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§1. Introduction

The principal object of study in this paper is the Ore extension (a.k.a. skew poly-
nomial ring) K|[t,S, D] over a division ring K. Here S is an endomorphism of K,
and D is an S-derivation on K, that is, D : K — K is an additive map such that
D(ab) = S(a)D(b) + D(a)b for all a, b € K. By definition, K|[t, S, D] consists of left
polynomials 3 b;#* (b; € K) which are added in the usual way and multiplied accord-
ing to the rule ta = S(a)t + D(a) for all a € K. Since the introduction of the ring
K|[t,S,D] by Ore [O4] in 1933, there has been an extensive literature on its structure
and applications (often for more general coefficient rings K). Modern introductions to
the basic facts on Ore extensions can be found in the books [Co], [Mc|, [Ro] and [JS],
among others.

So far, the theory of Ore extensions has been focused on the study of one extension at
a time. However, a careful look at some basic examples suggests that it is also important
to study “transformations” from one Ore extension to another. In this paper, we shall
formalize this idea and make the first systematic attempt to study homomorphisms be-
tween Ore extensions. As is easily seen, a K-homomorphism ¢ from one Ore extension

K[t',S',D'| to another K|t,S, D]is determined by p(t):= ¢(¢') € K|[t, S, D], which must
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satisfy: p(t)a = S'(a)p(t) + D'(a) in K[t,S, D], for every a€ K. Such a polynomial
p(t) enables us to make a “change of variables” (from t' to t), so we shall call p(t)
a change-of-variable polynomial (or cv-polynomial for short). More precisely, we call
p(t) € K[t, S, D]a cv-polynomial with respect to (S’,D'"). Whenever such a polynomial
is given, we get a unique K-homomorphism $:K[t',S',D'|— K|t,S, D] sending t' to
p(t), namely, for g(t) = Tbit'* € K[t',S',D'], we have ¢(g) = Y bip(t)'. If the cv-
polynomial p(t) is not a constant, the associated K -homomorphism ¢ is easily seen
to be an injection. In this case, we can identify K([t',S’,D'] with im ¢ = K|[p(t)], the
subring of K[t,S,D] generated by p(t) over K. We shall speak of K|[p(t)] as an Ore
subeztension of K|t,S, D).

Some precursors for the notion of cv-polynomials are those of invariant and semi-
invariant polynomials. A polynomial f(t) € K[t,S5.D] is said to be right invariant 3
if f()K[t,S,D] C K|[t,S,D]f(t), and right semi-invariant® if f(1)K C K f(t). These
polynomials arise naturally in the study of the ideals of K][t,S, D], the minimal poly-
nomials of algebraic (S,D)-conjugacy classes of K, and the algebraicity (and quasi-
algebraicity) of the derivation D (see [Am], [Cal, [Le], [L;] and [Ls]). Clearly, in-
variant polynomials are semi-invariant, and semi-invariant polynomials are exactly the
cv-polynomials with respect to (S’,0) for some S'. Therefore, the theory of semi-
invariant polynomials developed in [L,], [Ls] can be used as a model for the new theory
of cv-polynomials.

Let us now give a summary of the results in this paper. In §2, after giving examples of
cv-polynomials, we study their general properties and characterizations. It is shown that
a polynomial p(t)€ K[t,S,D] is a cv-polynomial iff p(t)K C K p(t) + K; moreover, if
p(t) is not a constant, then p(t) is a cv-polynomial with respect to a uniquely determined
pair (S’,D’). Another criterion for p(t) = bnt" + -+ + bo to be a cv-polynomial in
K[t,S,D] is that the coefficient vector (b1,--+,bs) of p(t) (without by) be a common
“left eigenvector” for a certain family of n X n matrices canonically associated with

(K, S, D).

In §3, we study the relationship between cv- and semi-invariant polynomials by using
the division process. It is shown that, if we divide a cv-polynomial by a semi-invariant
polynomial, then the remainder is a cv-polynomial, and 1f S 13 an automorphism, then
the quotient is a semi-invariant polynomial. This essentially reduces the consideration
of cv-polynomials to that of semi-invariant polynomials together with cv-polynomials
with degree less than that of a “minimal” non-constant semi-invariant polynomial (if it
exists). In this section, we also obtain sharp quantitative information on the possible
degrees of cv-polynomials in K{t, S, D], in the case when S and D commute.

Using earlier results from [L3] and [Le,], existence and uniqueness theorems on cv-
polynomials are obtained in §4. For instance, if K[t,S,D] is a simple ring, then the
cv-polynomials attached to any fixed (S’,D’) are determined up to an additive constant.
In the existence direction, we show that K[t,S,D] has a non-linear cv-polynomial iff

2To simplify language, we shall suppress the adjective “right” in the following and simply speak of
invariant and semi-invariant polynomials.
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the S-derivation D is “cv-algebraic”, in the sense that there exist constants b;,...,b,
with n > 2, b, # 0, such that 2y biD' is an S'-derivation for some endomorphism
S’ of K. This notion of cv-algebraicity for S-derivations is in direct generalization
of Lemonnier’s notion of quasi-algebraicity [Le], which in turn generalized the classical
notion of algebraic derivations.

In the last section (§5), we study a comparison relationship among all Ore extensions
over a fixed division ring K. For two such extensions R’ and R, we define R’ < R
if there exists an injective K-homomorphism from R’ into R. (With respect to this
relation, an Ore extension Kt, S, D] is “minimal” exactly when D is not cv-algebraic.)
If we have the relation R’ = K[t,S',D'| < R= K[t S, D], it turns out that the two Ore
extensions share many ring-theoretic properties. Forinstance, we show that R is simple
iff R' is simple, R has a non-constant central polynomial iff R has a non-constant
central polynomaial, and also, (under a certain mild assumption on the inclusion map
R' — R), D is algebraic iff D' is algebraic. If R < R < R, it does not follow
in general that R’ = R. But if S is an automorphism of infinite inner order (see
below), or if D is not a quasi-algebraic derivation, we show that R’ < R < R does
imply R’ = R. Toward the end of §5, we investigate circumstances under which we can
conclude that, if p(¢) is a non-linear cv-polynomial of minimal degree in Kt, S, D],
then any non-linear cv-polynomial P(t) is expressible as a polynomial in p(t) (i-e.
P(t)€ K[p(t)] ). It turns out that, under certain fairly general sufficient conditions, this
can be guaranteed to happen. If this is the case, K[p(t)] will, in fact, be the (unique)
largest Ore subextension of K[t,S, D).

In a sequel [L4] to this paper, we shall present further aspects of the theory of
cv-polynomials, prove a Composite Function Theorem for the evaluation of skew poly-
nomials at constants, and apply the notion of cv-polynomials to derive new versions of
Hilbert 90 Theorems for division rings with S-derivations.

Throughout this paper, the notations and terminology introduced above will remain
in force. At this point, let us also recall a few other standard notations to be used
in the main text. If D = 0, we write K[t,S] for K[t,5,0], and if S = I, we write
K[t,D] for K[t,I,D]. For ue K*, I, denotes the inner automorphism of K associated
with u, defined by I(z) = uzu~!. If S is an endomorphism of K, the inner order
of S, denoted by o(S), is defined to be the smallest positive integer k& such that
S* is an inner automorphism; if no such integer k exists, we take o(S) to be oo.
In particular, if S is an endomorphism which is not an automorphism, we have by
definition o(S) = oco. An S-derivation D is said to be S-innerif D = D.s for some
¢ € K, where D.s(z) := cz — S(z)c for all z € K. Other standard ring-theoretic
notations and terminology follow the books cited earlier in this Introduction.

The work on this paper was done in part while the second author visited the Unj.
versity of California at Berkeley in the Spring semester of 1990. Funding support from
NSF and FNRS for this visit is gratefully acknowledged.



§2. CV-Polynomials and Their Characterizations

In the classical work on K|t, S, D], it is well-recognized that in some special cases a
change of variables can be used to express one Ore extension in terms of a simpler one.
Two cases which immediately come to mind are the following:

(2.1) If D is S-inner,say D = D.gs, then K[t,S,D] = K[t —¢, S].
(2.2) If S is an inner automorphism of K, say S = I, (u € K*), then K[t,S,D] =
Ku~t,u"1D].

We can look at these identifications from a slightly different point of view; namely, in
both cases, we have an associated homomorphism between Ore extensions which turns
out to be an isomorphism. In the case (2.1), we have ¢ : K[t',S] — K|t, S, D] defined
by ¢(T ait’*) = ¥ ai(t—c)', and in the case (2.2), wehave 9 : K[t',u~'D] — K[, S, D]
defined by (3 a;t'?) = ¥ a;(u~'t)'. In each case, the change of variables is determined
by an (S, D)-polynomial (respectively, ¢ — ¢ and w~'t) which is the image of the new
variable #/ from the other Ore extension.

These two basic examples suggest how we can deal with a change of variables from
one Ore extension to another in general. For R =K|[t,S,D]and R’ = K[t',S', D],
consider any K-homomorphism ¢ : R’ — R. Writing p(t) := ¢(#') € R, we have
$(#'a) = $(t')¢(a) = p(t)a for any acK. On the other hand, (t'a) = ¢(S'(a)t+D'(a)) =
S'(a)p(t)+D'(a). Therefore, we have the necessary condition:

(2.3) p(t)a = S'(a)p(t) + D'(a) for any a € K.

Conversely, if a polynomial p(t) € R is given satisfying (2.3), where S’ is an endo-
morphism of K and D’ is an S’-derivation, then we can define ¢ : R" — R by
H(T ait’’) = T a;p(t)', and check easily that ¢ is the unique K-homomorphism from
R' to R sending t' to p(). This motivates the following crucial definition:

Definition 2.4. A polynomial p(t)€ R = K[t, S, D] satisfying (2.3) is called a change-
of-variable polynomial (or cv-polynomial) with respect to (§',D’). We shall say that
p(t) €R is a cv-polynomial if it is a cv-polynomial with respect to some pair (S’,D’).

