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Abstract

Let R be a ring and S = R[x; σ, δ] its Ore extension. For an R-
module MR we investigate the uniform dimension and associated primes
of the induced S-module M ⊗R S.

1 Introduction

Let R ⊆ S be a ring extension. Then we have a natural functor −⊗R S from
the category of right R-modules into the category of right S-modules and it is
important to know which properties of the module MR lift to the induced S-
module M⊗R S. In the literature there are many results in this direction both
for special kinds of ring extensions R ⊆ S and for special kinds of modules.
Even in the case when MR = RR the situation is nontrivial, as it means that
we lift module properties from the ring R to that of the ring S.

The aim of the paper is to investigate the passage of properties from a
module MR to its induced S-module M ⊗R S in the case when S = R[x; σ, δ]
is an Ore extension of R. We are mainly concerned with problems related
to the uniform dimension and associated prime ideals of the induced module
M ⊗R S. In both cases, our approach is based on the use of good polynomials.
Such polynomials were first used by R.C. Shock in his classical paper [Sh] for
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proving that uniform dimensions of a ring R and the polynomial ring R[x] are
equal. They were also used in other papers (see for example [A1],[A2],[Ma])

In section 2 we set the notations and present or recall some basic definitions.
Section 3 is devoted to a detailed study of good polynomials. Such polyno-

mials were earlier used either in the context of rings but not modules or under
a very strong additional assumptions on the automorphism σ and σ-derivation
δ of R. Moreover, the situation drastically changes while passing from the
module RR to an arbitrary R-module MR. In the first case we still have an
action of σ and δ on RR, in the second case we do not have such action.

In Section 4, under the assumption that the S-module M⊗R S is good (see
Definition 4.4), we prove that the modules MR and M ⊗R S have the same
uniform dimension. We show also that when SS is a good module, then for any
R-module MR, the induced module M ⊗R S is nonsingular if and only if the
module MR is such. Earlier we provide natural situations when the induced
module is good.

It is known that, in general, such equality does not hold. In many previous
papers (see for example [BeG], [Gr], [Ma], [Si], [Qu] ) similar results were
obtained. All of the cited papers except [Ma] concern the case when S is a
differential operator ring in one or more variables. In [Ma] such equality was
shown when MR = RR is a good module. Our results extend most of the
above mentioned ones and cover also the classical case of usual polynomial
rings ([Sh]). As an application we show in Theorem 4.10 that for a quantum
algebra T (R), which can be presented as an iterated Ore extension over R, the
induced T (R)-module M ⊗R T (R) is nonsingular and has the same uniform
dimension as MR, assuming that the module MR is nonsingular.

We close this section with an observation concerning divisibility of the
induced module.

In the final Section 5 we investigate, with the help of good polynomials, re-
lations between associated primes of an R-module MR and that of the induced
S-module M⊗R S. The prime spectrum of an Ore extension S = R[t, σ, δ] and
its generalizations are intensively studied (for an exposition and references see
[BrG] and [GL]). The structure of the prime spectrum of S is quite complicated
and it is natural to investigate certain parts of it. For example, it is known
that in the case S = R[x] is a polynomial ring then associated prime ideals of
the induced module M ⊗R S are just extensions of associated primes of the
R-module MR (Cf. [BH], [Fa]). Recently, S. Annin in [A1], [A2] extended this
result to certain skew polynomial rings. In Section 5 we show that in many
other situations all associated primes of the induced module M ⊗R S arise
from associated primes of the module MR even in the case S is an iterated Ore
extension of R. This, in particular, generalizes the above mentioned result of
S. Annin. We also offer examples which show that the assumptions we make
are necessary.
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2 Preliminaries

In this section we introduce notations and recall some classical definitions.
Throughout the paper R will stand for an associative ring with unity, σ

will denote an automorphism of R and δ a σ-derivation of R, i.e. δ : R → R is
an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ R.

S will stand for the Ore extension R[x; σ, δ]. Recall that elements of S are
polynomials in x with coefficients written on the left. Multiplication in S is
given by the multiplication in R and the condition xa = σ(a)x + δ(a) for all
a ∈ R.

For any 0 ≤ j ≤ i, f i
j ∈ End(R, +) will denote the map which is the sum

of all possible words in σ, δ built with j letters σ and i− j letters δ
The following properties of those maps are well-known (Cf. [LLM]).

Lemma 2.1. For any a, b ∈ R we have:

1. f i
j(ab) =

∑i
k=j f i

k(a)fk
j (b) for any 0 ≤ j ≤ i.

2. xna =
∑n

j=0 fn
j (a)xj in the ring S.

We say that the σ-derivation δ of R is q-quantized if δσ = qσδ where q is
a central, invertible element of R such that σ(q) = q and δ(q) = 0. When δ is
q-quantized, then f i

j =
(

i
j

)
q
σjδi−j, where

(
i
j

)
q

means the q-binomial symbol. If

q = 1 then
(

i
j

)
q

=
(

i
j

)
. It is also known (Cf. [BrG] or [LLM]), that if either q is

not a root of unity or q = 1 and R contains the ring Z of integers as a subring,
then

(
i
j

)
q

is regular in R for any 0 ≤ j ≤ i.

