t) is sem-iavariant, and by [L::(2.9)]
q(i) has the form Di2r cil(l)i-1 . Eeace p(t) = D>l cil(r)i+r(r), so æ : deg p(l) = mis
for the largest i6 with q" 10.
(2) If o(S) : co, theo (3.1X4) guêra.ntees that r(t) € K. so p(r) is the sum oI the
semi-ioya.riaot polynomial q(r)/(r) with the constant r(t).

(3) The proof of this pa.rt will be postpoaed tro $5 (see (5.1a)). We just observe ât
this point that the conclusion that aldeg P(l) may not be true if we do not assume
that n, ! ræ. This may be seen from the exa.mples giveu near the eod oI this section.
Q.E.D.

Corollary 3.5, Assume that S is o,n oulomot'phisrn and, thal D is aot S -inner. Let
f(t) be o (monic) æmi-inoariant polgnomial of minimal ilegree rn )_ l, and, Iet p(t) be
a (monic) cu-polynomial of minimol d.egree n/2 (if both etist). Then nld.eg P(t) Jor
any non-linear co-polynomial P(t). In parlicular, ue haoe nfn (so, t'or inttance, if m
is a pàme, then ue can conclud,e tha,l n : tn,)

Proof. In view of (2.12)(1), the lact that D is not S-inner implies that m ) 2. Since
/(l) is a cv-polyoomial (of degree ) 2), we have by definition n ! rn. Part (3) ol the
Theorem now gives the desired conclusions.

10

Q.E.D.



Remark 3.6. If D is an ,9-inner derivation, say D : Db.s 
' 

we can choose f(l) = I ô

and p(t) :  ( l  -  ô) '?. Eere we have rn: 1 and n:2; the Corollary obviously {ai ls in
this case since P(l): (t - b\- is semi-invariant {or any rn.

Rernark 3.7. Keep the notatioos in (3.6) (but let D be arbitrary). Il n happens
to be equal to m, then any cv-polynomial P(t) wilt be the sum of a semi-invada.nt
polynomial witb a linear polynomia.l (aud by [Lr: (2.9)]' the forroer lies in fll(t)] )'
This follows from (3.1) by dividing p(l) ly /(l), and noting that the remainder is a
cv-polynomial witb degree < rn : n.

Later in this 6ectiot, exa,mples vill be given to show that the quantitative results
on deg l(t) and deg p(l) obtained above are the best possible. Before we give such ex-

amples, let us point out another connection between cv-polynomials and serni-invariant
polynomials given by the process of formal difierentiation This restlt, however, requires
some mild hypotheses on S ard D.

Theorem 3.8. Assllrne thot S h an automorphism, and thal SD : DS. Lel p(t) =

!i=o 6;r i  ôe ang c,,t-polynomial in R. Then the formal deritat iae p(t);:  t i-1 iô,r i-1

is semi-intarianl. More senerallg, pj(t) := tl:r ('lj)ôr*lt (l ! j ! n) are all semi'
inu ari ant po Ly no mialt.

Proof. Iu view oI SD: DS, the equatious io (2.16)(2) simpli ly to

(3.e)

for j = 1,... ,n. Therefore

pr(r)'1 =

Replacing o by

: L ib"s" (")b;' b jtj-L : b" s" (a)b;t p|(r),

by (3.9). Since S is an automorphism, this shows that p1(t)Il ç K h(), so p1(l) is
semi-invariant, as claimed. The mole general fact that pr(l) (1 < j < n) are semi-

invariant can be proved in the sa.me way by maLing use ol the identity (j)(i,lj) :

i (r)u,t'r'-,1a : b"s"(o)b;l6;,

S(a), we get

(i (1)u,"*,',r"r),-'

Ë', ,  ( ,Ë ( ' )" 'o ' - ' - '1"v ')

E (,=â, n(n .')o,s,a*'-,r,r),,

Ë (Ë'( -i),, ' ;ra-;1o;) , '

Ë, (Ë 0,,"-tsi- ' l61)i- '

ûtz)Jtot :  > l

0)(,:J l*" [Le3] for a similar proof).

11

Q.E.D.



Remarks 3.10. (a) Formally, p;(t) is just ptj)(r) "divided by j!", where pLrr(J)

denotes the jth classical derivative of ?(r). (b) The Theorem is not true ia general if

SD + DS, as the example in (2.10) shows.

Corollary 3.LL, Assume lhat S is an dutonùorphistu, and SD: DS. Lel p(.t) e R

be a co-polgnomi,al of d,egree n / 2' anil assurne that R has no non'conslatut semi'

inuarianl polynomial of degree < n. Then char K = p > o and p(t) hos the form

DciF +c.

Proof. I f  câar K:0, theothe derivative p1(r) ol p(l) hasdegree n-1 )1a:rdissemi-
invariant by (3.8), cootradicting the hypothesis. Tbele{ore, r,ce must have chat K =

p > 0. Since the polynomials pr(t) are all serai-invariant, they t:nust all have degree

zero. Looting at the deôrdtion of the p;(l)'s, we obtai" (i) b- : 0 {or everv Ë, j such

that 1<j <ft Sn. Thie mea,ns that 61 l0(l  )1) can occur oaly whea É is apower

oI p, There{ore, p(i) has the Iorm L cilPt + c.

Corollary 3.12, Let S and D be d3 itx (3.11).

Q.E,D.

(1) -IJ -R ù simple and, p(t) is any ct-polynomial oJ degrce n>2, then chat K :p> 0

and, p(t) has the Jonn I citP' I c.
(2\ II D is nol S-inner, and R hac a tuotu-conrlaxùt seflti-inaariant polynomial f(t) of

minimal d.egree tn, then char K = p> o, and !(t) has lhe form L citP + c.
(3) If D û not S -inner and R hat a non-Iinear crt-polynomial p(t) ol minimal degree

n, lhen chat K : p > 0, n : p, ani l  we cotl i l  hate chosen p(t) 1o be f. I f  the

polynomial f(l) in (Z) ezists, say oJ degree rn : tf ' 
then the possible iLegrees oJ cu'

polgnomials in R are ezaci ly:  {O, l ,p, f ' . . . ,p ' - t 'p" ,2p",3p' ," ' } .  I f  f ( t )  does not

eaist, then lhe possible d,egrees oJ c"t-polgnomials in R are eaactly: {0,1,p,f," '} .