By an easy degree argument, we see that a K-homomorphism ¢ : R’ — R is
injective iff the associated cv-polynomial p(t) = ¢(t') has degree > 1, and ¢ is sur-
jective (respectively, bijective) iff p(t) has degree = 1. These facts will be used freely in
the rest of the paper.

At this time, we should remark that our requirement that ¢ : R — R be a
homomorphism over K is not strictly necessary. In general, we can deal with homo-
morphisms ¢ : R’ — R with the property that 6 := ¢|K is an automorphism of K.
In this case, one can check as above that p(t):= ¢(#’) is a cv-polynomial with respect to
(0,8), where o = 65’6~ and § = 6D'6~'. In fact, ¢ can be factored as ¢, 0 © where
©® : R — Klz,0,6] is defined by O(T a;it'’) = ¥ 60(ai)z', and ¢, : K[z,0,6] — R
is defined by ¢,( b;z') = ¥ b;p(t)'. The latter map ¢; here is a K-homomorphism.
Since the homomorphism © can be handled separately, it is sufficient to work with the
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K-homomorphism ;. Therefore, we shall focus our attention on K-homomorphismsin
this paper. All homomorphisms between Ore extensions considered below will be assumed
to be K-homomorphisms.

Let us now give a few more examples of changing variables beyond the classical ones
in (2.1) and (2.2).

(2.5) For R = K[t] and R' = K[#'], the cv-polynomials in R with respect to (I,0) are
exactly the polynomials in the center of R.

(2.6) The constant polynomial p(t) = c€ K C R is a cv-polynomial with respect to
(8',D'") iff ca = S'(a)c + D'(a) for all a € K, that is, iff D' = D. s . In particular,
any constant polynomial in R is a cv-polynomial. Notice that here S’ is completely
arbitrary, while D’ is uniquely determined by S’ and c.

(2.7) For any linear polynomial p(t)=ut+c (v€K*), a routine calculation shows that
(ut+c)a = S'(a)(ut+c)+D'(a) where §' = I, 0 S and D' = uD + D.s. Therefore,
p(t) is a cv-polynomial with respect to (8D

(2.8) Let p(t) = L bit* be a semi-invariant polynomial of degree m. Then for any
a€ K, p(t)a = cp(t) for some c, and a comparison of the (left) coefficient of " gives
c =b,S"(a)b;!, so p(t) is a cv-polynomial with respect to (Iy,05",0). Conversely, any
cv-polynomial with respect to any (S, 0) is clearly a semi-invariant polynomial.

(2.9) Let p(t), q(t) € R be cv-polynomials with respect to (S’,D’) and (S’,D"). Then
p(t) + q(t) is also a cv-polynomial, with respect to (S',D' + D"). From this, it follows
easily that, over a field K, the sum of any two cv-polynomials in K|[t, D] of the same
degree is another cv-polynomial.

(2.10) For p(t) =t*+c€ R= K|[t,S, D), an easy computation gives
p(t)a = S*(t)p(t) + [DS(a) + SD(a)]t + (D?* + D, s2)(a),

for any a € K. Therefore, if p(t) is a cv-polynomial, we must have SD = —DS; and
conversely,if SD = —DS, then p(t) isa cv-polynomial with respect to (S2,D*+D.s).

(2.11) If K is a field of characteristic p>0, and R=K[t, D], then any “p-polynomial” 2
Y b;it?" in R is a cv-polynomial, with respect to (I, b;DP"). A fuller discussion of this
type of examples can be found at the end of this section.

Recall that an S-derivation D is said to be algebraic if there exists a nonzero
polynomial g(t) € R such that g(D) = 0. Here, the evaluation of a polynomial g(t) =
Y a;t* € R at D is defined to be the operator g(D) = Y a;D' on K. Our next
few results deal with the characterizations of cv-polynomials. The first result says in
particular that, if p(t) € R is a non-constant cv-polynomial with respect to (S’,D’),
then S’ and D’ are uniquely determined by p().*

3This terminology is due to Ore; see [O2].

4If p(t) is a constant polynomial instead, then, by (2.6), D’ is uniquely determined, but S is
completely arbitrary.




Theorem 2.12. Let p(t) = Y bit' € R be of degree n > 0, and let D' be any S'-
derivation.

(1) If p(?) is a cv-polynomial with respect to (S, D), then D' = (p — bo)(D) + Dy, s/ ,
and if n > 1, then §' =1, o S".

(2) If D is not an algebraic derivation, then p(t) is a cv-polynomial with respect to
(S,D') iff D’ = (p— bo)(D) + D5

Proof. Consider the homomorphism A : R — End(K,+) defined by M) =D,
and for a € K, A(a) =left multiplication by a on K. If p(t) is a cv-polynomial
with respect to (S',D’), the equation p(t)a = S’(a)p(t) + D’'(a) in R leads to an
operator equation p(D)A(a) = A(S'(a))p(D) + A(D'(a)). Evaluating at the element 1,
we get p(D)(a) = S'(a)p(D)(1) + D'(a) = S'(a)bo + D'(a), since D'(1) =0 for i > 1.
Therefore, D'(a) = (p—bo)(D)(a) + Dy,,s:(a), as desired. If n > 1, a comparison of the
left coefficients of ¢" in the equation p(t)a = S'(a)p(t)+ D'(a) gives b,S"(a) = S'(a)b,
for every a € K, so we get S’ = I, o S™. For (2), we need only prove the “if” part,
assuming that D is not algebraic. Let g(t) = p(t) —bo. If D' = ¢(D) + Dy, s/, then
(D) = D' — Dy, 5 is an S’-derivation, so for any a,b € K, we have g(D)(ab) =
S'(a)g(D)(b) + q(D)(a) - b. Therefore, we have an operator equation

(2.13) ¢(D)A(a) = A(5'(a))q(D) + Mq(D)(a)) (Va€eK),

which holds in the image of A. Since D is not algebraic, A is injective, so (2.13) pulls "
back to a polynomial equation g¢(t)a = S’(a)q(t) + ¢(D)(a). Therefore, !

(2(t) = bo)a = S'(a)(p(t) = bv) + (D' — Diy,s1)(a) = S'(a)p(t) + D'(a) — bua,

and cancellation of the term boa shows that p(t) is a cv-polynomial with respect to
(S8, D). Q.E.D.

Part (1) of the above Theorem allows us to speak about non-constant cv-polynomials
without reference to (S’,D’). It also justifies the second part of Def. (2.4). We should
note, however, that if D is algebraic, the sufficiency part in (2.12)(2) fails in general.
For instance, if char K =2, S=S"=1I, D' = 0,and D # 0 = D?, the polynomial
p(t) = t° satisfies the equation in (2.12)(2), but it is not a cv-polynomial with respect to
(1,0). In fact, if @ is any element such that D(a) # 0, we have t3a = at*+ D(a)t? # at®.

Corollary 2.14. We say that an injective homomorphism ¢ : K[t ', D'l — K|[t,S, D]
18 homogeneous if the associated cv-polynomial p(t) := ¢() has zero constant term.
In this case, D' and D are related by the equation D' = p(D). Moreover, if \ is
as above, and X 1is the corresponding map for the ring K[t,S’, D], then we have a
commutative diagram:

K[t,s', D' % KIt,S,D]
N A

End(K,+)
Proof. Setting by = 0 in (2.12)(1), we get D’ = p(D). From this, we get X(t) =
D" = p(D) = Mp(t)) = M(¥)). Since K[t',S’,D'] is generated by K and t', the
commutativity relation A’ = X o ¢ follows. Q.E.D.
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Generally speaking, the consideration of (injective) homomorphisms between Ore
extensions can be reduced to the consideration of homogeneous ones. This is shown in
the corollary below.

Corollary 2.15. If there is an injection ¢ from R' = K[t',S',D'] to R = K[t,S,D] (de-
fined by a cv-polynomial p(t) = ¢(t')), then there is an Ore eztension R' = K|[t",5',D"]
with an tsomorphism o : R — R’ such that R” admits a homogeneous injection ¢,
into R satisfying ¢ = ¢, 00~ If p(t) happens to have a root c€ K} then there is
also an Ore extension R = K[%,5,D] with an isomorphism 7:R — R such that R’
has a homogeneous injection ¢ into R satisfying ¢ = 7 o ¢a.

Proof. Let by, be the constant term of p(t). Since (¥ — bo)a = S'(a)(t’ — bo) +
(D' — Dy, s')(a), we can take D" = D' — Dy s and define the isomorphism ¢ in the
Corollary by o(t”) = t' — by. We then define ¢; by ¢:1(¢”) = p(t) — bo, and get the
desired commutativity relation ¢ = ¢, o'o~1. For the second part of the Corollary.
suppose that p(c) = 0. Then we can express p(t) in the form a,(t—c¢)"+---+ai(t —c),
for suitable constants a;’s (see Footnote (5)). Now let D be D — D.s and define 7
by 7(f) =t — ¢, and @3 by ¢a(t') = ant" +---+ ail. Q.E.D.

To introduce the next result, recall that, for any a € K, t'a = T}_, fi(a)t/ where
f_; € End(K,+) is the sum of all possible products with j factors of S and 1 —
factors of D (see [L;: §2]). Let M,(a) denote the n X n matrix whose (i, j)-entry is
fi(a) (1 £ 14,5 < n), where, of course, fi(a) is taken to be zeroif i < j,i.e. Myn(a) isa
lower triangular matrix. The next result gives, among other information, an eigenvector
interpretation for the coefficient vector (by,---,b,) of a cv-polynomial p(t).

Theorem 2.18. Let p(t) = L bit' € R be a polynomial of degree n > 0. Then the
following are equivalent: '

(1) p(t) is a cv-polynomial.

(2) For any a € K, and j =1,2,...,n, we have T b;fi(a) = b,S"(a)b;'b; .