Let MR be a right R-module. Then the right S-module M ⊗R S will be
called the induced module and will be denoted by M̂S.

Since R[x; σ, δ] is a free left R-module, the elements from M̂S can be seen
as polynomials in x with coefficients in MR with natural additive and right
S-module structures. For this reason we will sometimes call elements of M̂S

polynomials and present elements of M̂S in the form
∑

i mix
i, where mi ∈ MR

for all i.
In case MR = RR this construction gives M̂S = SS.
The notion of degree of polynomials from M̂S is defined similarly as in the

case of polynomials in S.
Let NR be a submodule of MR. Then we can consider N̂S as a submodule

of M̂S and it is standard to check that:

Lemma 2.2. Let NR be a submodule of an R-module MR. Then the S-modules

(M̂/N)S and (M̂/N̂)S are isomorphic.

For a subset A of the module MR, annR(A) will denote the annihilator of
A in R.
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Let NR be an R-submodule of MR. Recall that NR is essential in MR if
for any 0 6= m ∈ MR we have mR ∩ N 6= 0. The singular submodule of MR,
denoted by Z(MR), is the set of all elements m ∈ MR such that annR(m)
is an essential right ideal of R. The module MR is said to be nonsingular if
Z(MR) = 0.

The uniform dimension of the module MR is denoted by udimMR.

3 Good Polynomials

The notion of good polynomials was first introduced by R.C. Shock (Cf. [Sh])
for proving that uniform dimensions of R and R[x] are equal. They were
used also by the second author for proving the same result for Ore extensions
S = R[x; σ, δ] (under some mild extra assumptions).

In this section we introduce and carefully investigate good polynomials in
the induced module M̂S.

In the sequel we will use, for an ideal I of R, invariant ideals associated to I
under various actions. In particular Iσ will denote the largest σ-invariant ideal
of R contained in I, i.e. Iσ := {a ∈ I|σn(a) ∈ I for all n ≥ 0 }. Similarly we
define Iδ, Iσ,δ and denote

IΩ := {a ∈ I| w(a) ∈ I for all words w in σ and δ}

and

IF := {a ∈ I| f i
j(a) ∈ I for all i ∈ N and 0 ≤ j ≤ i}.

Lemma 3.1. With the above notations and definitions we have :

1. IΩ ⊆ IF ⊆ Iσ ∩ Iδ and all these subsets of I are ideals of R.

2. If either δ(Iσ) ⊆ Iσ or σ(Iδ) ⊆ Iδ then IΩ = IF = Iσ.

3. IΩ = IF provided δ is a q-quantized σ-derivation and
(

i
j

)
q

is invertible in

R for any 0 ≤ j ≤ i, i ∈ N.

4. Let N be a right R-module with annR(N) = I.
Then:

(a) annR(N̂) = IF .

(b) annS(N̂) is the largest ideal of S contained in annS(N).

(c) If annS(N̂) = JS for some ideal J of R, then J = IF = annR(N̂)
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Proof. (1) The inclusions are clear. Note also that ω(IΩ) ⊆ IΩ for all ω ∈ Ω.
An easy induction on the length of ω then shows that IΩ is an ideal of R.

The fact that IF is an ideal is an easy consequence of Lemma 2.1(1)
(2) Suppose that δ(Iσ) ⊆ Iσ. Since also σ(Iσ) ⊆ Iσ we obtain Iσ ⊆ IΩ.

This together with (1) gives the thesis.
If σ(Iδ) ⊆ Iδ, then a similar argument to the one above gives the thesis.
(3) Since δ is a q-quantized σ-derivation, we have f j

i =
(

i
j

)
q
σjδi−j. Moreover,

by the assumption imposed on q,
(

i
j

)
q
’s are central, invertible elements of R.

This gives IΩ = IF in this case.
(4) Let NR be a right R-module with annR(N) = I.

(a) Let a ∈ IF and
∑

nix
i ∈ N̂S with ni ∈ NR. Then, by Lemma 2.1(2),

we have
∑

(nix
i)a =

∑
i(
∑

j nif
i
j(a)xj) = 0 as f i

j(a) ∈ I = annR(N) for all

i, j. This shows that IF ⊆ annR(N̂).

For proving the converse inclusion, assume that a ∈ annR(N̂). In particu-
lar, for any n ∈ NR and i ∈ N we have 0 = nxia =

∑
j nf i

j(a)xj. This implies

that annR(N̂) ⊆ IF .

(b) Obviously annS(N̂) is an ideal of S which is contained in annS(N). On

the other hand, if J is an ideal of S contained in annS(N) then N̂J = 0 and
this yields the conclusion.

(c) Suppose annS(N̂) = JS for some ideal J of R. Then, by (a), IF ⊆ J .
The converse inclusion is a consequence of the fact that NxiJ = 0 for all
i ≥ 0.

Definition 3.2. We say that a nonzero polynomial g ∈ M̂S is good if for any
r ∈ R deg(gr) = deg(g), provided gr 6= 0.

In the following example we offer a few natural constructions of good poly-
nomials.

Example 3.3. Let MR be a right R-module.

1. Any nonzero element from MR is a good polynomial of degree 0.

2. If m ∈ MR is such that annR(m) = 0, then any polynomial from M̂S

with leading coefficient m is good.