Proof. In Case (1), there will be no ton-coûsta.ût semi-invariant polyuomials ol any

degree (see (4.5) below), Therefore, we can apply (3.11) to any cv-polynomial of degree

2 2. Ia Case (2), we must have rn ) 2 (as in the proof of (3.5)). Then we can
apply (3.11) to f(t). In Case (3), if there was a non-constant semi-iovariant polynomial

of degree < n, it is also a cv-polyaomial so it must be of the form Ù(t - 6)' but then
D : Do,s, which is aot the case. Therefore, (3.11) again applies to give char K = p > 0
By (2.20) a,ud (3,4)(3), we see that tP is a tot-lirrear cv-polynomial of minimal degree.
If .R has no non-constart seûi-irvâ.riâ,nt polynomial, thea by (3.11), any non-linear cv-
polynomial has degree pi, and conversely, by (2.20), each Ip' is a cv-polynomial. Finally,
suppose -R has a tot-constalt seuri-invariant polynomial f(i) o{ minimal degree rn
By (2), m: p' for some c 2 1. Then the po$r'ers l(i)i are ceriainty cv-polynomials
(siace they are semi-invaria,nt), so we have cv-polyoomials of a.ll degrees Irom the set

{0,\,p,p2,---,p"-1,p",2p",3p",.. .}.  Conversely, by (r.a)(r) and (3.11), these are the
only possible degrees of cv-polynomials. Q.E.D.

lVe shall cooclude this sectioo by showing that the quantitative information given
in (3.+), (s.o), (3.11) and (3.12) is the best possible. In particular, we shall give a class
ol nontrivial examples oI Ore extensions in which all cv-polynomials can be explicitly
determined. As before, /(t) denotes a monic semi-invaxiant polyaomial of minimal

t2



i
l -

n

h

, t

degree rn ) 1. Let us ffrst make an €asy observatioq which is more orless {olkLore in

thà subject (see, e.g. lAm]); a Proof is included for the conveoience of the reader'

Lernma 3.13. Let K beaf ie ld oJ character ist ic p>O and le l  S=I '  Let  D bea

(usual) d,eriuation on K uith monic rn;ninLal polvnomial g(t)' Then SQ) = fft) -'

Jor sotne c€ K , and il has lhe fomù L cile' ,

Proof. From (3.12)(2) (or [Lz: (3.rr)]) we know that l(i) has the form I ciTp' + c'

Since S : f here. the semi-inva.riance ol /(t) means that (! e;rr'+c)o = a(l c;Ip' |c)

for a.l l  o€K. Equating the cotst&rt terms of the two sides, we get Uc,De'@):0'
Therefore, deg 9(l) < d.g lft). Since 9(t) is also semi-invariaot, we have equa'lity here'

But theo /(t) - 9(t) must be a constant, na,mely c. Q'E'D'

Examples 3.14. Keeping the notatioas in (3.13), ii is Lnown thât there are examples

of derivations D with minimal polynomial 9(i) = /(t) of aty prescribed degree rn =

p' (, > 1). On the other hand, by (3.f:)(3), p(t) = rp is a nou-linear cv-polynomial.of
'*lrri--"] 

â.g"u". By (s.+)(1) aod (3.11), aay cv-polvnomial has the form c+ t i:orcilp'+

L.r, ",I 
(li , Conu.rsely, by (2.9) aod (2.11), any such polyaoroial is a cv-polvnornial'

This conforms with all the theoretic results obtained ea'rlier iû this section'

$4' Existence and IJniqueness of CV-Polynomials

For ihe rest of the paper, we'll ffx the notatiou E : K[t, '9' D]' B' = KIr' 
' 

St, D'l'

and use freely the fact that homomorphisms lrom -R' to rR correspond to cv_polynomials

in E with respect to (5"D').

Àlthough a noa-constant cv-polynomial p(1) determines (S"D') (as in (2'12X1))'

we cauotlrpect (S', D') to determine p(t). For insta,nce, if (S" D') : (f , 0), any

polynomial in the center of .R is a cv-polynomial with respect to (S',D')' Eowever,

"oà 
roiqrr"r""" 

"""uIts 
are possible, as we sha.ll see in the resttts (4.3), (4'4) and (4 6)

below. We begin by proving a ce ait conûutation rule between 5" and D which

results frorn the existence of a cv-polynomia.l of degree z ) 2,

Proposit ion 4.1. Let p(t) :  lbJi € R be a monic cu'polgnomial oJ degree n )-2'

Then we haoe S-D-DS":D".sS",  uhere c:=b"-r-  S(b"-r)

Proof, The cv-polynoroial p(l) is with lespect to (S"'D') for sosæ D''  1l D' =o'

then p(r) is semi-invariant, and the Proposition was proved in [L3:(2'3)]' under the

assumpiion that n / 1. I1. D' is not necessarily zero, one cao check that the calculatioû

involviug q(i) := p(t\t - tp(t) : ct" + . . ' in the proof of [L3:(2.3)] is still correct modulo

I(t + K. Thus, as long as tù > 2, the method of compaling coelûcients of l" used in

[fu:(2.3)] suffices to give the conclusion in the Propositiou. Q'E'D'

For the sake of completeness, we record below the exact equâtion relating q(t) =

p(t)t. - tp(t) and p(t), in generalization of {L3: (2.3)l:

(.2) q(t)a = s"+1(o)q(r)+ (s" D - ns")(a)e(t) + (D'S - sD',)(a)t + (D',D - DD')(a).

ls

o

r
,t

r-
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Theorem 4.3. Stppose S is o,n automorphism and p(t): !6;Ji€ R is o. rnonic
ct-polynomi,al of d,egree n ! o(S), then p(t)r = (+ c)p(r) + dt+ e uheT.e c tu 0,s
in (4.7), and et,eeK. IJ /f t)€R h another rnonic cu-polynomial of d,egree n, then
dg) = eQ) + d for some d.€ K .

Proof. By (a.1) and (a.2), we have for ary o€K:

c(r)o : s"+1(a)s(t) + (cs"(a) - s"+t(a)c)p(t) + lineû te',',s
: s"+'(c)q(t) t cp(t)a - s"+t(a\cp(t\ | l inear terms.

Therefore, [q(i) - cp(t)]o : ^9"+1(a)[q(r) - cp(t)] + tinear term.e . Now q(t) - cp(t\ :
àt-+... where 0!rn<n. We may assu:ae that ô#0 fo! othellvise we have in fact
p(t)t : (t + c)p(r). Combining the last two equatioûs, we get

(bt^ + . . . )a:5"+r(a)(ôt-  *  . . . )  I  l inear terrns.

Iï m / 2, compaxisor of the coeficients of t- gives 6S-(a) : 5.+1(0)6 fo! a.ll o,
so ,9"+r:  16oS-.  This impl ies that  o(S) ln,+t- tn!n -1,  coûtradict ing or l
assumption on a. Therefore, q(t) - cp(t): et!+e for s,ome e,,e€7(, aûd as a result,
we have p(?)i : (t + c)p(f) + ett + e. Nov suppose p,(t) is ènother modc cv-polynomial
of desree 7ù. We hêve p(t)o : S" (a)eQ) + D (a) aI,d 1()o : S^(a)/(r) + D/,(o), where
D', D" ate two S"-detivations. Subtracting these, we ger lp'U) - p!)la : S"(a)t1(r) ,
pj)l + D"(a) - D'(o). If y'() -p(t) is not a scalar, weÏ have p,(t) - p(r) : rri +...
{or  some r  l0 aod 1! ,b <n. But then [p(r)-p(t)a = (dÀ +.. . )a :  ?Sr(o)rr  +. . . .
Comparing terms o{ degree }, we get S"(o)r : rSÊ(a), atrd hence ,9" : I o Sl. Since
S is an automorphisû, this gives S"-È = J,, so o(S) S r.-k < n, a contradiction.
Therefore, p'(t) - p(t) : d for sorue d € K. Q.E.D.