(3) (by,+--,b,) is a left eigenvector for each matriz M,(a) (a€ K).

(4) p(OK C K p(t) + K.

If these conditions hold, then up(t) + ¢ is also a cv-polynomial, for any u, c€K.

Proof. If p(t) is a constant polynomial (n = 0), (1), (4) always hold, and (2), (3) hold
vacuously. In this case, the last statement of the Proposition is trivial, in view of (2.6).
Therefore, in the following, we may assume that n > 1.

(1)==(2) Let p(t) be a cv-polynomial, say with respect to (5’,D’). Forany a€ K, we
have

n n

(2.17) p(t)a = Zn: bit'a = i b; i f;(a)tj =3 (¥ b,‘f;(a))tj.

1=0 i=0 =0 Jj=0 i=j

5This means that p(c) = 0, where the evaluation of skew polynomials at constants is as defined in
[L,]. However, the general theory of evaluation developed in [L;] is not needed here, as one can simply
interpret p(c) = 0 as saying that p(t) has a right factor (t—c) in R. This is how the condition p(c¢) =0
is used in the proof of this Corollary.




On the other hand,

(2.18) P(t)a = S'(a)p(t) + D'(a) = b, S™(@)b" 3° byt! + D/(a),

J=0

by (2.12)(1). Comparing the coefficients of 27 (1 <3 < n), we get the identities in (2).
(We observe in passing that, if we compare the constant coefficients instead, we get once
more the equation D’ = (p — bo)(D) + Dy, s in (2.12)(1).)

(2)==(3) In matrix notation, the equations in (2) can be expressed in the form
(bl T bn)Mn(a) = b,,S"(a)b;I(bl, Ry bn)a

soforeach a€ K, (by,---,b,) is aleft eigenvector for M,(a) with eigenvalue b,S5"(a)b-1.

(3)=>(4) For each a€ K, we have (b1, -+, bn) M, (a) = B(a)(by,---, b,) for some “eigen-
value” B(a)€ K. Therefore, for 1 < J < n, we have i=; bifi(a) = B(a)b;. Applying
this to the equation (2.17) (after isolating the constant term), we have

p(t)a € Zﬂ:ﬂ(a)bjtj +K C Kp(t)+ K, forany ac K.

=1

(4)=(1) For any a € K, we have uniquely determined constants a;, a; € K such
that p(t)a = a;p(t) + a,. (Here we need to use the assumption that n > 1.) Define
S'(a) = a; and D'(a) = a,. Using the associativity of R, it is easy to check that
S" is an endomorphism of K, and D’ is an S'-derivation of K. Therefore, p(t) is a
cv-polynomial, with respect to (S',D").

The last part of the Theorem follows now by an application of the criterion (4), since
we have (up(t) +¢)K C u(K p(t) + K)+cK CK(up(t) +c) + K. Q.E.D.

Because of the last part of (2.16), it is usually sufficient to work with monic cv-
polynomials. The characterization (4) for cv-polynomials is perhaps simplest and the
most handy. It suggests, in fact, that we can define a notion of “cv-elements” in K-
rings. Here, following P. M. Cohn, we say that a ring A4 is a K-ringif A is given with
a subring isomorphic to (and identified with) K. For an element g in such a K-ring
A, let us say that g isa (right) cv-element of A if 9K C K g+ K. From this general
definition, it follows readily that, if A’ C A are K-rings, then an element geE A is
a cv-element of A’ iff it is a cv-element of A. Coming back to the setting of skew
polynomial rings, this observation translates into the following useful (and otherwise
non-trivial) statement on cv-polynomials under a change of variables:

Corollary 2.19. Let ¢ : K[t',S",\ D' — K|t,S, D] be an injective homomorphism,
with ¢(t') = p(t). Then g(t) = Y bt" is a cv-polynomial in K[t,S', D] iff its image
?(g9) = L bip(t)' is a cv-polynomial in K¢, S, D).

To conclude this section, let us point out some nice applications of the formulas
t"a =37 o f*(a)t’. In the special case when SD = DS, we have 5= (;‘) SiDr=i, If
K has characteristic p > 0, then f;" = 0 whenever 0 < j < p', and therefore, we have
tPa = SP(a)tr' + DP(a) for all a€ K. This shows that:

8
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Example 2.20. If SD = DS and char K = p, then, for each 1 20, ' e K[t,S, D]
is a cv-polynomial with respect to (SP', DP').

To generate more examples of this nature, let K be a field of characteristic p, and
S = I. For any (usual) derivation D we get from the above (T bit*')a = a(T bit”') +
D b; D' )a for any a € K. Therefore, any “p-polynomial” 3° bit? is a cv-polynomial
with respect to (I,Y b;DP"). More generally, the same argument shows that:

Example 2.21. For any field K of characteristic p > 0, if p(t) € K[t,S,D] is any
cv-polynomial with respect to (I,D'), then L bp(t)?" is a cv-polynomial with respect to
(I, b;D'7).

§3. Relations Between CV- and Semi-invariant Polynomials

Since cv-polynomials are generalizations of semi-invariant polynomials, it is of in-
terest to investigate the relationship between these two classes. In the theory of semi-
invariant polynomials, it is important to fix a (monic) semi-invariant polynomial of
the smallest degree > 1, and study the other semi-invariant polynomials via this fixed
polynomial. As it turns out, this polynomial is also useful in studying the class of cv-
polynomials. On the other hand, a cv-polynomial of the least degree > 2 (if it exists)
plays an important role too, though in general this polynomial may have lower degree
than the semi-invariant polynomial of the least degree mentioned above. In this section,
we shall give quantitative information on the degrees of these key polynomials, and de-
scribe some methods for the determination of cv-polynomials in general. In the case
when S is an automorphism and SD = DS, we shall obtain rather explicit information
on the structure of all cv-polynomials.

Throughout this section, we shall work inside a fixed Ore extension R = K|[t, S, D].
Our basic tool is the following result concerning the division of a cv-polynomial by a
semi-invariant polynomial in R.

Proposition 3.1. Let f(t) € R be a monic semi-invariant polynomial of degree m > 1.
Let p(t) € R with p(t) = q(t)f(t) +r(t) where deg r(t) < m. Then:

(1) p(#) is a cv-polynomial with respect to (S',D') iff v(t) 1s a cv-polynomial with

respect to (S',D') and ¢(t)S™(a) = S'(a)q(t) for all a € K.

(2) If p(t) s a left multiple of f(t), then p(t) is a cv-polynomial iff it is semi-invariant.
Now assume that p(t) 18 a cv-polynomial and that S is an automorphism. Then

(3) q(t) is semi-invariant.

(4) If deg p(t)>m and r(t)¢ K, then o(S)<oo and deg p(t)= deg r(t) (mod o(S)).

Proof. (1) Assume that p(¢) is a cv-polynomial with respect to (S’,D’). Then, for
any a € K, we have p(t)a = S'(a)p(t) + D'(a) = S'(a)q(?)f(t) + [S'(a)r(t) + D'(a)]. On
the other hand, p(t)a = q(¢)f(t)a + r(t)a = q(¢)S™(a)f(t) + r(t)a. By the uniqueness
of the division algorithm, we have
(3.2) r(t)a = S'(a)r(t) + D'(a), and
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(3.3) q(t)S™(a) = S'(a)q(t).

Conversely, if these equations hold for all a € K, then, from the above, it also follows
that p(t)a = S’(a)p(t) + D'(a), so p(t) is a cv-polynomial with respect to (S’,D’).

(2) It suffices to prove the “only if” part. If p(f) is a cv-polynomial with respect to
(S’,D'), say, and it is a left multiple of f(¢), then r(¢f) = 0 in the above, and (3.2)
shows that D’ = 0. Therefore, p(t) is semi-invariant.

Now assume that p(f) is a cv-polynomial and that S is an automorphism.

(3) Any element of K can be expressed in the form S™(a) for some a € K. From
(3.3), we can then conclude that ¢(t) is a semi-invariant polynomial.

(4) Here we assume that n =deg p(t) > m, and that k =deg r(¢) > 1. Let b, ¢ be
respectively the leading coefficients of p(t) and r(¢). Applying (2.12)(1) to p(¢) and
r(t), we have S’ = I, 0 S™ = I. o S*, and therefore S"* = ;1. Since n > m > k, it
follows that o(S) < co and that n =k (mod oS)). Q.E.D.

Theorem 3.4. Assume that S i3 an automorphism. Let f(t) be a monic semi-
invariant polynomial of minimal degree m > 1, and let p(t) be any cv-polynomial , say
of degree n > 1. Then:

(1) p(t) can be represented in the form Y5y cif(t) + r(t), where ¢; € K and r(t) is
a cv-polynomial of degree < m. In particular, if n > m, then m|n.

(2) If o(S) =00 and n > m, then p(t) is the sum of a semi-invariant polynomial and
a constant.

(3) If n £ m, then n|deg P(t) for any cv-polynomial P(t) of degree > n. In particular,
if n < m, then n|m.

Proof. (1) We may assume that n > m, for otherwise (1) is obvious. Write p(t) =
q(t)f(t)+r(t), where deg r(t) < m. By (3.1)(3), ¢q(t) is sem-invariant, and by [L2:(2.9)]
q(t) has the form ¥ ;5; ¢;f(¢)'!. Hence p(t) = Li5; cif(£)'+7(2), so n =deg p(t) = mig
for the largest i with c¢;, # 0. B

(2) If o(S) = oo, then (3.1)(4) guaf;:.ntees that »(¢) € K, so p(t) is the sum of the
semi-invariant polynomial ¢(¢)f(t) with the constant r(%).

(3) The proof of this part will be postponed to §5 (see (5.14)). We just observe at
this point that the conclusion that n|deg P(f) may not be true if we do not assume
that n < m. This may be seen from the examples given near the end of this section.

Q.E.D.