3. Let m ∈ MR be such that annR(m) = 0 and let 0 6= b ∈ R. Then one can
easily check that mxσ−1(b) = mbx + mδσ−1(b) is a good polynomial of

degree one in M̂S. More generally, the polynomial mxnb ∈ M̂SS = M̂S

is a good polynomial of degree n and leading coefficient mσn(b).

4. Suppose δ = 0 and g ∈ M̂S is a good polynomial, then the polynomial
gxi is also good for any i ≥ 0.
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In the next lemma we will consider various characterizations of good poly-
nomials. Before stating this lemma, let us introduce the following notation :
for a module MR and an automorphism τ of R we denote by Mτ the τ -twisted
R-module defined on the same additive structure Mτ = M where the action
of R is twisted by τ , i.e. m · r := mτ(r). For m ∈ MR it will be convenient to
denote the element of Mτ corresponding to m by mτ .

Lemma 3.4. Let g ∈ M̂S be a nonzero polynomial of degree l and leading
coefficient a. Then the following statements are equivalent :

(i) g is good.

(ii) g is a polynomial of minimal degree in gR.

(iii) g is a polynomial of minimal degree in gS.

(iv) For any r ∈ R, aσl(r) = 0 if and only if gr = 0.

(v) annR(g) = σ−l(annR(a)).

(vi) annS(g) = σ−l(annR(a))S.

(vii) There exists an S-module isomorphism φ : gS −→ (̂aR)σl such that φ(g) =
aσl.

Proof. The easy proofs of the equivalences (i) to (v) are left to the reader.
(v)⇒ (vi): Let h = bnxn+· · ·+b1x+b0 ∈ annS(g). Considering the leading

coefficient of gh = 0 we get aσl(bn) = 0 and (v) gives us gbn = 0. This yields
g(bn−1x

n−1 + · · · + b0) = 0. Continuing this process we obtain {b0, . . . , bn} ⊆
σ−l(annR(a)) and thus h ∈ σ−l(annR(a))S. Hence annS(g) ⊆ σ−l(annR(a))S.
The reverse inclusion is clear.

(vi) ⇒ (vii): Using (vi) and Lemma 2.2, we have the following chain of
natural isomorphisms of S-modules:

gS ∼= S/annS(g) = S/σ−l(annR(a))S ∼=
∼=

(
R/σ−l(annR(a))

)
⊗R R[x; σ, δ] ∼= (̂aR)σl .

It is easy to check that, by this chain of isomorphisms, the image of g is
aσl .

(vii) ⇒ (iv): Suppose that there is an S-module isomorphism, say φ, be-

tween gS and (̂aR)σl sending g onto aσl . Then, for any r ∈ R , φ(gr) = aσl ·r =
aσl(r) and hence, gr = 0 if and only if aσl(r) = 0.
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Using the characterization of good polynomials given in the above lemma
we obtain:

Corollary 3.5.

1. Let 0 6= g ∈ M̂S. Then there exists r ∈ R such that gr is a good
polynomial.

2. If g ∈ M̂S is a good polynomial, then annS(g) = annR(g)S.

We will need the existence of good polynomials of any degree in a submod-
ule generated by a ∈ MR. This is the objective of the following lemma which
is similar to Lemma 2.1 from [Ma].

Proposition 3.6. Let a ∈ MR and g ∈ M̂S be a good polynomial of degree l
and leading coefficient a. If the submodule aR of MR is nonsingular, then:

1. aS contains a good polynomial of degree one.

2. For any n ≥ l there exists a good polynomial in gS of degree n.

Proof. (1) Since the submodule aR is nonsingular, we can pick 0 6= b ∈ R
such that annR(a) ∩ σ(b)R = 0. We claim that the degree one polynomial
axb = aσ(b)x + aδ(b) is good. Indeed if r ∈ R is such that aσ(b)σ(r) = 0 then
σ(b)σ(r) ∈ σ(b)R ∩ annR(a) = 0. Hence br = 0 and axbr = 0.

(2) Since g is good, Lemma 3.4 shows that there is an isomorphism of S-

modules φ : gS → (̂aR)σl such that φ(gh) = aσl · h. Let us first notice that
under this isomorphism good polynomials in gS correspond to good polyno-

mials in (̂aR)σl . Indeed, since g is good we have annR(aσl) = σ−l(annR(a)) =
annR(g). This implies that deg(gh) = deg(aσl · h) + l for any h ∈ S. In par-

ticular, thanks to the characterization (ii) in Lemma 3.4, gh ∈ M̂S is good if

and only if aσl · h ∈ (̂aR)σl is good.
By the assumption, aR is nonsingular and obviously so is (aR)σl . Part (1)

above gives us a good polynomial, say aσl ·h, of degree 1 in aσlS. We can thus
conclude that we have a good polynomial gh of degree l + 1 in gS.

Since the leading coefficient of gh belongs to aR, its leading coefficient
still satisfies the hypothesis of the proposition. Thus, by an easy inductive
argument, the thesis of (2) follows.

In the next lemma we will study annihilators of submodules generated by
good polynomials.