Corollary 4.4. Suppose K is a f,eld, anil S is an end,omorphism oJ K which is not
an aulomorphism. Then lhe two .otuclusioiLs of (4.3) hold lor any rnonic ca-polgnomials
p(t),/ft) of the same d,egtee-

Proof, Iu the notatior of the proof above, ft aqd f, are both the identity since }(
is a ûeld. Sioce S is injective, the equatioû S.+t : S- would have implicd that
S"+1-- : I, and similaxly, S" : 5À would have implied that S"-r = f, both of which
a,re impossible since 5 is not an autoûrorphism. Therefore, the a.rgrment above gives
the desired conclusions about p(t) and p,(t) in this case. e.E.D.

If ,R is a simple riag, theo (without any assuroptions on S) the cv-polyaomiâ.ls
attached to any fixed (S',Di) ate determired up to an additive constant, as we shall
see ia Propositioo 4.6 below. This result, however, depelds on the main theorem of our
eâllier wolk [L3:(3.6)] rrith Leung a,lrd Matczu_k, which we recall here for later reference:

Theorem 4.5. The Ore eutens;on R : KIf, S, D) is non-simple if it contarns a non_
conslant inuariant polynomial, iff it contains a non-conslent sefiLi-intariant polynomial.

Proposition 4.6. Suppose p(t) and, t'Q) in R are two d,istinct non-constûnl cu-
p,olyno,mials uilh.r.etpect to (S' , D,), Then either R is non-simple, or o(S) ! rleg p(t) =
d,eg pt(t) and, r '$): eQ) + c uheîe c e K. is such that St : J..
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Proof. For ar.y a e K, we have p(l)a = S'(")p(t) + D'(a) a.nd a similar equation {or
p'(r). Subtracting, we see that (1(\ - p(t))a = s'(")@ (t\ - p(t)). S" 1(t) - e(t) is
a semi-invaria.nt polynomial. If deg (p'(f) - p(t)) > 1, then by (,4.5) .l? is non-simple.
\ow assume deg (p'(t) -p(l)) = 0, i .e. 1(r) - p(t) = c € X.. Then ca = S'(a)c, so
S' : 1". In this case, if ô1" is the leading term of p(i), we have Si : 16 o .9" by (2.12).
There{ore, S":I11 oS': 16-'",  so o(S) { n : deg p(r) :  deg p/( l).  Q.E.D.

Eaving considered the uniqueness problem for cv-polynomials, let us now consider
the existence problem. Since linear polyoomials in rR a.re always cv-polyûomiâls! we
are itrtercsted only ir ihe existeûce of cv-polynomia.ls of degree ) 2. To motivate oûr
results in this direction, let us first recall a criterion of Lemonnier ll,el lor the existence
o{ a non-constant semi-invariant polynomial in .Ê.

Lemonnierts Theorem 4.7. R has a norL-const&nl semi-;nraîiarLt polllnomial i,ff the
S -d,erit:alion D is quasi-algebraic, uhich neans thal D salisfies one of the folloating
equiualent condi Lio n s:
( l) There exùt conslo.nts b;€K wtth ô" = r, szcÀ |hat l i=, h;Di is an S"-inner
d,eriuali,on,
(2) There erist consta.nts h,.. . ,bn, not al l  zero, such |hat Li=t b,Di is an S'- inner
deriration for some endomorphism S of K,

Modifying Lemonnier's notion of a quasi-algebraic derivatiotr, we deffne an .g-de va-
t ion D to be ctalgebraic i f there exist  constants ô1,. . . ,ô"  wi th n)2,6"10,such
that !i=, ô1Di is ao S/-derivation for some endomorphisra S' of K. For S-derivations.
we harre clearly "algebra.ic"=+"quasi-a.lgebraic"+"cv-algebraic". The Iollowing theo-
rem and its corollary may be viewed as arâlogues of (4.7) above and our earliel resnlt

IL,:(3.2)].

Theorem 4.8. The Jollowing are equiaalenl Jor R: Kll ,S,Dl:
(1) -R âar a cv-polgnonLio,l  of d,egree /2.
(2) Therc etisls a polgnomial p(r) :  t i=o b;t i  €R ui lh d,egree n | 2 and, a pair (S',D')
such that, for any a€ K, p(t)a = 9(a)p(t) + D'(a) (mod ,B . |  ).
(3) The S-deriuation D is cu-algebraie.

Proof. (1)-(2) is obvious. Now assume (2). Note that the giveû congruence in
(2) means that p(t)a and S'(a)p(t) * l/(a) have the sa,Ine coistant terms when writ-
ten out as (left) polynomials. Therefore, going through the ffrst part of the proof of
(2.16), we can still compare the constant t€rûtsJ and get the equation 5'(")60 + D'(") =

!i=o 6;Di(o) for aoy a € K. By transposit ion, ! i=, 6;Di(o) = (D'- D6,s,)(a), so
ti=r àiDi is ao S'-derivation (namely D'* Do",s,). By definition, D is cv-algebraic.
Fina.lly, for (3)+(1), suppose D is cv-a.lgebraic, say some D' :: ti-r ô,Di is an
S'-derivationr where ô" f 0, n > 2, aad S' is an endomo4)hism of K. Let p(I\ =
!i-, 6rli e -R, so that Dt : p(D). If D is not a.lgebraic, (2.12)(2) (applied with ô6 = 0)
implies that p(t) is a cv-polynomial with respect to (S', D') so we are done. I{ D is
algebraic, the bomomorphism ) : -R -+ End,(K,1) in the proof of (2.12) has teûrel
.R.q(l), where q(t) is a suitable monic invariant polynomial (the "milrimâl polynomial"



I

of D ). In this case, p(i) := q(l) '
degree ) 2, again proving (1).

is clearly a cv- (in fact semi-iovariant) polynomial of

Q.E.D.

Corollary 4,9, D is co-algebra'ic if there edsi consiants br,...,b^ uith n | 2 and,
b- :7 such that li=t biDi is an S"-deritation.

Proof. We ueed ouly prove the "oaly iI" pa,rt. Assume D is cv-algebraic. Theo B has
a cv-polynomial p(t) of degree n ) 2. Scaliog p(t) ald dropping its constaÀt term, we
may assuae that p(r) = r'+6"-1r"-r +.'. + 61t, Thea p(i) is a cv-polynomial with
respect to (S",D') for some S"-derivation D'- By (2.t2)(t), D+b"-rD"-L+...+brD
is au S"-derivatioa (oamely, D'). Q.E.D.

Example 4.10. We construct here an example of a usual derivation D which is
cv-algebraic but uot quasi-algebra,ic. We ta.Le !( :  k(zy'. . ,2^,.. .),  where fr is a
ffeld of cha.racteristic 2, and deffne a (usual) derivation D on K by D(À) : 0 and
D(21): zi*t for al l  i  )  1. Then t2 €Â is a cv-polynomial with respect fo (1,D'z)
and D2 is a usual derivation, so D is cv-algebraic. Eowever, D is not quasi-algebraic.
In fact, iI it were, then according to (4.7)(1) there would exist ô, h, . . . , ô" € K with
ô.: l  such that 6.D"+.. .+6!D:DhJ:0 (s ince K is af fe ld) .  This is easi ly seen
to be impossible.