Corollary 3.5. Assume that S is an automorphism and that D is not S-inner. Let
f(t) be a (monic) semi-invariant polynomial of minimal degree m > 1, and let p(t) be
a (monic) cv-polynomial of minimal degree n > 2 (if both exist). Then n|deg P(t) for
any non-linear cv-polynomial P(t). In particular, we have n|m (so, for instance, if m
18 a prime, then we can conclude that n = m.)

Proof. In view of (2.12)(1), the fact that D is not S-inner implies that m > 2. Since
f(t) is a cv-polynomial (of degree > 2), we have by definition n < m. Part (3) of the
Theorem now gives the desired conclusions. Q.E.D.
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Remark 3.6. If D is an S-inner derivation, say D = D, s, we can choose f(t) =1—b
and p(t) = (¢ — b)?. Here we have m =1 and n = 2; the Corollary obviously fails in
this case since P(t) = (¢ — b)™ is semi-invariant for any m.

Remark 3.7. Keep the notations in (3.6) (but let D be arbitrary). If » happens
to be equal to m, then any cv-polynomial P(¢) will be the sum of a semi-invariant
polynomial with a linear polynomial (and by [L,: (2.9)], the former lies in K[f(#)]).
This follows from (3.1) by dividing P(t) by f(t), and noting that the remainder is a
cv-polynomial with degree < m = n.

Later in this section, examples will be given to show that the quantitative results
on deg f(t) and deg p(t) obtained above are the best possible. Before we give such ex-
amples, let us point out another connection between cv-polynomials and semi-invariant
polynomials given by the process of formal differentiation. This result, however, requires
some mild hypotheses on S and D.

Theorem 3.8. Assume that S 1s an automorphism, and that SD = DS. Let p(t) =
n, bit' be any cv-polynomial in R. Then the formal derivative py(t) := 20, ib;ti—1

n—j

i3 semi-invariant. More generally, p;(t) := 3155 (i'_'?fj)bi+jti (1 <j <n) are all semi-
invariant polynomaials.

Proof. In view of SD = DS, the equations in (2.16)(2) simplify to

n

(3.9) Y. (;) b8’ D' (a) = b,S"(a)b;b;,

i=j

for j=1,--- ,n. Therefore

pl(t)'a, = Zn: tb‘ ('i (1 ; 1) SjDi_l_j(ﬂr)tj)

et n g —1 e _
= Z i( ’ )b,-SJD"l_’(a.) t7
j=0 \i=j+1 J

Zz ¢ )b Si-1pi- J(a)) -1

J=1 \i=j J=
= Ei: J (zi: (;) b;D"_"'Sj_l(a)) =3,

Replacing a by S(a), we get

m(t)S(a) = Zn: J (Z (J) D'~ ’S’(a)) /-1 ijb,,S“(a)b;lbjtj'l = b,5"(a)b; ' pi(2),

=1 i=j J=1
by (3.9). Since S is an automorphism, this shows that p,(¢)K C K pi(t), so pi(t) is
semi-invariant, as claimed. The more general fact that p;(t) (1 < j < n) are semi-
invariant can be proved in the same way by making use of the identity (;) ("1.) =

("?) (‘._‘k) (see [Les] for a similar proof). Q.E.D. £

J
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Remarks 3.10. (a) Formally, p;(t) is just pV)(t) “divided by j!”, where pU)(t)
denotes the jth classical derivative of p(¢). (b) The Theorem is not true in general if
SD # DS, as the example in (2.10) shows.

Corollary 3.11. Assume that S is an automorphism, and SD = DS. Let p(t) € R
be a cv-polynomial of degree n > 2, and assume that R has no non-constant semi-
invariant polynomial of degree < n. Then char K = p > 0 and p(t) has the form
3 octt +c.

Proof. If char K =0, then the derivative p;(t) of p(¢) has degree n—1 > 1 and is semi-
invariant by (3.8), contradicting the hypothesis. Therefore, we must have char K =
p > 0. Since the polynomials p;(t) are all semi-invariant, they must all have degree
zero. Looking at the definition of the p;(t)’s, we obtain (f) b = 0 for every k, j such
that 1 < j < k < n. This means that b # 0 (k > 1) can occur only when k is a power
of p. Therefore, p(t) has the form 3 ¢t + c. Q.E.D.

Corollary 3.12. Let S and D be as in (3.11).

(1) If R is simple and p(t) is any cv-polynomial of degree n > 2, then char K =p >0
and p(t) has the form ¥ cit” +c.

(2) If D is not S-inner, and R has a non-constant semi-invariant polynomial f(t) of
minimal degree m, then char K =p > 0, and f(t) has the form ¥ cit? + c.

(3) If D is not S-inner and R has a non-linear cv-polynomial p(t) of minimal degree
n, then char K = p > 0, n = p, and we could have chosen p(t) to be . If the
polynomial f(t) in (2) ezists, say of degree m = p', then the possible degrees of cv-
polynomials in R are ezactly: {0,1,p,p%,---,p*"%,p°,2p%,3p% -+ }. If f(t) does not
ezist, then the possible degrees of cv-polynomials in R are ezactly: {0,1,p,p%,---}.

Proof. In Case (1), there will be no non-constant semi-invariant polynomials of any
degree (see (4.5) below). Therefore, we can apply (3.11) to any cv-polynomial of degree
> 2. In Case (2), we must have m > 2 (as in the proof of (3.5)). Then we can
apply (3.11) to f(¢). In Case (3), if there was a non-constant semi-invariant polynomial
of degree < m, it is also a cv-polynomial so it must be of the form u(¢ — b), but then
D = Dy s, whichis not the case. Therefore, (3.11) again applies to give char K =p > 0.
By (2.20) and (3.4)(3), we see that t* is a non-linear cv-polynomial of minimal degree.
If R has no non-constant semi-invariant polynomial, then by (3.11), any non-linear cv-
polynomial has degree p’, and conversely, by (2.20), each t* isa cv-polynomial. Finally,
suppose R has a non-constant semi-invariant polynomial f(¢) of minimal degree m.
By (2), m = p* for some s > 1. Then the powers f(t)’ are certainly cv-polynomials
(since they are semi-invariant), so we have cv-polynomials of all degrees from the set
{o0,1,p,p%---,p*"1,p%2p% 3p°,--- }. Conversely, by (3.4)(1) and (3.11), these are the
only possible degrees of cv-polynomials. Q.E.D.

We shall conclude this section by showing that the quantitative information given
in (3.4), (3.6), (3.11) and (3.12) is the best possible. In particular, we shall give a class
of nontrivial examples of Ore extensions in which all cv-polynomials can be explicitly
determined. As before, f(t) denotes a monic semi-invariant polynomial of minimal
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L)f degree m > 1. Let us first make an easy observation which is more or less folklore in
: the subject (see, e.g. [Am]); a proof is included for the convenience of the reader.

Lemma 3.13. Let K be a field of characteristic p > 0 and let S =1I. Let D be a

if (usual) derivation on K with monic minimal polynomial g(t). Then g(t) = f(t) —c
r for some c€ K, and 1t has the form 3 citP,
m

Proof. From (3.12)(2) (or [Lj: (3.11)]) we know that f(¢) has the form Zc,-tp'll + e
_ Since S = I here, the semi-invariance of f(#) means that (¥ ¢it? +c)a = a(T cit” +c)
1 for all @ € K. Equating the constant terms of the two sides, we get 3 ¢;DP'(a) = 0.
Therefore, deg g(t) < deg f(t). Since g(t) is also semi-invariant, we have equality here.
But then f(t) — g(#) must be a constant, namely c. Q.E.D.

Lo R - 1 e

Examples 3.14. Keeping the notations in (3.13), it is known that there are examples
of derivations D with minimal polynomial g(t) = f(t) of any prescribed degree m =
p* (s > 1). On the other hand, by (3.12)(3), p(t) = ¢* is a non-linear cv-polynomial of
minimal degree. By (3.4)(1) and (3.11), any cv-polynomial has the form ¢+ 3 =detr' +
0 Y1 e;f(t) . Conversely, by (2.9) and (2.11), any such polynomial is a cv-polynomial.
This conforms with all the theoretic results obtained earlier in this section.

§4. Existence and Uniqueness of CV-Polynomials

For the rest of the paper, we'll fix the notation R = K[t,S,D], R' = KPS DY,
and use freely the fact that homomorphisms from R’ to R correspond to cv-polynomials
in R with respect to (S',D’).

Although a non-constant cv-polynomial p(t) determines (S’,D’) (as in (2.12)(1)),
we cannot expect (S’,D’') to determine p(t). For instance, if (S',D') = (I,0), any
polynomial in the center of R is a cv-polynomial with respect to (S',D'"). However,
some uniqueness results are possible, as we shall see in the results (4.3), (4.4) and (4.6)
below. We begin by proving a certain commutation rule between 5" and D which
results from the existence of a cv-polynomial of degree n > 2.

T M =R 0 S

Proposition 4.1. Let p(t) = L bit' € R be a monic cv-polynomial of degree n = 2.
i Then we have S*D — DS™ = D.sS™, where ¢:=by_1 — S(bn_1).

Proof. The cv-polynomial p(t) is with respect to (S",D’) for some D'. If D' =0,
then p(t) is semi-invariant, and the Proposition was proved in [L5:(2.3)], under the
t assumption that n > 1. If D’ is not necessarily zero, one can check that the calculation
4 involving q(t) := p(t)t —tp(t) = ct"+--- in the proof of [L3:(2.3)] is still correct modulo
Kt+ K. Thus, as long as n > 2, the method of comparing coefficients of " used in
[L3:(2.3)] suffices to give the conclusion in the Proposition. Q.E.D.