Lemma 3.7. Suppose that g ∈ M̂S is a good polynomial of degree l and a is
the leading coefficient of g. Set I := σ−l(annR(aR)). Then

1. annR(gS) ⊆ annS(gS) ⊆ annS(gR)
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2. annR(gR) = I and annS(gR) = IS

3. annR(gS) = IF

4. annS(gS) is equal to the largest ideal of S contained in the (R, S)-bimodule
annS(gR).

5. If δ(Iσ) ⊆ Iσ then annS(gS) = IσS

Proof. (1) All these inclusions are obvious.
(2) Since g is good and aRσl(I) = 0, gRI = 0, i.e. I ⊆ annR(gR). The

reverse inclusion is clear. This shows the first equality.
The proof of the second equality is similar to the one given for the impli-

cation (v) ⇒ (vi) in Lemma 3.4.

(3) Notice that we have natural isomorphism ĝR = gR ⊗R S ∼= gS of R-
modules. Now the thesis is a direct consequence of Lemma 3.1(4)(a) and the
statement (2).

(4) This statement is a direct consequence of Lemma 3.1(4)(b).
(5) Suppose that δ(Iσ) ⊆ Iσ. Then, by Lemma 3.1(2) Iσ = IF . Thus, by

making use of (3) and (1) we obtain IσS = annR(gS)S ⊆ annS(gS).
To see that the reverse inclusion holds, take h = bxn + ... ∈ annS(gS).

Then gRxih = 0 for any i ≥ 0. Comparing the leading coefficients of both
sides of the above equation we obtain σi(b) ∈ σ−l(annR(aR)) = I, for all i ≥ 0,
i.e. b ∈ Iσ. By Lemma 3.1, Iσ = IF . Since g is a good polynomial, we get
that gRxib = 0 for all i ≥ 0. This means that gSb = 0. Then gS(h− bxn) = 0
and deg(h − bxn) < deg h. Now, an easy inductive argument yields that
annS(gS) ⊆ IσS and the equality annS(gS) = IσS follows.

4 Uniform Dimension and Related Topics

The main objective of this section it to show that in many natural situations
we have udimMR = udimM̂S. In the course of doing this we will examine
the lifting of various properties from the module MR to the induced module
M̂S. In particular, we will be concerned with following properties : uniformity,
essentiality and nonsingularity.

If MR is an R-module then the induced S-module M̂S can also be viewed
as an R-module. When confusion is possible we will, while referring to these
modules structures, write M̂R or M̂S, respectively.

Recall that Z(MR) denotes the singular submodule of MR.

Lemma 4.1. Let NR be a submodule of the module MR. Then:

1. N̂R is an essential submodule of M̂R if and only if N̂S is an essential
submodule of M̂S.
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2. Z(MR) = 0 if and only if Z(M̂R) = 0

3. If Z(MR) = 0, then Z(M̂S) = 0.

Proof. (1) Suppose that N̂S is an essential submodule of M̂S and let 0 6= f ∈
M̂ \ N̂ . Then 0 6= f ∈ M̂/N ∼= M̂/N̂ , where f denotes the natural image of

f in (M̂/N)S. By Corollary 3.5, there exists r ∈ R such that fr is good in

(M̂/N)S. Since N̂S is essential in M̂S, there exists g =
∑i=n

i=0 aix
i ∈ S such that

0 6= frg ∈ N̂S. This means that g ∈ annS(fr). The element fr ∈ (M̂/N)S

is good so, by Corollary 3.5(2), we get frai = 0 for every 0 ≤ i ≤ n. This

shows that for any i, frai ∈ N̂ . Since frg 6= 0 we conclude that there exists
ai such that 0 6= frai ∈ N̂ . This shows that N̂ ∩ fR 6= 0, proving that N̂R is
an essential R-submodule of M̂R.

The reverse implication is a tautology.
(2) Notice that Z(MR) = Z(M̂R) ∩ MR. Thus in order to prove (2), it

is enough to show that Z(M̂R) ∩ MR 6= 0 provided Z(M̂R) 6= 0. To this

end, suppose that Z(M̂R) 6= 0 and let 0 6= f ∈ Z(M̂R) be a polynomial of
minimal degree, say deg f = n. Now, Lemma 3.4(ii) shows that f is a good
polynomial. This means that the essential right ideal annR(f) of R is equal to
σ−n(annR(a)), where a denotes the leading coefficient of f . This shows that

0 6= a ∈ Z(M̂R) ∩MR.

(3) Assume that Z(MR) = 0 and Z(M̂S) 6= 0. Let 0 6= f ∈ Z(M̂S) be a

polynomial of minimal degree, say deg f = n. Since Z(M̂S) is a submodule

of M̂S, we may apply Lemma 3.4(iii) to see that f is a good polynomial. Let
a denote the leading coefficient of f . Then, by Corollary 3.5(2), annS(f) =
σ−n(I)S where I = annR(a). Now, it is easy to conclude that σ−n(I) and
hence also I = annR(a) are essential right ideals of R, i.e. 0 6= a ∈ Z(MR).
This contradiction yields the result.