Exâmple 4.11. There are ûrany examples of S-derivations D which are not cv-
aigebraic, For iastance, if char K = 0, S ù an aulofltorphfutù, SD: DS, and, D is
not S-inner, then by (3.12)(3) D is not cr-algebraic. For a roore explicit constrrction,
take l( : *(e) where È is a field of cha.racteristic zero. The usual derivation f, on
Il is clearly not inner, so by what we said above, D is uot cv-algebraic. It is âlso easy
to see by a direci atgument that, Ior n22, D" + b--rD"'r * ' . .* ôrD can never be
a (usual) derivatiot, for ary 61,. ' . , û"-1 € ll(?),

A natural way to interpret the result iu Theorem 4.8 is by using the notion of a
miuima.l Ore e*tensioû. Let us say lb,zt R : Kll, S, D) is a minimal (resp, maaimal)
Ore exlension o/ K iI there is no proper subring (resp. over-ring) of rB which is also
an Ore extension of 7(. From (4.8), it follows that R is minimal in this sense if D is
not c!-algebraic. (This is to be compared with (4,5) which says that r? is simple iff D
is not quasi-algebaic,) Using this notion of minimality, it is particularly easy to dedve
the followiag consequence of (4.8):

Corol lary 4.12. Let c€K. Then an S-d,erioation D is ca-algebraic i f  D - D.,s is
ca- alg ebla;c.

Proof, We have an isooorphism 6 : Klt', S, D - D,,s) 4 Klt,S, Dl defiaed by d(t') =
l-c. Froar this isomorphism, i t  fol lows that K[t,.9,D] is minimal i tr Klrt,S,D-D",61
is minima.l. Q.E.D.

Ia the case when I( is a fleld, it is possible to give mote precise descriptions of the
ma-timal as well as the minimal Orc extensions of K. a,lrd as it turns out. io this case
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minima.l Ore extersions are always maximal (though not conversely). To prove these

results, we need the following well-known observation on (1f.5, D) in case 1{ is a ffeld:

(4.13)

In fact, if S(o) f o for some a€ K, the eqlration D(ac) : D(ca) ({or any ce K ) lea.ds
to (a* S(a))D(e) : D(a)c- S(c)D(a), so we have D : Dt,s lot 6 : (a- S(o))-1D(a)

Theorem 4.14. For R: Klt,S,Dl where K is a feld, the fol louing are eqll ipalent:
(1) e is a rninimal Ore exlensi,on (i.e. D is not cu-algebraic);
(2)  char K:o,  S:1,  and,Dl0.

Proof. (2)+(1) folows from (4.11). Cooverselg assume (1). Then clearly D l0 lot

otherwise -R : Kll, S] r Klt', 51 with ,' : ,'?. Vtre must a.lso have S = f, Ior otherwise
(4.13) gives D = Do,s {or some 6€K, and (2.1) gives R= KIt,S,Dt.sl =I([t-6,S],

again coatradicting the miaimality of -R. Finally, K must have zelo characteristic,

for iI càar K : p > 0, then, since 5 = I' .R would have (by (Z.ZO)) a non-linear
cv-polynomial te Q.E.D.

We ffnish this section by giving the analogue of (4.14) Ior maaimal Orc extensions
The proof for this is, however, quite a bit more tricky.

Theorem 4.L6. For R: Kll ,S,Dl uhere K is a feld, rhe lol loui lùg are eqtiualenl:
(1) n ;s a maximal Ore eîlension:
(2\ One of the fol louing holds:

(2a) S cannot be ùûtlen as 3" ,here 3 is an end.omorphism of K

\2h) char K =0. S = I .  and D lO:

Iî S + I, then D : Do.s lor scme b e K.

and, n 22;

q\u )(2c) ehtn K =p, S: I,  D is not algebraic, and, D cannot be writ len as
uhere q is a non-Iinear p-po\lnomial and D is a (usual) deriration,

Proof. Let us first prove (2)+(1). Suppose -R ç Ê. : Klj'S'Dl' wiih t = p(r) =
6" i '+. . .+60, ô"10. Then by (2.12X1),  s: Ib"o3":S".  I f  (2a) holds,  then we
must have n : 1 and so -R = F. Now suppose (2b) holds. 11 S + I, then by (4.13)
D is S-inner, so after â cha:rge of variable in À-, we may assume that D = 0. But
ther by (2.12X1), D:b"D" a ... a 6rD + D6,r : 0, a contradiction. Therefore, we
must have 3: f, and, as we have just seet', D 10. Bût then by (4.14), F: I{F,D]
is minimal, so we can conclude that Â: ,R. Finaly, suppose (2c) holds. Since D is
not algebraic, S : ,I, and K is a freld, it follows that D is not quasi-algcbraic and
hence -R is a simple ring by (4.5) and (+.7)! Relerring ahead to (5.8)(2). we see thatr
À- is also simple. If deg p(4 ) 2, then by (r.rz)(r), q(I) :: p(7) - ôo is a (non-linear)
p-polynomial, and by (2.12)(1), p : q(D) + D61: q(D), a contradiction. Therefore,
p(I) must be linear, a,nd we have À = fi. This proves the maximality of À in all cases.

Next we shall assume (1) (that is, .R is maximal), and try to prove (2). lVe nay
assume 5 : 3" for some n. > 2 and some endomorpl,ism 3 of 7f (for otherwise
we have aheady (2a)). lf S I I, lhetL by (a.1s), D = Do,s lor some b € K, so after

6of coùrse, it would have been morê straightfoMard lo ùse here the classical resulis of Amilsù [Am]
on ihe simplicily of ffir, rl.
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replacilrg t by | - 6, we ûray assume that D : 0. But then we can embed R into
I(p,S] by sending f to 7", a"ad this would contradict the maximality of -R. Therefore,
we must have S : f, and, as we have just seen, D f O. 11 char I( = 0, we'll be in
the situâtior (2b). There{ore, we ûray âssume tl\at char K = p. \le claim that D
canûot be an algebraic derivatiou. For, if it is, and /(1) e r? = Klt,Dl is its minima,l
polynomial, ther /(r) is an inva,riaot polynooial of degree ) 2 (since D I 0 ), and we
can embed -R (properly) irto itself by sending t to f + /(t), in contradiction to the
ûa,ximâ.lity oI .R. FinaJIy, suppose 'we cala write D in the lorm q(D), where D is a
usua.l derivation, q(7) : c^îp* + ... + cJp + col, with rn ) 1, and c- I 0. Then, by
(2.21), q(û is a cv-polynomial ir E :: Klj,fil with respect to (f, q(D)) : (1, D), and
we carr eû1bed R properly into E by sending f to q(7), again in contradiction to the
maximality of .R. Therefore, we must now be in the situatioo (2c). Q.E.D.