For the sake of completeness, we record below the exact equation relating ¢(t) =
p(t)t — tp(t) and p(t), in generalization of [Ls: (2.3)]:

=N

(4.2) q(t)a = S (a)q(t) + (S*D — DS™)(a)p(t) + (D'S — SD')(a)t + (D'D — DD')(a).
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Theorem 4.3. Suppose S is an automorphism and p(t) = L bit' € R is a monic
cv-polynomial of degree n < o(S). Then p(t)t = (t + c)p(t) + €t + e where ¢ is as
in (4.1), and €',e€ K. If p/(t) € R is another monic cv-polynomial of degree m, then
P'(t) = p(t) +d for some deK.

Proof. By (4.1) and (4.2), we have for any a€ K:

g(t)a = S™(a)q(t) + (cS™(a) — S™*(a)e)p(t) + linear terms
S"t1(a)q(t) + cp(t)a — S"*Y(a)ep(t) + linear terms. |

Therefore, [g(t) — cp(t)]la = S"*1(a)[q(t) — cp(t)] + linear terms. Now q(t) — cp(t) =
bt™ + ... where 0 < m < n. We may assume that b # 0 for otherwise we have in fact
p(t)t = (t + ¢)p(t). Combining the last two equations, we get

(Bt™ + --.)a = S™(a)(bt™ 4 --.) + linear terms.

If m > 2, comparison of the coefficients of ¢™ gives bS™(a) = S"*!(a)b for all a,
so S™*1 = I, 0 S™. This implies that o(S) < n+1-m < n —1, contradicting our
assumption on n. Therefore, ¢(t) — cp(t) = et + e for some €’,e€ K, and as a result,
we have p(t)t = (t+c)p(t) + €'t 4+ e. Now suppose p’() is another monic cv-polynomial
of degree n. We have p(t)a = S"(a)p(t)+D'(a) and p/(t)a = S*(a)p/(t) + D"(a), where
D', D" are two S"-derivations. Subtracting these, we get [p'(t) —p(t)]la = S™(a)[p/(t) —
p(t)] + D"(a) — D'(a). If p/(t) — p(t) is not a scalar, we'll have p'(t) — p(t) = rtk + ...
for some r # 0 and 1 <k < n. But then [p/(t) —p(t)]la = (rt* +---)a = rS*¥(a)tr +.--.
Comparing terms of degree k, we get S™(a)r = rS*(a), and hence S™ = I, o S*. Since
S is an automorphism, this gives S™* = I., so o(S) < n — k < n, a contradiction.
Therefore, p’(t) — p(t) = d for some d € K. Q.E.D.

Corollary 4.4. Suppose K is a field and S is an endomorphism of K which is not

an automorphism. Then the two conclusions of (4.3) hold for any monic cv-polynomials
p(t), p'(t) of the same degree.

Proof. In the notation of the proof above, I, and I. are both the identity since K
is a field. Since S is injective, the equation S™t! = S™ would have implied that
Sn+i=m = I, and similarly, $® = S* would have implied that S"* = I, both of which
are impossible since S is not an automorphism. Therefore, the argument above gives
the desired conclusions about p(¢) and p’(t) in this case. Q.E.D.

If R is a simple ring, then (without any assumptions on S) the cv-polynomials
attached to any fixed (S’,D’) are determined up to an additive constant, as we shall
see in Proposition 4.6 below. This result, however, depends on the main theorem of our
earlier work [L3:(3.6)] with Leung and Matczuk, which we recall here for later reference:

Theorem 4.5. The Ore eztension R = K|[t,S, D] is non-simple iff it contains a non-
constant invariant polynomial, iff it contains a non-constant semi-invariant polynomaal.

Proposition 4.6. Suppose p(t) and p'(t) in R are two distinct non-constant cv-
polynomials with respect to (S',D'). Then either R is non-simple, or o(S) < deg p(t) =
deg p'(t) and p/(t) = p(t) + ¢ where c € K* is such that S' = I,.
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Proof. For any a € K, we have p(t)a = S’(a)p(t) + D'(a) and a similar equation for
p/(t). Subtracting, we see that (p'(f) — p(t))a = S'(a)(p'(t) — p(t)). So p/(t) — p(t) is
a semi-invariant polynomial. If deg (p’(¢) — p(t)) > 1, then by (4.5) R is non-simple.
Now assume deg (p/(t) — p(t)) = 0, i.e. p/(t) —p(t) = ¢ € K*. Then ca = S'(a)c, so
S’ = I.. In this case, if bt" is the leading term of p(%), we have S’ = I, 0 S™ by (2.12).
Therefore, S™ = I;' 0 8’ = Iy-1., 50 o(S) < n =deg p(t) =deg p'(?). Q.E.D.

Having considered the uniqueness problem for cv-polynomials, let us now consider
the existence problem. Since linear polynomials in R are always cv-polynomials, we
are interested only in the existence of cv-polynomials of degree > 2. To motivate our
results in this direction, let us first recall a criterion of Lemonnier [Le]| for the existence
of a non-constant semi-invariant polynomial in R.

Lemonnier’s Theorem 4.7. R has a non-constant semi-invariant polynomial iff the
S-derivation D 1is quasi-algebraic, which means that D satisfies one of the following
equivalent conditions: )

(1) There exist constants b; € K with b, = 1, such that 3", b;D' is an S"-inner
derivation.

(2) There ezist constants by,---,b,, not all zero, such that "%, b;D' is an S'-inner
derivation for some endomorphism S of K.

Modifying Lemonnier’s notion of a quasi-algebraic derivation, we define an S-deriva-
tion D to be cv-algebraic if there exist constants by,---,b, with n > 2, b, # 0, such
that ", b;D' is an S’-derivation for some endomorphism S’ of K. For S-derivations,
we have clearly “algebraic”=—>“quasi-algebraic”=“cv-algebraic”. The following theo-
rem and its corollary may be viewed as analogues of (4.7) above and our earlier result

[L:(3.2)].

Theorem 4.8. The following are equivalent for R = K|[t, S, D]:

(1) R has a cv-polynomial of degree > 2.

(2) There ezists a polynomial p(t) =%, bit' € R with degree n > 2 and a pair (S',D’)
such that, for any a€ K, p(t)a = S'(a)p(t) + D'(a) (mod R-t).

(3) The S-derivation D 1s cv-algebraic.

Proof. (1)=(2) is obvious. Now assume (2). Note that the given congruence in
(2) means that p(t)a and S’'(a)p(t) + D'(a) have the same constant terms when writ-
ten out as (left) polynomials. Therefore, going through the first part of the proof of
(2.16), we can still compare the constant terms, and get the equation S’(a)by+ D'(a) =

"o biDi(a) for any a € K. By transposition, Y%, b;D'(a) = (D' — Dy, s/)(a), so

iy b;D' is an S’-derivation (namely D’ — Dy, s/). By definition, D is cv-algebraic.
Finally, for (3)==(1), suppose D is cv-algebraic, say some D’ := Y%, bD' is an
S’-derivation, where b, # 0, » > 2, and S’ is an endomorphism of K. Let p(t) :=

", bit' € R, sothat D’ = p(D). If D is not algebraic, (2.12)(2) (applied with by = 0)
implies that p(f) is a cv-polynomial with respect to (S’,D’) so we are done. If D is
algebraic, the homomorphism A : R — End(K,+) in the proof of (2.12) has kernel
R.q(t), where q(t) is a suitable monic invariant polynomial (the “minimal polynomial”
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of D). In this case, p(t) := q(¢)? is clearly a cv- (in fact semi-invariant) polynomial of
degree > 2, again proving (1). Q.E.D.

Corollary 4.9. D 1s cv-algebraic iff there exist constants by,---,b, with n > 2 and
b, =1 such that %, b;D' is an S™-derivation.

Proof. We need only prove the “only if” part. Assume D is cv-algebraic. Then R has
a cv-polynomial p(t) of degree n > 2. Scaling p(#) and dropping its constant term, we
may assume that p(t) = " + b,_1t""! + ... + byt. Then p(t) is a cv-polynomial with
respect to (S™,D’) for some S"-derivation D’. By (2.12)(1), D" +b,_; D" '+...+b, D
is an S"-derivation (namely, D’). Q.E.D.

Example 4.10. We construct here an example of a usual derivation D which is
cv-algebraic but not quasi-algebraic. We take K = k(zy,+-,Zn,--+), where k is a
field of characteristic 2, and define a (usual) derivation D on K by D(k) = 0 and
D(z;) = zi4 for all ¢ > 1. Then t?€ R is a cv-polynomial with respect to (I, D?)
and D? is a usual derivation, so D is cv-algebraic. However, D is not quasi-algebraic.
In fact, if it were, then according to (4.7)(1) there would exist b,by,---,b, € K with
b, =1 such that b,D" +---+b,D = Dy =0 (since K is a field). This is easily seen

to be impossible.

Example 4.11. There are many examples of S-derivations D which are not cv-
algebraic. For instance, 1f char K =0, S 13 an automorphism, SD = DS, and D 1s
not S-inner, then by (3.12)(3) D 1s not cv-algebraic. For a more explicit construction,
take K = k(z) where k is a field of characteristic zero. The usual derivation & on
K is clearly not inner, so by what we said above, D is not cv-algebraic. It is also easy
to see by a direct argument that, for n > 2, D" + b,_;D"! 4+ ... 4+ b; D can never be

a (usual) derivation, for any by,---,b,_1 € k(z).

A natural way to interpret the result in Theorem 4.8 is by using the notion of a
minimal Ore extension. Let us say that R = K[t,S, D] is a minimal (resp. mazimal)
Ore eztension of K if there is no proper subring (resp. over-ring) of R which is also
an Ore extension of K. From (4.8), it follows that R is minimal in this sense iff D is
not cv-algebraic. (This is to be compared with (4.5) which says that R is simple iff D
is not quasi-algebraic.) Using this notion of minimality, it is particularly easy to derive
the following consequence of (4.8):

Corollary 4.12. Let c€ K. Then an S-derivation D 1is cv-algebraic iff D — D, s 1s
cv-algebraie.