In [A1] and [A2], S.Annin studied properties of the induced S-module M̂S

under the assumption that for any a ∈ MR the annihilator I of a in R is
(σ, σ−1, δ)-stable, i.e. σ(I) = I and δ(I) ⊆ I. We relax this hypothesis in the
following definition.

Definition 4.2. We say that a module MR satisfies the weak (σ, δ)-compa-
tibility condition if every nonzero submodule NR of MR contains an element
a 6= 0 such that annR(a) is (σ, σ−1, δ)-stable.

In the sequel we will need the following technical observation:

Lemma 4.3. Let τ , d denote an automorphism and τ -derivation of R, re-
spectively. Suppose that MR satisfies the weak (τ, d)-compatibility condition.
Then:
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1. For any good polynomial f ∈ M̂S there exists r ∈ R such that fr is a
good polynomial and the annihilator of its leading coefficient is (τ, τ−1, d)-
stable.

2. Suppose additionally that στ = τσ, there exists a central invertible ele-
ment q ∈ R such that σd = qdσ and τ and d can be extended to S =
R[x; σ, δ]. Then the S-module M̂S satisfies the weak (τ, d)-compatibility
condition.

Proof. (1) Let f ∈ M̂S be a good polynomial of degree l and leading coefficient
a. Since MR satisfies the weak (τ, d)-compatibility condition, there exists w ∈
R such that aw 6= 0 and I = annR(aw) is (τ, τ−1, d)-stable. Then, by Lemma
3.4, the polynomial fσ−l(w) is good and I is the annihilator of its leading
coefficient.

(2) Let BS be a nonzero submodule of M̂S and 0 6= f ∈ BS a polynomial of
minimal degree. Then f is good and using (1) above we can replace f by its
multiple fr for some suitable r ∈ R and assume that I = annR(a) is (τ, τ−1, d)-
stable, where a ∈ MR stands for the leading coefficient of f . Lemma 3.4 implies
that annS(f) = σ−l(I)S, where l = deg f . Now, the additional assumption
yields that σ−l(I)S is (τ, τ−1, d)-stable. This gives the lemma.

We have seen in Example 3.3 that quite often the induced S-module M̂S

contains good polynomials of all degrees n ≥ 0. In the sequel we will need the
following stronger property.

Definition 4.4. An S-submodule BS of M̂S is said to be good if for any good
polynomial g ∈ BS and any n ≥ deg(g) there exists a good polynomial of
degree n in gS.

Let us remark that, a priori, this notion depends on σ and δ. Notice also
that if M̂S is a good module, then any S-submodule BS of M̂S is also good.

Proposition 4.5. The induced S-module M̂S is good if one of the following
conditions is satisfied:

1. MR is nonsingular.

2. MR = RR and for any nonzero a ∈ R there exists a good polynomial of
degree one in aSS.

3. δ = 0.

4. MR satisfies the weak (σ, δ)-compatibility condition.
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Proof. (1) This statement is a direct consequence of Proposition 3.6.
(2) This statement is a direct consequence of Lemma 2.1. from [Ma].
(3) This was already mentioned in Example 3.3(4)

(4) Let f ∈ M̂S be a good polynomial of degree l. By Lemma 4.3(1), we
can pick w ∈ R such that g = fw is a good polynomial and the annihilator I
of its leading coefficient a is (σ, σ−1, δ)-stable.

We claim that for any k ≥ 0, gxk is a good polynomial. To this end,
notice that deg gxk = l + k and let r ∈ R be such that deg gxkr < k + l,
i.e. aσl+k(r) = 0. This means that r ∈ I, as σ(I) = I. Since also δ(I) ⊆ I,
fk

i (r) ∈ I for all 0 ≤ i ≤ k. Therefore gxkr = g
∑k

i=0 fk
i (r)xi ∈ gIS = 0. This

proves the claim and gives the thesis.

In the next theorem we come to the question of preservation of essentiality
and uniformity while passing from MR to M̂S. As a corollary we will compare
the uniform dimension of MR and that of M̂S. The idea of the proof is similar
to the one of Theorem 2.3 from the second’s author paper [Ma] and, in fact,
it goes back to the paper [Sh] of R.C. Shock.

Theorem 4.6. Let NR be an R-submodule of MR such that N̂S is good. Then:

1. NR is essential in MR if and only if N̂S is essential in M̂S.

2. NR is uniform if and only if N̂S is uniform.

Proof. (1) If TR is a submodule of MR such that NR ∩ TR = 0 then clearly

N̂S ∩ T̂S = 0. This gives one implication.
Suppose that NR is an essential submodule of MR. Thanks to Lemma

4.1(1) it is enough to show that N̂R is essential in M̂R, i.e. for any 0 6= p ∈ M̂

we must show that N̂ ∩ pR 6= 0. For doing so, we proceed by induction on
n = deg p. First notice that, by Corollary 3.5, we may replace p by pr for
some suitable r ∈ R and assume that p is good. If n = 0, then p ∈ M and
N ∩ pR 6= 0, by the assumption.