Froo the last two results, we have the follorpisg somewhat surprising cousequence:

Corollary 4.L6. For any f ield, K, the minimality of R: Klt,S,Dl implies i ts mari-
mal;ty (but nol contenelg).

If K is not a ûeld, this Corollary does aoi hold. An example o{ a division ring I(
with 1( [r, S, D] oinimal but not marimal will be given towa"rd the end of this paper.

55. Comparison Between Ore Extensions

The study of homomorphisms between Ore extersions leads ttaturally to the follow-
irg compa.risor relationship a.mong ail Ore exteasions over a giveû division ring. For
two such exteusions .R and .Ri, let us deûae B, ! .R il there exists an injective homo-
morphism 6 : R' 

- 
rR; in othet words, E' < -R ifi -R has a non-colstant cv-polynomial

with respect (S', D'). Cleady, "!' is a transitive (as well as reflexive) relation.

Some of the basic features of the ielation ..1" can be seen from the list of exâ.ûples
and results below.

(s.1) I f . f iy  < n= K[1,s]  ( i .e.  D:0),  rhen 8,  -  KIr" ,s '1.  In fact ,  s ince D:0,
an application of (Z.f:)(f) shows that D' = D6,s, for some ô € K. But thea .R/ =
KIt" S',,Db,s,l: I([ l '- ô, s,] by(z.r).

(5.2) H Ir <R=Klt,D) (i.e. S : r), then .R,È 7f[t,,,D,,] for some (usual) derivarion
D". b;.Iact, siace S : 1, (2.12)(1) shows that S, : 16 for soûe b € K*, so E, =
KIt" 16, D'l = Klb-lt"b-t Dtl.

(5.3) If .R < R : Klt), then .R' È Kp"]. This follows easily from the arguûrents used
in the last two examples.

(5.4) lVe may have rR/ I .R and -R I -R/ without having ,R, = -R. For instance, let .9 be
an automorphism with o(^9):3, a.IId let .R : Klt,Sl, n, : KIt', Srl. Then. t,+_} r,
defnes a,n injection -R' + -R, Oa the other hand, if ^s3 : 16, , l+ ô-1t,2 defrnes
a.n iajection R+ Rt, since (ô-11,, )a : b-l S4(a\t '2 : b-r (bs(a)b-1)tt2 : S(o)(ù 1t,r).

18
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Eowever. we do not have Ê 1 À. Indeed. if there is such an isomotphism, (2.12)(1)
would imply that S'? : 1. o 5 for some c € K", contradictirg the fact that o(S) : 3.

(5.5) A similar example of ,E' ! -R I ,R' with non-isomorphic Fl, ,?' can be constrrcted
for Ore extensions of the "derivation type" (i.e. with S' : .9 : f). Let K be a freld of
characteristic 2, and let D be a (usual) derivation with minimal equation Da-D=0.
Let, R: Klt,  Dl ard H: Klt ' ,D2). Then l '* 12 a.nd I + l '2 deffne embeddings
,R + À and R + R'. (So faf v.e do not need K to be ô field.) Il there exists an
isomorphism R' -----+ R, (2.12)(1) would imply that D' = bD * D.t for some b, c € K.
Since K is a ûeld, this gives D2 : ôDr a contradiction. (An exa.mple of a derivation D
in a ffeld of characteristic 2 with minimal equation D4 - D : 0 can be lound in [Ler:
Prop.7, p.1,11).

The last two examples are to be cortra.sted with our Âext result which says that, in
a "sufficiently general" sittation, Rt 3 R 3 Rt will indeed imply that .Ri = -R.

Theorern 5.6. Let R : Klt,  S.DI, R' :  Klt ' ,  S', D'). Asswne that ei lher (7) S is
a.n aulomorphtum with o(S) : co, or (2) D is not quasi-algebmic. I f  6 : E + R
and, rp t R + ]{ are injectite ring homomotphisms, then bolh are isomorphisms, In
po,rlicula\ ue aluays haue E I RS R' :+ R: = R.

Proof. Àssume that one of / aad ry' is aol a,û isomorphism. Ther. $ o rl' : .R 
- 

.R is
irjective but not surjective, so it coûespords to a cv-polynomiai p(i) of degree n ) 2
with respect to (S,D). Suppose we are under the hypothesis (1). By (2.12)(1), we have
S : 4o S" for some ô € K*. Since 5 is an automorphism, this implies that S "-r : 1b-, ,
so o(S) I r) - 1 < co, a cortradictior. Next suppose we are ulder the hypothesis (2).
Ther D : (p - ôoXD) * Doo,s where 6o is the constart term of p(1). Since p(r) has
degree n ) 2. this implies that D is quasi-a.lgebraic, agait a contradiction. Q.E.D.

Remark 5.7. One might wonder if the Theorem still holds iI we relax the hypothesis
(2) above to (2'): D is nol algebraic. The answer is that it does not. Fot iastauce, take
the Ore extensions R, À' in (5.a). For suitable choices ol (I(,5), we can alrange to
have an elernent ô€ K such that D6,s is not an algebraic derivatioa (though, of course,
D is quasialgebraic). The ring R" = Klt,S,Dt,s) is isomorphic to -R by (2.1), and
hence we have I{ < R' S À'; but .R" = -R is aot isomorphic to -Êi.

Theorem 5.8. Let R: Klt,S,D) and. Rt = Klrt,S'.D'), aB usl lal.  Then
(1) R is non-simple i f f  we haoe some Klf ' ,  S"l !  R.
(2) If R' S R, then R is sirnple iff H is simple.

Proof. (1) Suppose B is non-simple. Then there exists a monic invariant polynomial
p(t) € À of degree n ) 1. Then p(t) is a cv-polynomial with respect to (S",0) a.nd
we have an injective homomorphism Kll",S"] ---+ À. Conversely, if we have some
injection I([1",S'] + E, then the associated cv-polynomial is a non-constant semi-
invaria.at polynomial in -R. By ( .s), rR must be non-simple. To prove (2), let us view
.Ri as a subriog oi R. 11 R' is non-simple, ther by (1) we have some KIt",S,l < R,.
Since "1!" is transitive, we have K[t",s"] S -R and so by (1) again R is non-simple.
Conversely, assume -R is non-simple. Then .R has a nonzero ideal ,l : R.f whete f

r--
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is an iovariaut polyaomial of degree a > 1. If À'a J = 0, theu we have ao injection
R' + RlJ. This is impossible siuce .R/J has left K-dimeusion z, a.nd rR has infinite
left dimension over 11. Q.E.D,

The next result concerns the centers of Ore extensioos. Following Cauchon [Ca],
we say that R : Kll, S, Dl ho,s tuon-t tidl centei il lbe center of .R cortaiûs a non-
corstart polyoooia.l. The following efiective clitelior for -R to have ror-tivial center
has been given in ll,el:(2.3)]:

(5.9) .R = 1l [r, S, D] has non-trioial center if R is non'simple and o(S) < æ.