Proof. We have an isomorphism ¢ : K[t',S,D—D,.s] — K|[t, S, D] defined by #(t') =
t —c. From this isomorphism, it follows that K¢, S, D] is minimal iff K[t’,S,D — D, s]
is minimal. Q.E.D.

In the case when K is a field, it is possible to give more precise descriptions of the
maximal as well as the minimal Ore extensions of K, and as it turns out, in this case
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minimal Ore extensions are always maximal (though not conversely). To prove these
results, we need the following well-known observationon (K, S,D) in case K is a field:

(4.13) If S#1I, then D = Dys for someb € K.

In fact, if S(a) # a for some a€ K, the equation D(ac) = D(ca) (for any c€ K ) leads
to (a— S(a))D(¢c) = D(a)e—S(¢)D(a), so we have D = Dy s for b = (a—S(a))~'D(a).

Theorem 4.14. For R = K[t,S,D] where K is a field, the following are equivalent:
(1) R is a minimal Ore extension (i.e. D 1is not cv-algebraic);

(2) char K=0, S=1, and D # 0.

Proof. (2)==(1) follows from (4.11). Conversely, assume (1). Then clearly D # 0 for
otherwise R = K|[t,S] D K[t/, S?] with ¢ = t?. We must also have S = I, for otherwise
(4.13) gives D = Dy s for some b€ K, and (2.1) gives R = K[t,S,Dys] = K[t — b, S],
again contradicting the minimality of R. Finally, K must have zero characteristic,
for if char K = p > 0, then, since S = I, R would have (by (2.20)) a non-linear
cv-polynomial 7. Q.E.D.

We finish this section by giving the analogue of (4.14) for mazimal Ore extensions.
The proof for this is, however, quite a bit more tricky.

Theorem 4.15. For R = K[t,S,D] where K 13 a field, the following are equivalent:
(1) R is a mazimal Ore extension;
(2) One of the following holds:
(2a) S cannot be written as S™ where S is an endomorphism of K and n > 2;
(2b) char K =0, S =1, and D #0;
(2¢) char K = p, S =1, D is not algebraic, and D cannot be writien as q(D)
where q s a non-linear p-polynomial and D i3 a (usual) derivation.

Proof. Let us first prove (2)==(1). Suppose R C R = K[{,5,D], with t = p(f) =
bal" + +++ + bo, b, # 0. Then by (2.12)(1), S = I;, o S™ = S™. If (2a) holds, then we
must ha.ve n =1 and so R = R. Now suppose (2b) holds. If S # I, then by (4.13)
D is S-inner, so after a cha.nge of variable in R, we may assume that D = 0. But
then by (2.12)(1), D = b 52 -+ b,D + Dy, = 0, a contradiction. Therefore, we
must have S = I, and, as we have just seen, D # 0. But then by (4.14), B = K[_, D]
is minimal, so we can conclude that R = R. Finally, suppose (2c) holds. Since D is
not algebraic, § = I, and K is a field, it follows that D is not quasi-algebraic and
hence R is a simple ring by (4.5) and (4.7)¢ Referring ahead to (5.8)(2), we see that
R is also simple. If deg p(%) > 2, then by (3.12)(1), ¢(?) := p(?) — bo is a (non-linear)
p-polynomial, and by (2.12)(1), D = q(D) + Dy, 1 = q(D), a contradiction. Therefore,
p(?) must be linear, and we have R = R. This proves the maximality of R in all cases.

Next we shall assume (1) (that is, R is maximal), and try to prove (2). We may
assume S = S" for some n > 2 and some endomorphism S of K (for otherwise

we have already (2a)). If S # I, then by (4.13), D = D s for some b€ K, so after

80f course, it would have been more straightforward to use here the classical results of Amitsur [Am]
on the simplicity of K[t, D].
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replacing ¢ by ¢ — b, we may assume that D = 0. But then we can embed R into
K[t,S] by sending t to 7", and this would contradict the maximality of R. Therefore,
we must have S = I, and, as we have just seen, D # 0. If char K = 0, we’ll be in
the situation (2b). Therefore, we may assume that char K = p. We claim that D
cannot be an algebraic derivation. For, if it is, and f(¢) € R = K|[t, D] is its minimal
polynomial, then f(t) is an invariant polynomial of degree > 2 (since D # 0), and we
can embed R (properly) into itself by sending ¢ to ¢+ f(¢), in contradiction to the
maximality of R. Finally, suppose we can write D in the form ¢(D), where D is a
usual derivation, (%) = cmt?” + --- + c1tP + col, with m > 1, and ¢,, # 0. Then, by
(2.21), ¢(%) is a cv-polynomial in R := K[, D] with respect to (I,q(D)) = (I, D), and
we can embed R properly into R by sending ¢ to g(%), again in contradiction to the
maximality of R. Therefore, we must now be in the situation (2c). Q.E.D.

From the last two results, we have the following somewhat surprising consequence:

Corollary 4.16. For any field K, the minimality of R = K[t,S, D] implies its mazi-
mality (but not conversely).

If K is not a field, this Corollary does not hold. An example of a division ring K
with K{[t, S, D] minimal but not maximal will be given toward the end of this paper.

§5. Comparison Between Ore Extensions

The study of homomorphisms between Ore extensions leads naturally to the follow-
ing comparison relationship among all Ore extensions over a given division ring. For
two such extensions R and R/, let us define R’ < R if there exists an injective homo-
morphism ¢ : R’ — R;in other words, R’ < R iff R has a non-constant cv-polynomial
with respect (S’,D’). Clearly, “<” is a transitive (as well as reflexive) relation.

Some of the basic features of the Telation “<” can be seen from the list of examples
and results below.

(51) If R < R= K[t,S] (i.e. D =0), then R = K[t",S’]. In fact, since D = 0,
an application of (2.12)(1) shows that D’ = D, s for some b € K. But then R =
K[t’, S", Db'sJ] = }-{[tlr i b, S’] by (21)

(5.2) f R < R=K][t,D](ie. S=1),then R = K[t", D"] for some (usual) derivation
D". In fact, since S = I, (2.12)(1) shows that S’ = I, for some b€ K*, so R =
K[t L, B = K[b_lt',b‘lD’].

(5.3) If R < R= K|t], then R' = K[t"]. This follows easily from the arguments used
in the last two examples.

(5.4) We may have R’ < R and R < R’ without having R’ = R. For instance, let S be
an automorphism with o(S) = 3, and let R = K[t,S], R’ = K[t/,S?). Then, t' — ¢
defines an injection R’ — R. On the other hand, if S = I, ¢ — b~1#2? defines
an injection B — R', since (b'¢?)a = b~18%(a)t? = b=1(bS(a)b~")t"? = S(a)(b~117?).
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However, we do not have R’ = R. Indeed, if there is such an isomorphism, (2.12)(1)
would imply that S? = I. 0o S for some c€ K*, contradicting the fact that o(S) = 3.

(5.5) A similar example of R’ < R < R’ with non-isomorphic R, R’ can be constructed
for Ore extensions of the “derivation type” (i.e. with S’ =S =1I). Let K be a field of
characteristic 2, and let D be a (usual) derivation with minimal equation D*— D = 0.
Let R= K|[t,D] and R' = K[t/,D?]. Then t' — t? and t — t"* define embeddings
R' — R and R — R'. (So far we do not need K to be a field.) If there exists an
isomorphism R’ — R, (2.12)(1) would imply that D? = bD + D, for some b,c€ K.
Since K is a field, this gives D? = bD, a contradiction. (An example of a derivation D
in a field of characteristic 2 with minimal equation D* — D = 0 can be found in [Le,:
Prop.7, p.14]).

The last two examples are to be contrasted with our next result which says that, in
a “sufficiently general” situation, R’ < R < R’ will indeed imply that R’ = R.

Theorem 5.6. Let R = K[t,5.D], R' = K[t/,S',D']. Assume that either (1) S 1is
an automorphism with o(S) = oo, or (2) D 1is not quasi-algebraic. If ¢ : R — R
and ¥ : R — R' are injective ring homomorphisms, then both are isomorphisms. In
particular, we always have R < R< R = R' = R.

Proof. Assume that one of ¢ and ¥ is not an isomorphism. Then ¢op: R — R is
injective but not surjective, so it corresponds to a cv-polynomial p(t) of degree n > 2
with respect to (S, D). Suppose we are under the hypothesis (1). By (2.12)(1), we have
S = I,0S™ for some be K*. Since S is an automorphism, this implies that "1 = I, ,
so o(S) <n —1 < oo, a contradiction. Next suppose we are under the hypothesis (2).
Then D = (p — bo)(D) + Dy,,s where by is the constant term of p(¢). Since p(t) has
degree n > 2, this implies that D is quasi-algebraic, again a contradiction. Q.E.D.

Remark 5.7. One might wonder if the Theorem still holds if we relax the hypothesis
(2) above to (2’): D 1is not algebraic. The answer is that it does not. For instance, take
the Ore extensions R, R’ in (5.4). For suitable choices of (K, S), we can arrange to
have an element b€ K such that D, s is not an algebraic derivation (though, of course,
D is quasi-algebraic). The ring R” = K|[t,S, Dy s] is isomorphic to R by (2.1), and
hence we have R' < R”" < R’; but R” = R is not isomorphic to R'.

Theorem 5.8. Let R= K|[t,5,D] and R' = K[t',S’,D’], as usual. Then
(1) R is non-sample iff we have some K[t',S"] < R.
(2) If R < R, then R 1s simple iff R' 1s simple.