Suppose n > 0. Since NR is essential in MR, we can pick r ∈ R such
that the leading coefficient, say a, of pr belongs to N \ {0}. The element

a ∈ N ⊆ N̂S is a good polynomial and because N̂S is a good module, we can
find a good polynomial g ∈ aS ⊆ N̂S such that deg(g) = deg(pr). The leading
coefficient of g belongs to aR, hence there exists w ∈ R such that prw and g
have the same leading coefficient. If g = prw, then g ∈ N̂ ∩ pR and we are
done. Suppose g 6= prw. Then prw−g 6= 0 and deg(prw−g) < deg(p). By the

inductive hypothesis, we can find s ∈ R such that 0 6= (prw − g)s =: h ∈ N̂ .
Since prw and g are good polynomials of the same degree and with the same
leading coefficients they have the same annihilator in R. This yields that
prws 6= 0, as otherwise also gs = 0 and h would be equal to 0. Therefore we
get 0 6= prws = gs + h ∈ N̂ ∩ pR.
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(2) If N̂S is a uniform module than it is easy to see that NR has to be
uniform as well.

Suppose now, that NR is a uniform R-module and assume that N̂S is not
uniform. Thus there are nonzero polynomials p, g ∈ N̂ such that pS ∩ gS = 0.
Among such polynomials choose p and g such that deg p + deg g is as small
as possible. By Corollary 3.5, we may assume that both p and g are good
polynomials. Suppose also that n = deg p ≥ deg g = m.

Because N̂S is a good submodule of M̂S, there is a nice polynomial z ∈ gS
with deg z = n. Let a and b denote the leading coefficients of polynomials p
and z, respectively. Since a, b ∈ N and NR is uniform, there exist c, d ∈ R
such that ac = bd 6= 0. Then the polynomial h = pσ−n(c) − zσ−n(d) ∈ N̂S is
of degree smaller than n. Notice also that h 6= 0, as otherwise 0 6= pσ−n(c) =
zσ−n(d) ∈ pS ∩ gS = 0. Now, the choice of p and g gives hS ∩ gS 6= 0.
Therefore, there are polynomials v1, v2 ∈ S such that

(4.I) 0 6= gv2 = hv1 = pσ−n(c)v1 − zσ−n(d)v1

Notice that, by the above equation, pσ−n(c)v1 ∈ pS∩gS = 0. Since pσ−n(c)
and zσ−n(d) are good polynomials of the same degree and the same leading
coefficients they have the same annihilators in S. Therefore zσ−n(d)v1 = 0
as well. This means that the right hand side of the equation (4.I) is 0. The

obtained contradiction shows that N̂S is a uniform submodule of M̂S.

As a direct consequence of the above theorem and Lemma 4.1 we obtain
the following:

Theorem 4.7. Suppose that the module R̂S = SS is good. Then for any R-
module MR, the induced module M̂S is nonsingular if and only if MR is a
nonsingular module.

Proof. By Theorem 4.6(1) applied to the R-module RR, we know that if I is an
essential right ideal of R, then IS is an essential right ideal of S. This implies
that Z(MR) ⊆ Z(M̂S). Now, the thesis is an easy consequence of Lemma
4.1(3).

We have seen in Lemma 4.1(3), that for any nonsingular module MR, the

induced module M̂S is also nonsingular. However the fact that M̂S is nonsin-
gular does not imply that MR is nonsingular, as the following example shows.

Example 4.8. Let R = K[t]/(tp), where K[t] denotes the polynomial ring
over a field K of nonzero characteristic p. Set S = R[x; δ], where δ stands for
the derivation of R induced by the standard derivation δ/δt of K[t]. Then it
is known (see, e.g., [Go] Proposition 7.5), that S is isomorphic to a full p× p

matrix ring over the ring K[x]. Therefore R̂S = SS is a nonsingular module.
One can easily check that Z(RR) = (t), where t denotes the natural image of
t in R.
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Let us remark that in the above example we also have udimR̂S = p, while
udimRR = 1.

Theorem 4.9. Suppose that M̂S is a good module. Then udimM̂S = udimMR.

Proof. Notice that direct sums of submodules of MR lift to direct sums of
submodules of M̂S, i.e. if

∑
i Ki ⊆ MR is direct, then

∑
i KiS ⊆ M̂S is direct.

Now the thesis is a consequence of Theorem 4.6.

Let us recall that Proposition 4.5 describes situations when M̂S is a good
module, so the above theorem can be applied.

The classical result of R.C. Shock is a special case of the above theorem,
when MR = RR and S is the usual polynomial ring R[x].

The main result of [Ma] states that the equality udimM̂S = udimMR holds
when MR = RR satisfies (2) of Proposition 4.5. On the other hand, it is well-

known (see for example [Si], [Ma]) that in general the equality udimM̂S =
udimMR does not hold even in the case MR = RR and S = R[x; δ] is a
differential polynomial ring.

The following is an application of Theorem 4.9 and Lemma 4.1:

Theorem 4.10. Let T = R[x1; σ1, δ1] . . . [xn; σn.δn] be an iterated Ore exten-
sion. Suppose that MR is a nonsingular R-module. Then:

1. M ⊗R T is a nonsingular right T -module.

2. udim(M ⊗R T )T = udimMR.

Proof. Set T0 = R , M0 = MR and define Tk = R[x1; σ1, δ1] . . . [xk; σk, δk]
for 1 ≤ k ≤ n. Let Mk denotes the right Tk-module Mk−1 ⊗Tk−1

Tk, i.e.