Theorem 5.LO. Let E and, R' be as abooe. Then
(1) -R l,a.r rLorL-ttioio,I center iff ue hate some KIt'l < R-
Q) A R! < R, then R has non-tritial cenler iff P has notu-tnaial cenaer.

Proof. (1) Suppose .R has a central polyaoûia.l p(r) of degree ) 1. Then p(r) is a
cv-polynomial with respect to (1,0) and fù ê p(t) deÊnes a,n injectioo KUl - R.
Conversely, suppose there is such an injectiorl /. Then, for e() := $(t"\ = ôr" + ...
(b I O, n > 1), we have I = 16 o S" by (Z.rZ)(l), so o(S) S zr ( oo. Since, by (s.e)(Z),
-R is also non-simple, we conclude from (5.9) that .R has lon-trivial center. To prove
(2), assume that rB/ Ç È. The "i{" part of (2) lollows from (1) as in the previous
proo{. For the "ooly i{" part, assume -R has ooo-trivia.l ceoter, so o(5) < oo â.l'd rR i6
non-simple. From (2.12)(1) agaio we deduce that o(S') < oo, and (5.8)(2) implies that

-R is uon-simple. Aaother application of (5.9) shows that Bi has non-trivia,l center.
Q.E.D.

Iu parallel to (S.S)(r) aÀd (5,10)(1), we ha,ve also the Iollowing criterion for -R :
Klt, S, Dl fo contain an Ore exteosioa of the deliyatior type.

Theorern 6.LL. Wehaue some Klr.,,D,l lÂ itro(S) 1æ aniL some l!=, h,Di is a
usual i leritation, uhere h,. '  '  ,b^ € K are not all zero.

Proof. The "ody if" part follows easily ùom (2.12)(1). Conversely, assurne that
o(S) < co, and that folp(t) : Lbili, O' ,: p(D) is a usual derivation. Il D is not
a.lgebrôic, (2.12X2) implies that p(r) is a cv-polynomial with respect to (I,D/), so we
haæ Klt', D') S .R. Now assume D is algebraic; in particular, rt has a monic invaria.nt
polynomial g(t) of degree À; ) 1. Say S- = 16 . Then, for â.ny a € K:

ô-rq(l)-o : 6-Àsr-(a)q(r)- : 6-Â(ù&aô-e)q(r)m = o6-Àq(r)m,

60 tz H 6-&q(r)n deûlres a homomorphism from Klftt) to R, giviog a stronger con-
clusioa Kfi"] ( -R in this case. Q.E.D.

To complete our results ilr this direction, we shall also prove the following Propositioo
and Theorem concerning the behavior ol the algebraicity of derivations under a change
of Ore ertersiors.

Proposit ion 5.L2. Lel , l t :  R' + R be a homogeneous inject;oir, i .e, i t  is defined, by
a, ct)-polynomial p(t) withoul cotustatut leîrn, Then D is algebrai,c iff D is algebraic.
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Proof. For the maps ) aad )' deûaed in (2.14). we have by (2.14) the commutativity

relation À' : ,\ o S (under the assumption that / is homogeneous). If we think o{ {
as an inclusion map, this rclation clearly implies that &er tr' : -R' n ler ) If t' is

algebraic, then kerÀ' lo' so lerÀ is also nonzero, and D is algebraic. Conversely,

if D is algebraic, iher ker )' 10, and the dimension argument in the proof of (5.8)(2)

shows that her À' - R'Àher À I 0, and tberefore D' is algebraic. Q'E.D.

It is easy to see that, in the above Proposition, the homogeneity assumption on

d ca.nnot be waived. For instance, we have an isomorphisrn $ t Klt',S.D') '
Klt,S,D",s] defined by ÔQ) : t - c, where D' = 0 is algebraic, but the S-inner

derivation Dc.s celtainly need not be algebraic. Note that the isomorphism { here is

nol homogeneous (unless c = 0). This "couater-example" shows that, il dealing with

the hereditary properties oI ihe algebraicity oI D and D', we have to be careful about

ihe inner derivations. The followiag result a.llows us to extend (5.12) to the case of a

general injection $: R' ---"+ R, oÂce we have taken the inaer derivations into account'

Theorern 6,13. Let ô: E' 
- 

R be an injection d efined by a ct-polgnornial p(t)

Then, Jor ang a ê K, D - Do,s is algebraic iff D' - Do1"1.s, is algebtarc. (Eere' rhe

eraluation oJ the ( S, D\ -polynornial p(t) at a is as d'efined ;z fla, $ZJ.)

Proof. We can think of R as Klt - a,S,D - D.,sl,  and Rt as Klrt - p(o\,S"D' -

D-,-, *1. Usine these oew representations oI -R' and .R, the map / is determined by the

."'-'o.-Ë"*iJOtr'- p(a)) = plt) -p(a). Since p(t) -p(o) is right-divisible bv | - o ([L1:

(Z.a)), tbe map / is now homogeneous with respect to the tew representâiions of À'

aod ,R. Applyiag the Proposition, it follows that D - D",5 is a.lgebraic iff D' - De1";,s'

is algebraic. Q.E.D.

The Theorem above has also a very r1atura.l ittelPletatioû iû terms of the notion

of algebraic conjugacy classes developed in [Lr]. Recall that, for o € K' the (S' D)-

conjugacy class oI o is deffned to be 
^s'D(o) 

: {S(c)oc-1 + D(c)c-r : c€ l(. }. Such a

class is said to be algelraic (with respect to (5, D) ) if some nonzero (S, D)-polynomial

vanishes oo it. In [Lr: (5.10)], we have shown that Às'D(o) is atgebraic iff D - D.,s

is an algebraic S-dedvation. Therefore, (5.13) has ihe lollowing oice inter?retation in

terms of the preservatioo of algebraic conjugacy classes:

Theorem 6.14. Let p(t) e R be any non'conslanl crt 'polynomial uith respect to

(S',D'). Then, for any ae K, the class N D(a) is algebraic i f f  the clats 
^s, 'D'(p(a))is algebraic.

Note that Propositiot 5.12 is a.lso true if we replace both occurrences of "algebraic"
by "quasi-algebraic", aod, for this, no assumption on the homogeneity of the map / is

required. Iu fact, lor the quasi-algebraic câse! Propositiot 5.12 is just a combination of

(4.5), (4.?) and (s.8)(2). The last case to consider is the case of cv-algebraic derivations.

I! 6 t È' 
- 

l? is any injection, cleally D' is cv-algebraic + D is cv-algebraic. The

reverse implication holds i{ K is a field, by (4.16), but does not hold in genera,l in view

oI the last rema.rk in li4.
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Next we shall bring into play the non-linear cv-polynomials of miaima.l degree. If
p(t) is such a polynomial, a:r irteresting questior to ask is tunil,eî uho,l cond,itions can
ue say thal all non-lirLear cr-polgnomials in R can be eapressed, 0,s a polgnomiûI ;n
p(t)? To facilitate the study of this problem, it is corverient to iutroduce the lollowing
terminology.