Proof. (1) Suppose R is non-simple. Then there exists a monic invariant polynomial
p(t) € R of degree n > 1. Then p(t) is a cv-polynomial with respect to (S",0) and
we have an injective homomorphism K[t”,S?] — R. Conversely, if we have some
injection K|[t”,S”] — R, then the associated cv-polynomial is a non-constant semi-
invariant polynomial in R. By (4.5), R must be non-simple. To prove (2), let us view
R' as a subring of R. If R’ is non-simple, then by (1) we have some K|[t",S"] < R'.
Since “<” is transitive, we have K[t”,5"”] < R and so by (1) again R is non-simple.
Conversely, assume R is non-simple. Then R has a nonzero ideal J = R - f where f
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is an invariant polynomial of degree n > 1. If R’ N J = 0, then we have an injection
R'-— R/J. This is impossible since R/J has left K-dimension n, and R has infinite
left dimension over K. Q.E.D.

The next result concerns the centers of Ore extensions. Following Cauchon [Cal,
we say that R = K[t,S,D] has non-trivial center if the center of R contains a non-
constant polynomial. The following effective criterion for R to have non-trivial center
has been given in [Le;:(2.3)]:

(5.9) R = K|[t,S,D] has non-trivial center iff R is non-simple and o(S) < cc.

Theorem 5.10. Let R and R’ be as above. Then
(1) R has non-trivial center iff we have some K[t'] < R.
(2) If R < R, then R has non-trivial center iff R’ has non-trivial center.

Proof. (1) Suppose R has a central polynomial p(t) of degree > 1. Then p(t) is a
cv-polynomial with respect to (I,0) and t"” — p(t) defines an injection K[t”] — R.
Conversely, suppose there is such an injection ¢. Then, for p(t) := ¢(t"”) = bt" + - ..
(b#£0,n>1), we have I = I, 0 S™ by (2.12)(1), so o(S) < n < co. Since, by (5.8)(2),
R is also non-simple, we conclude from (5.9) that R has non-trivial center. To prove
(2), assume that R’ C R. The “f” part of (2) follows from (1) as in the previous
proof. For the “only if” part, assume R has non-trivial center, so o(S) < co and R is
non-simple. From (2.12)(1) again we deduce that o(S’) < oo, and (5.8)(2) implies that
R’ is non-simple. Another application of (5.9) shows that R’ has non-trivial center.

Q.E.D.

In parallel to (5.8)(1) and (5.10)(1), we have also the following criterion for R =
K|[t,S,D] to contain an Ore extension of the derivation type.

Theorem 5.11. We have some K[t',D']| < R iff o(S) < oo and some Y7, b;D' is a
usual derivation, where by,.--,b, € K are not all zero.

Proof. The “only if” part follows easily from (2.12)(1). Conversely, assume that
o(S) < oo, and that for p(t) = - b;t', D’ := p(D) is a usual derivation. If D is not
algebraic, (2.12)(2) implies that p(t) is a cv-polynomial with respect to (I, D’), so we
have K[t',D'] < R. Now assume D is algebraic; in particular, R has a monic invariant
polynomial ¢(t) of degree k > 1. Say S™ = I,,. Then, for any a€ K:

b~"q(t)"a = b5 " (a)q(t)™ = b7F(B*ab~*)q(t)™ = ab~*q(t)™,

so t” — b~*q(t)™ defines a homomorphism from K|[t”] to R, giving a stronger con-
clusion K[t"] < R in this case. Q.E.D.

To complete our results in this direction, we shall also prove the following Proposition
and Theorem concerning the behavior of the algebraicity of derivations under a change
of Ore extensions.

Proposition 5.12. Let ¢ : R' — R be a homogeneous injection, i.e. it is defined by
a cv-polynomial p(t) without constant term. Then D is algebraic iff I is algebraic.

20




Proof. For the maps A and )\’ defined in (2.14), we have by (2.14) the commutativity
relation M’ = Ao ¢ (under the assumption that ¢ is homogeneous). If we think of ¢
as an inclusion map, this relation clearly implies that ker A’ = R'NkerA. If D' is
algebraic, then ker A’ # 0, so ker A is also nonzero, and D is algebraic. Conversely,
if D is algebraic, then ker A # 0, and the dimension argument in the proof of (5.8)(2)
shows that ker ' = R’ N ker A # 0, and therefore D’ is algebraic. Q.E.D.

It is easy to see that, in the above Proposition, the homogeneity assumption on
4 cannot be waived. For instance, we have an isomorphism ¢ : K[t',S,D'| —
K[t,S,D.s| defined by ¢(t') = t — ¢, where D' = 0 is algebraic, but the S-inner
derivation D.s certainly need not be algebraic. Note that the isomorphism ¢ here is
not homogeneous (unless ¢ = 0). This “counter-example” shows that, in dealing with
the hereditary properties of the algebraicity of D and D’, we have to be careful about
the inner derivations. The following result allows us to extend (5.12) to the case of a
general injection ¢ : R' — R, once we have taken the inner derivations into account.

Theorem 5.13. Let ¢ : R' — R be an injection defined by a cv-polynomial p(t).
Then, for any a € K, D — D, s is algebraic iff D' — Dp) s 13 algebraic. (Here, the
evaluation of the (S,D)-polynomial p(t) at a is as defined in [Ly: §2].)

Proof. We can think of R as K[t —a,S,D — D,s|, and R’ as K[t' — p(a),S", D' -
D,(a),s]. Using these new representations of R' and R, the map ¢ is determined by the
cv-polynomial ¢(t'—p(a)) = p(t)—p(a). Since p(t)—p(a) is right-divisible by ¢—a ([Li:
(2.4)]), the map ¢ is now homogeneous with respect to the new representations of R’
and R. Applying the Proposition, it follows that D — D, s is algebraic iff D’ — Dya),s:
is algebraic. Q.E.D.

The Theorem above has also a very natural interpretation in terms of the notion
of algebraic conjugacy classes developed in [L]. Recall that, for a € K, the (S,D)-
conjugacy class of a is defined to be ASP(a) = {S(c)ac™' + D(c)e™" : c€ K*}. Sucha
class is said to be algebraic (with respect to (S, D)) if some nonzero (S, D)-polynomial
vanishes on it. In [La: (5.10)], we have shown that ASP(a) is algebraic iff D — Dqs
is an algebraic S-derivation. Therefore, (5.13) has the following nice interpretation in
terms of the preservation of algebraic conjugacy classes:

Theorem 5.14. Let p(t) € R be any non-constant cv-polynomial with respect to
(S',D'). Then, for any a€K, the class ASP(a) is algebraic iff the class A3 (p(a))

is algebrazc.

Note that Proposition 5.12 is also true if we replace both occurrences of “algebraic”
by “quasi-algebraic”, and, for this, no assumption on the homogeneity of the map ¢ is
required. In fact, for the quasi-algebraic case, Proposition 5.12 is just a combination of
(4.5), (4.7) and (5.8)(2). The last case to consider is the case of cv-algebraic derivations.
If ¢: R — R is any injection, clearly D’ is cv-algebraic => D is cv-algebraic. The
reverse implication holds if K is a field, by (4.16), but does not hold in general in view
of the last remark in §4.
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Next we shall bring into play the non-linear cv-polynomials of minimal degree. If
p(t) is such a polynomial, an interesting question to ask is: under what conditions can
we say that all non-linear cv-polynomials in R can be expressed as a polynomial in
p(t)? To facilitate the study of this problem, it is convenient to introduce the following
terminology.

Definition 5.15. We say that R has a largest Ore subeztension R' if R' is an Ore
extension properly contained in R, and any Ore extension properly contained in R sits
inside R’. (The idea is that any injection from any R"” = K[t",S”, D"] into R whichis
not an isomorphism should factor through an injection of R” into R'.) If such an R’
exists, it is clearly unique. Moreover, if p(t) is a cv-polynomial such that R’ = K|[p(t)],
then p(t) is a non-linear cv-polynomial of minimal degree. Conversely, if p(t) is a non-
linear cv-polynomial of minimal degree, then K|[p(t)] is the largest Ore subextension of
R iff every non-linear cv-polynomial in R is contained in K [p(t)].

Certainly, not every Ore extension R has a largest Ore subextension. For instance,
in the usual polynomial ring R = K[t], an Ore subextension R’ C R containing both
K[t?] and K[t?+t] would have to contain ¢ and hence equal to R. Therefore, K[t] has
no largest Ore subextension. However, it turns out that there are many examples of Ore
extensions which do contain a largest Ore subextension. We shall now try to develop
a general result which guarantees the existence of large classes of such examples. As a
preparation, we need to go back to a result which was left unproved in §3, namely, part
(3) of Theorem 3.4. For the reader’s convenience, we restate this result, and then give
its proof.

Proposition 5.16. Assume that S i3 an automorphism. Let p(t) € R be a (monic)
cv-polynomial of degree n and assume that R has no non-constant semi-invariant poly-
nomial of degree < n. Then n|deg P(t) for any (monic) cv-polynomial P(t) of degree
N >2n.

Proof. By successive division, we can write

(5.17) P() =3 hi(Op(t)

where deg hi(t) < n, h4(t) # 0. We claim that hy(t) € K, which will give the desired
conclusion since then deg P(t) = dn. Say p(¢) is a cv-polynomial with respect to
(8", D). Then p(t)'a = T}, fi'(a)p(t)’ where f} is the sum of all products with j
factors of S’ = S™ and i—j factors of D’ (see the paragraph before (2.16)). Therefore,
for any a€ K:

d i d (d
(5.18) P(t)a =) hi(t) Z fi(a)p(ty =3 (Z h,-(t)f;-"(a)) p(t).

i=0 7=0 1=3

On the other hand, if the cv-polynomial P(#) is with respect to (SN, D"), we also have

d
(5.19) P(t)a = $"(a)P(t) + D"(a) = 3_ 5" (a)h;(t)p(ty + D"(a).
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Since there is only one way to write P(t)a as a sum of powers of p(¢) left-multiplied
with polynomials of degree < n, we deduce that

d
5.20) SN(a)h;(t) + 6;0D"(a) = hi(t)fi(a) (0<j<d),

=3

where §0 means the Kronecker deltas. For j = d > 0, this simplifies to SV (a)hy(t) =
hs(t)S%(a). Since S(a) can be any element of K (S being an automorphism), this
implies that hg(t) is semi-invariant, and therefore the hypothesis in the Proposition

implies that hy(t) € K, as desired. Q.E.D.