Mk = (M̂k−1)Tk
.

An easy inductive argument shows that the Tk-modules Mk and M ⊗R Tk

are isomorphic for all 0 ≤ k ≤ n. In particular, Tn = T and the T -modules
Mn and M ⊗R T are isomorphic.

(1) Applying Lemma 4.1(4) k-times, we see that the Tk-module Mk is non-
singular, for any 1 ≤ k ≤ n. In particular (Mn)Tn is a nonsingular module over
Tn = T . Since T -modules (M ⊗R T )T and (Mn)T are isomorphic, the thesis
follows.

(2) By the above, Mk is a nonsingular Tk-module for 0 ≤ k ≤ n. There-
fore, Theorem 4.9 together with Proposition 4.5(1) imply that udimMR =
udim(Mk)Tk

for k ∈ {0, . . . , n}. This yields the thesis.

In the case the iterated Ore extension T from the above theorem is an
iterated differential operator ring, i.e. all automorphisms σi are identities, the
second part of the above theorem was proved by A.D. Bell and K.R. Goodearl
in [BeG].
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Notice that quantum algebras very often can be presented as iterated Ore
extensions so Theorem 4.10 can be applied in such cases.

Lemma 4.3(2) enables us to use an inductive argument for showing that
udimMR = udim(M ⊗R T )T for certain iterated skew polynomial extensions
T of R provided MR satisfies some weak compatibility conditions. Instead
of presenting a general theorem, we present a concrete application. Recall
that many rings related to quantum algebras can be presented as ambiskew
polynomial rings. Such extensions were introduced by D.A. Jordan (see [BJ]
for references). The construction is as follows: let σ be an automorphism of
R, v a central element and p a central invertible element of R. Then the
ambiskew polynomial ring A = A(R, σ, v, p) is the iterated skew polynomial
ring R[x; σ][y; σ−1, δ], where the automorphism σ of R is extended to R[x; σ]
by setting σ(x) = p−1x and δ is the σ-derivation of R[x; σ] given by δ(R) = 0
and δ(x) = v. Keeping this notation we have:

Proposition 4.11. Suppose that the R-module MR satisfies the weak (σ, 0)-
compatibility condition. Then udimMR = udim(M ⊗R A)A, where A =
A(R, σ, v, p) is the ambiskew polynomial extension of R.

Proof. Notice that the σ−1-derivation δ of R[x; σ] is the extension of the
σ−1-derivation 0 of R. Thus, by Lemma 4.3(2), the R[x, σ]-module M ⊗R

R[x, σ] satisfies the weak (σ−1, δ)-compatibility condition. Proposition 4.5
and Theorem 4.9 applied twice, give udimMR = udim(M ⊗R R[x, σ])R[x,σ] =
udim(M ⊗R R[x, σ])⊗R[x,σ] A)A = udim(M ⊗R A)A.

We close this section with an observation concerning divisibility of the
induced module. This observation is independent from the main stream of the
paper. Let us begin with the following general easy result which is probably
part of folklore.

Lemma 4.12. If MR =
⋃

i≥0 Mi is a filtered R-module such that its associated
graded R-module Gr(M) =

⊕
i≥0 Mi/Mi−1 (with M−1 = 0) is divisible then

MR is also divisible.

Proof. Suppose that the associated graded R-module Gr(M) =
⊕

i≥0 Ni,
where Ni = Mi/Mi−1, is divisible. In particular, all modules Ni are divisi-
ble.

Let r ∈ R and f ∈ M be such that annR(r) ⊆ annR(f). We must prove
that f ∈ Mr. We will proceed by induction on n such that f ∈ Mn \Mn−1.
The case when n = 0, i.e. f ∈ M0 = N0 is trivial. Suppose that n ≥ 1
and f ∈ Mn \ Mn−1. Let f denotes the natural image of f in Nn. Then
annR(r) ⊆ annR(f) ⊆ annR(f). Because Nn is divisible, f ∈ Nnr. Thus there
exists g ∈ Mn such that f = gr, i.e. f − gr ∈ Mn−1. Now, for any s ∈ annR(r)
we have fs = 0 and so (f−gr)s = 0. This means that annR(r) ⊆ annR(f − gr)
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and the induction hypothesis yields f − gr ∈ Mr and shows that f ∈ Mr, as
required.

Corollary 4.13. Suppose that MR is a divisible module. Then the induced
module M̂R is also divisible.

Proof. M̂ , treated as the right R-module, has a natural filtration given by
the degree in x. It is easy to check that the associated graded module is
isomorphic to

⊕
i≥0 Mσi . Since MR is divisible, the σi-twisted R-modules Mσi

are also divisible and the above lemma gives the thesis.

5 Associated Primes

In this section we will investigate the relationships between the associated
prime ideals of the R-module MR and that of the induced S-module M̂S.

Recall that an R-module NR is prime if annR(N) = annR(N ′) for any
nonzero submodule N ′

R of NR. If NR is prime, annR(N) is necessarily a prime
ideal of R. For a module MR, a prime ideal of R which is the annihilator of
some prime submodule of M is called an associated prime of the module M .
The set of all associated primes of MR is denoted by Ass(MR).