Deûnition 5.15. We say thôt A hal c lo,rg l Ore cubeclension J? if ,R' is a,n Ore
extensior properly coûtaiûed ir .r?, aad aay Ore extersion prope y contained in -R sits
iaside 8'. (The idea is that aay injection from any R" : Kl{, Sn,Dt] iato .R which is
not an isomorphism should {actor through au iojeciion oI .R" into ,R.) If such a:r -Ê'
exists, it is clearly uaique. Moreoverr if p(l) is a cv-polynooial such that R' : Kl0(\1,
then p(l) is a aon-linea.r cv-polylomial of minimal degree. Coaversely, if p(t) is a non-
liaea.r cv-polyuomial of minimal degree, then Klp(t)] is the la"rgest Ore subextension of

-R if every non-linear cv-polynomial in .R is contained in -Klp(l)].

Certainly, not every Ore extension .R has a largest Ore subextensioo. For instance,
in the usual polyaomial ring n: K[r], ar Ore subextension R' Ç R containing both
.I(p'?] a.rd K[/2*l] would have to contêir I and hence equal to ,R. There{ore, K[l] has
no la.rgest Ore subextension. Eowever, it turns out that there ale rnaly examples of Ore
extensions which do conta.iu ô largest Ole subextensior. l{e shall now try to develop
a general result which guarêrtees the existence of large classes of such exa"mples. As a
prepâratior, we need to go back to a result which was left unproved in $3, namely, part
(3) of Theorem 3.4. For the reader's convenience, we restate this result, and then give
its proo{.

Proposit ion 5.16. A$ ne thal S ie o,rù aulonorphisnt Let p(t)eR be a (monic)
.u-polgnomial of d,egree n o,nd, assufiLe that R has n,o tuon-corùsta,nl, selni-inoarianl poly-
nomial of d,egree < n. Then nld,eg P(t\ for any (monic) co-polyùomial P(t) of d,egree
. l r 'àn.

Proof. By successive division, we can.write

P(t) h;(t)p(t)t ,

where deg h;(t) < n, hd(t) * O. \{e claim that hd(t) € K , which will give the desired
cotclùsioû sirce theÂ deg P(l) : d,n. Say p(I) is a cv-polyuomial with respect to
(S",D/). Theo p(t)ia = D\-o fit(")n(.|j where fji is the sum of all products with j
factors of S' : 5" and i -j factors o{ D' (see the paragraph before (2.16)). Therefore,
for any o€?f:

(5.18) P(t)a âr(r) fj'@)nQ)' p(t)j .

On the other hand, if the cv-polynomial P(t) is with respect to (SN, D,,), we a.lso have

_\ '

\-_\-
d ld \: t  I t  h,( t ) î j , ( " ) l

j=0 \ i=,  I

_\-
-22(5.1e) P(t)a: sN(a)P(t) + D"(a)

22
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Since there is only one way to wite P(t)o as a sum of powers of p(t) lelt-mdtiplied
xith polynomials of degree < n, we deduce that

5.20) SN(a)b,(t) * 63.oD"(a) tu( t )  J j t (a)  (05 j<d),

chere 6;,0 meaÀs the Krouecker deltas, Fo. j : d > 0, this simplifres to SN(a)àa(t) =
[2it)Sd"(o). Sirce Sd"(o) can be any element of K (S being an automorphism), this
:mplies that ô;(1) is semi-invarialrt, and therefore the hypothesis in the Proposition
:aplies that ô2(t) € K, as desired. Q.E.D.

Corollary 5.21, Assù,me that S is an a torrLoîphfum, and. thal R is sinple, If p1(t)
cnd, p2(t) are 7uo non-constanl cu-polynomials in R, then the d.egree of one oJ them
iit:id,es the d,egree of the olher one.

Now we are ready to prove the lollowing result wbich gives, as a corollary. a general
su.ficient condition for a,n Ore extensior .R to have a largest Ore subextension.

Theorem 5.22. Assvme S is an auTomorphism, and, that D is not S-inner. Let
ItleR be o, nùonic non-lineo,r ca-polynonLid,l oJ minirnal tLegree n, o,nil let P(t) be û
'nonic) non-Iinear æ-polynomial of d,egree N, IJ kn I | (mod, o(S)) for alt posilûte
ttn I N, then P(t) € Klp(t)1.

Proof. As in ihe prool of (3.6), the assumptions on p(l) here imply that À has no non-
coÀstant seûi-iûvâriant polynomial of degree < rù. Hence) (5.16) applies, Expressiog
P(t)asin(5.17)(andnot ingthatdegP(r))n),wehavethereforeâ7( l )eI( .Ourgoal
is to show that all à;(t) e K, so that we can conclude that P(t) € KlpQ\. Proceeding
by induction, rpe may assume that hd(t),ha_{t),.  .  .  ,h j11!) € K , and try to show that
Àj{t)€X. Now, by (5.20), we have for any a€K:

s N (a) h i () .r 6 i,s D" (a) : â,(1)s'}" (a) + t h 1Q) f i fu).

- \ -

Therefore,

:,.23) \(t)sj"(a): sN(")â,(t) + cùnstant

Since Sr"(a) caû be any element of K, this implies tLat /zr(t) is a cv-polynomial
iby (Z.fe)(a)), a.nd siace deg h1ft) < n, we must have hj(t) = ajt * 6, lor suitable
constants o1, ô;. Pluggiog this into (S.23) and compa,ring (le1t) coeftcients oI t, we get
orSt"+r(a) : SN(a)or. If ai I O, this would give Io' o Sj"+1 : SN : Sd", aad hence
id-j)n=7 (rzod o(S)), a contradict ion. Therefore, ai:0 and we have hj(t):bj€K,
as desired. Q.E.D,

Corollary 5.24. Let (S,D) and. p(t) be as in Theorem 5.2p, uith n = d.es p(t). !
in.o(S)) l1 ( in parl icular, ;T o(S) = <n), then Klp(t)) is the largest Ore subextension
tlr R.

23



Proof. We need to show that any non-linear cv-polynomial P(t) belongs to Klp(t)].
If it does not, the theorem implies that kn = 7 (rnod, o(^9)) for some È. This means
ihat o(S) < co and that (r,"(S)) :1, a contradict ion. Q.E.D.

Remark 5.25. If we do not impose the hypothesis that (rr,o(S)) I 1, the Corollary
will not hold io general, For instarce, let (f,S,D) be such that char K : p ) O,
SD 

- DS, SP-t : I, Dp = D, ard D is not S-inaet. Then p(t) = tp is a ron-linear
cv-polynomial of minimal degree. On the other haod, P(t\ : tP - I is an invariant
polynomial. for it obviously commutes with t. aûd also. Ior aoy a € K:

P (t) a : re a - ta = (sp(a)rp + De(a)) _ (s(a)r + D(a)) = .s(o)p(r).

Eowever, we have clearly P(t)f K[tp]. Eere, o(S)l(e-1) so (p,o(S)):1. (Of course.
we could have chosen S: f and K to be a ffeld in the above. In this case. we need
only choose D to be a nonzero derivation with De : D.)