Corollary 5.21. Assume that S is an automorphism, and that R is simple. If p(t)
and py(t) are two non-constant cv-polynomials in R, then the degree of one of them
divides the degree of the other one.

Now we are ready to prove the following result which gives, as a corollary, a general
sufficient condition for an Ore extension R to have a largest Ore subextension.

Theorem 5.22. Assume S i3 an automorphism, and that D is not S-inner. Let
plt) € R be a monic non-linear cv-polynomial of minimal degree n, and let P(t) be a
‘monic) non-linear cv-polynomial of degree N. If kn # 1(mod o(S)) for all positive
kn < N, then P(t)€ K[p(t)].

Proof. Asin the proof of (3.6), the assumptionson p(¢) here imply that R has no non-
constant semi-invariant polynomial of degree < n. Hence, (5.16) applies. Expressing
P(t) asin (5.17) (and noting that deg P(t) > n ), we have therefore hy(t)€ K. Our goal
is to show that all hj(t) € K, so that we can conclude that P(t) € K[p(%)]. Proceeding
by induction, we may assume that hg(t), ha-1(t),---,h;41(t) € K, and try to show that
h;(t)e K. Now, by (5.20), we have for any a€ K:

d
$¥(a)h;(t) + 8;0D"(a) = hi(t)S™(a) + 3 hi(t)f}(a).

>

Therefore,
(5.23) hi(t)S™"(a) = SN(a)h;(t) + constant.

Since S’"(a) can be any element of K, this implies that h;(t) is a cv-polynomial
(by (2.16)(4)), and since deg hj(t) < n, we must have h;(t) = a;t + b; for suitable
constants aj, b;. Plugging this into (5.23) and comparing (left) coefficients of ¢, we get
;57" (a) = SN(a)a;. If a; # 0, this would give I, o S7"*1 = SN = §4n_and hence
(d—j)n =1 (mod o(S)), a contradiction. Therefore, a; = 0 and we have hj(t) = b, € K,
as desired. Q.E.D.

Corollary 5.24. Let (S,D) and p(t) be as in Theorem 5.22, with n = deg p(t). If

(n,0(S)) # 1 (in particular, if o(S) = o0), then K[p(t)] is the largest Ore subeztension
in R.




Proof. We need to show that any non-linear cv-polynomial P(t) belongs to K[p(t)].
If it does not, the theorem implies that kn = 1(mod o(S)) for some k. This means
that o(S) < oo and that (n,o(S)) = 1, a contradiction. Q.E.D.

Remark 5.25. If we do not impose the hypothesis that (n,0(S)) # 1, the Corollary
will not hold in general. For instance, let (K,S,D) be such that char K = p > 0,
SD = DS, S»~' =1, D? = D, and D is not S-inner. Then p(¢) = #? is a non-linear
cv-polynomial of minimal degree. On the other hand, P(t) = t» — t is an invariant
polynomial, for it obviously commutes with ¢, and also, for any a€ K:

P(t)a = tPa — ta = (SP(a)t” + D?(a)) — (S(a)t + D(a)) = S(a)P(t).

However, we have clearly P(t) ¢ K|[t?]. Here, o(S)|(p—1) so (p,o(S)) = 1. (Of course,
we could have chosen § = I and K to be a field in the above. In this case, we need
only choose D to be a nonzero derivation with D?P = D.)

Remark 5.26. If we do not assume that D is not S-inner, the Corollary also fails
to hold in general. For instance, let S be an automorphism of a division ring K with
o(S) equal to an even integer, and let D = 0. We can take p(t) = t* to be a non-
linear cv-polynomial of minimal degree (n = 2). Then (n,0(S)) = 2 # 1, but clearly |
the invariant polynomial P(t#) = ¢3 is not in K[t?] = K[t',S?]. The Ore extension

R = K][t, S] has no largest Ore subextension in this case.

As it turns out, the sufficient condition (n,0(S)) # 1 for K[p(t)] to be the largest
Ore subextension of R is also not far from being necessary. To see this, we need the
following simple observation:

Lemma 5.27. Let p(t) € R be any monic cv-polynomial of degree n > 2, and let
u € K*. Then p(t) + ut is a cv-polynomial iff S* = I, 0 S. In particular, if S is an
autornorphism and p(t) is a monic non-linear cv-polynomial of minimal degree n, then
p(t) is unique up to an additive constant iff n # 1 (mod o(S)).

Proof. Suppose the cv-polynomial p(t) is with respect to (S™, D). For any a€ K, we
have

(p(t) +ut)a = S™(a)p(t) + D'(a) +u(S(a)t + D(a))
= S"a)(p(t) +ut) + (uS(a) — S"(a)u)t + D'(a) + uD(a).

Therefore, p(t) + ut is a cv-polynomial iff uS(a) = S"(a)u for all a € K; that is, iff
S" =1I1,08. If S is an automorphism, and n is assumed to be minimal, then, for
any other monic cv-polynomial p'(t) of degree n, the difference p'(t) — p(t) is also a
cv-polynomial (by (2.9)), of degree < n, so it has the form ut + ¢. The last conclusion
in the Lemma now follows easily from this representation. Q.E.D.

Proposition 5.28. Keeping the notations in (5.22), if K[p(t)] is the largest Ore subez-
tension of R, then we have kn # 1 (mod o(S)) whenever kn is the degree of a cv-
polynomial P(t). In particular, if for every k > 1 there ezxists a cv-polynomial of degree
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kn, then (n,o(S)) # 1 is a necessary as well as sufficient condition for K[p(t)] to be
the largest Ore subextension of R.

Proof. If kn = 1 (mod o(S)) where kn is the degree of a cv-polynomial P(t), then
Skn-1 = I, for some u € K*, so P(t) + ut is also a cv-polynomial by (5.27). Hence
we have P(t) + ut € K[p(t)] as well as P(t) € K[p(t)]. This gives t € K[p(t)], which
contradicts n =deg p(t) > 2. Q.E.D.

Since the phenomenon of an Ore extension containing a largest Ore subextension
has not been observed before, we would like to conclude this paper by constructing
some explicit examples. Note that for any such example K|[t, S, D], (5.28) implies that
S cannot be an inner automorphism, and we can also see easily that D cannot be
an S-inner derivation. To produce an actual example to which (5.24) applies, let %
be any field, and let F = k({z; : 1 € Z}). Let o be the k-automorphism of F
defined by o(z;) = zi41 for any i € Z. Then let K be the division ring of twisted
Laurent series F((y,0?)) (in which yz; = oP(z;)y = zi4py), where p is a fixed prime.
We can extend o to an automorphism S of K by defining S(y) = y. Further, it is
easy to check that there is a unique S-derivation D on K specified by D(k) = 0,
D(z;) = z; (Viel), and D(y) = 0. We claim that: (1) o(S) = p, and (2) D 1s
not S-inner. First, note that S?(z;) = zi4p, = yz;y~!, and SP(y) = y = yyy~!; hence
we have SP = I,. To prove that o(S) = p, we need to show that S is not an inner
automorphism. But if S = I,, for some nonzero u = 12, fiv' (f;€F, fi, #0), then
uz; = g1 leads to Y2, fizjripy' = T2, z;+1fiy'. Comparing the coefficients of
y'o, we get fi,Zj+ip = Zj+1fi,» which is impossible. To prove the second claim, assume
that D = D, s where u is as above. Then z; = D(z;) = D, s(z;) = uz; —zj1u(VjE
Z) leads to z; = =2, (fizjrip — zj+1fi)y'. Comparing the constant coefficients gives
z; = fox; — zj41fo, or fo =z;/(x; — x;41) for all j. This is clearly impossible. In this
example, it is easy to check that SD = DS. Now assume that k& has characteristic p.
Then, by (3.12)(3), p(t) = t*€ K[t, S, D] is a non-linear cv-polynomial (with respect to
(S?,Dr)) of minimal degree, and we have (o(S),deg p(t)) = p # 1. Therefore, (5.24)
applies, giving the conclusion that R’ = K|[tP, SP, DP| is the largest Ore subextension
of R = K|[t,S,D]. As a strengthening of the claim (2) above, we leave it to the reader
to check that D is in fact not a quasi-algebraic derivation, so the Ore extension R in
question is a simple ring here.

In the above example, the Ore subextension R’ C R is not minimal since it contains
in turn K[t?",S?", D*’]. However, we can arrange to have R’ minimal by making the
following changes in the construction. First, in the definition of D, we replace the
conditions D(z;) = z; by D(z;) = (—1)'z; (for every i). Then, we’ll have SD =
—DS (instead of SD = DS ), so according to (2.10) ¢(¢) = t?€ R is a cv-polynomial
with respect to (5%, D?). Secondly, we take k to be of characteristic zero (instead of
characteristic p ). By the same proof as before, we can check that D? is not an S2-inner
derivation. But since we have now char K = 0, and SD = —DS = $?D? = D?§?,
(4.11) implies that R’ = KJq(t)] = K|[t',S?% D?] is a minimal Ore extension. Thus
we have an example (promised earlier) of an Ore extension which is minimal, but not
mazimal (in view of R' C R).




In the last paragraph, ¢(t) = t?€ R is clearly a non-linear cv-polynomial of minimal
degree n = 2, but p can still be any prime. If we take p = 2, then (n,0(S)) =
(2,p) = 2, so (5.24) applies. This implies that all non-linear cv-polynomials of R
lie in R" = K[q(¢)]. Since R’ is minimal, we conclude further from (2.19) that the
cv-polynomials in R are exactly those of the form at2 + b, or ¢t +d (a,b,c,d € K).
Thus, we have an example of an Ore extension which has only linear and quadratic

cv-polynomials. Furthermore, the only Ore extensions contained in R are R’ and R
itself.
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