Remark 5.26. If we do not assume that D is not S-inaer, the Corollary also fails
to hold in general. For instance, let ^9 be an automorphism ol a division ring K with
o(5) equa.l to an even integer, and let D = 0. We ca.n ta.ke p(t) = 12 to be a non-
liaear cv-polyaomial of minima.l degree (n = 2). Theo (a,o(S)) : 2 I t, but clearly
the inva.riaot polynomial P(t) : t3 is rot iû .K[rr] = KItt,S2). The Ore extension
R : K[t, S] has no la,rgest Ore subextension in this case.

As it turûs out, the sumcieût condition (n,o(S)) I t lot KlpQ)l to be the largest
Ore subextensiou of -Ê is also not fa! flom being necessary. To see this, we need the
following siaple observâtior:

Lemma 5.27. Let p(t) € R be any monic ca-polynomial o! d,egree n / 2, and, Iet
u€.K*. Then p(t) +at û a n-polynornial i f la S": I"o S. In part icular, i f  S is an
autontolphhm and, p(t) is a monic non-linear N-polynomial of minimal d,egree n, fhen
p(,) is unique up to o,n ad,d,itioe constant iff n f I (mod o(S\).

Proof. Suppose the cv-polyoomial p(t) is with respect to (.9",D,). Fo! any d.€K,we

(p(t) + ut)a : s"(o)p(l) + d(a) + u(s(a)t + D(a))
: s"(a)(p(i) + z.r) + (u S(o) * si (e)u)r + D'(a) + uD(a).

Therefore, p(l) + ut is a cv-polynomial if us(a) = S"(a)u lor all a e K; that is, if
S" = I" o S. If S is aa autooorphism, a.rd rù is assumed to be minimal, then, for
aûy other moûic cv-polynomial p,(l) of degree n, the difiereace p,(t) - p(t) is also a
cv-polynomial (by (2.9), of degree ( rù, so it has the form aI { c. The last conclusion
in the Lem.ma now follows easily from this represertation. e.E.D.

Proposition 5.28. Keeping the notations in (5.22), it Klp(ùl i,, the ll,rgût Ore subez-
tension of R, then ue here Ln I | (mod, o(S)) uheneoer kn is the d,egree of a cu-
polynomial P(t). In particula4 if for etery k /l there er;sb a n-polynornial oJ rlegree



t.

l ;n, then (n.o(S)) f\  is a necessarg as well as suff,cien| cond,i.Lion t 'or Klp(t)) to br:
the laryesl Ore subeztension of R.

Proof. If hn= 7 (mod, o(9)) where Àn, is the degree of a cv-polynomial P(t), then
lor some ù € 11., so P(1) * 1,l is also a cv-polynomial by (5,27). llence

we have P(l) + ut e Klp(t)l as well as P(1) e K[p(t)]. This gives I e Iilp(t)1, which
contradicts n = deg p(t) / 2. q.E.D.

Since the phenomenon of an Ore extensioÂ containing a largest Ore subextension
has nôt been observed before, we would like to conclude this paper by constructing
some explicit examples. Note that Jor ary such example .I([r, S, D], (5.28) impiies that
,9 ca.rnot be an inner automorphism, â.rd we can also see easily that D cannot be
an ,9-imer derivation. To produce an actual example to which (5.24) app)ies, let I
be aoy field, and let F : L({z; ; i e Z}). Let d be the &-automorphism of F
defined by o(x;) : s;*, lor any i € Z. Tben let K be the division ring of twisted
Laûrent series F(9,aP)) (in which gz; : ot(z;)y: ai+p!), where p is a fixed prime.
We can extend d to an aùtomorphism S of I( by deûning 5(g) : g. Further, it is
easy to check that there is a unique S-derivation D on }i speciffed by D(f;) : O.
D(zi) : xi (V i € Z), aod D(c) : O. rffe claim that; (1) ,(S) : p, and (2) D i.s
not S-inner. First, note that Sp(r;) = 4*, = 9r,g-1- and Se(y) = g = ggg-t; herce
we have ,5p : Iv. To prove that o(S) : p, 'we need to show that S is not an inner
automorphism- But i f  S = f,  for some noÂzelo u = t=i" tyi l f ;e F. 11. / O). rh"n
urj : zi+ru leads to lilo f;xiaiog' = DËi" c;+'.f,y'. Comparing the coeficients of
v'o' we get fioxj+np = cr+rf,o, which is impossible. To prove the second claim. assrme
that D : D,,5 nrhere z is as above. Then o; = D(c;): D-g(xi) = uxi -xi*p(Y j e
Z) leads to ,t = D7;.(1;ri+;, - c;a1l)gi. Comparirg the constant coefficients gives
r.i = fszl - ziarfot or fs : xif(æi - cral) for all j. This is clearly impossible. In this
example, it is easy to check that SD : D^9. Now assu::re that ,t has characteristic p.
Then, by (3.12)(3), ,p(t) = f e Klt, S, D] is a non-linear cv-polyromia.l (with respect to
(Sp, Dp) ) of minimâf degree, and we have (o(S), deg p(t)) : p * 1. Therefore, (5.24)
applies, giving the conclusioa that -R': KIte,Sp,Dpl is the lalgest Ore subextension
ol R = Kla,S,Dl. As a strengthening of ihe claim (2) above, we leave it to the reader
to checL that D is in fact not a quasi-algebraic derivation, so the Ore extension -R in
questioû is a simple liÂg here.

Io the above example, the Ore subextensioo .R' C .R is not minimal sioce it cortains
in tum K[rt', SP', Do']. Ilowever, we can aûa:rge to have .R' minimal by ma]ing the
following changes in the construction, First, in the defnition of D, we replace the
conditiors D(x;) : xi by D(a;) = (-1)iz; (for every i). Then. we'll have SD =
-DS (instea.d of 5D : DS ), so according to (Z.fO) q(t) = t2 € -R is a cv-polynomial
with respect to (9'?,D'z), Secondly, we take I to be of characteristic zero (irstead of
characteristic p ). By the sa,me proof as before, we can check that D, is not an S2-inner
derivation. But sitce we have now câor ( : 0, and SD = -DS '- S2D2 = D252,
(4.11) implies that .R' : Klsft)l = Klt',g2,D,) is a minimal Ore extension. Thus
vre have an example (promised earlier) of ao Ore extension which is minimal, but not
maximal (it view of .R C -R).

rt

I

i

t

25



. 
In the last paragraph, ,l(t) = t2 e R is clearly a noo-linear cv-polynomial of minimal

degree n : 2, but p can still be arry prime. If we take p j 
Z, tt 

"r, 
(n,o(.S)) :

!?,4 =.2, so _(5.24) applies. This implies that all nonlinear 
"l,JpoilrroUuf" 

of A
lie in_ Â? = K[q(t)]. Since /?, is miaimal, we conclude further froï iz.tol that the
cv-polynomials in lR are exactly those of tbe fom at2 1 6, or ct )_ d, (a,b,c,d, e K).
Thus, we have an example of an Ore extension which has only linear and quadratic
cw-polynomials. Furthemore, the only Ore extelsions containeà in .R a.re rR, and i?
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