Clearly, if we do not impose some extra conditions either on the module
MR or on the ring R then it may happen that Ass(MR) is empty. We will see

in Example 5.8 that in such situation we can also have Ass(M̂S) 6= ∅ even in
the case S = R[x; σ] is a skew polynomial ring of automorphism type. This
situation differs from the classical case when S = R[x] is the usual polynomial

ring. It is known (Cf. [A1], [Fa]) that always Ass(M̂R[x]) = {PR[x] | P ∈
Ass(MR)}.

In general, it may also happen that Ass(MR) is not empty but Ass(NR) = ∅
for some nonzero submodule NR of MR. Indeed, if the module NR is such
that Ass(NR) = ∅ and BR is a prime module with Ass(BR) = {P}, then
Ass(NR ⊕BR) = {P}.

Due to the above, we will work with R-modules MR such that the set
Ass(NR) is not empty for all nonzero submodules NR of MR. This statement
is equivalent to the following:

Definition 5.1. We will say that the module MR has enough prime submod-
ules if any nonzero submodule of MR contains a prime submodule.

When the ring R satisfies ACC on annihilators of submodules of MR, then
clearly MR has enough prime submodules. This holds, in particular, for any
R-module MR if the ring R satisfies ACC on two-sided ideals.

The class of R-modules having enough prime submodules is obviously
closed with respect to taking submodules. However, as we will see in Example
5.9, it is not homomorphically closed.
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In the following proposition we show that the class of R-modules having
enough prime submodules is closed with respect to direct sums.

Proposition 5.2. Let {Mi}i∈S be the set of R-modules having enough prime
submodules. Then

⊕
i∈S Mi has enough prime submodules.

Proof. First notice that it is enough to prove the proposition only in the case
S = {1, 2}. Indeed, let 0 6= a ∈ ⊕

i∈S Mi. The element a has only finite number
of nonzero entries, thus for showing that aR contains a prime submodule, we
may assume that the set S is finite. Now an easy inductive argument reduces
the situation to the case S consists of two elements.

Suppose S = {1, 2} and let (a1, a2) ∈ M1 ⊕ M2. Since Mi, for i = 1, 2,
contains enough prime submodules, replacing (a1, a2) by (a1, a2)r for some
suitable r ∈ R we may reduce the situation further to the case the Mi’s are
prime R-modules. Let Ass(Mi) = {Pi} for i = 1, 2.

Case 1. Suppose P1 = P2 = P . Then it is easy to see that the annihilator
of any nonzero submodule of M1 ⊕M2 is equal to P , so M1 ⊕M2 is a prime
module.

Case 2. Suppose P1 6= P2, say there is r ∈ P1 \ P2. Then there exists
s ∈ R such that a2sr 6= 0 and (a1, a2)srR = (0, a2sr)R is a prime submodule
of (a1, a2)R.

Notice also that if the R-module MR is uniform then MR has enough prime
submodules if and only if Ass(MR) 6= ∅. One can also easily check that if
NR ⊆ MR is an essential extension of modules then NR has enough prime
submodules if and only if MR has enough prime submodules. These remarks
together with the above proposition give us the following:

Corollary 5.3. Suppose that every submodule of the R-module MR contains
a uniform submodule (this holds, in particular, when udimMR is finite), then
MR has enough prime submodules if and only if Ass(NR) is not empty for every
uniform submodule NR of MR

Now let us state two useful lemmas relating prime submodules and good
polynomials.

Lemma 5.4. Suppose that MR has enough prime submodules. Then any
nonzero submodule BS of M̂S contains a good polynomial g with leading coef-
ficient a such that aR is a prime submodule of MR.

Proof. Let BS be a nonzero submodule of M̂S and let g′ = bxn + ... ∈ BS be a
nonzero polynomial of minimal degree. Lemma 3.4 shows that g′ is good and
since MR contains enough prime submodules, bR contains a nonzero prime
submodule aR where a = br 6= 0 for some r ∈ R. It then follows that the
polynomial g = g′σ−n(r) ∈ BS is good with leading coefficient a such that aR
is a prime submodule of MR as required.
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The above lemma shows that if MR has enough prime submodules, then
any associated prime ideal of M̂S is the annihilator of a submodule of the form
gS where g is a good polynomial such that its leading coefficient generates a
prime submodule of MR. The next lemma offers a characterization when gS
is a prime submodule of M̂S. Recall that for an ideal I of R, IF denotes the
largest ideal contained in I which is invariant under the action of all maps f i

j .

Lemma 5.5. Let g ∈ M̂S be a good polynomial of degree l and leading coeffi-
cient a. Then:

1. gS is a prime submodule of M̂S if and only aσl · S is a prime submodule
of (M̂σl)S.

2. gR is a prime submodule of M̂R if and only if aσl ·R is a prime submodule
of (Mσl)R.

Suppose additionally that for all cyclic submodules A and B of (Mσl)R the
inclusion (annR(A))F ⊆ (annR(B))F implies annR(A) ⊆ annR(B). Then:

(3) If gS is a prime submodule of M̂S then gR is a prime submodule of M̂R.

Proof. The statement (1) is a direct consequence of Lemma 3.4(vii).

(2) Since g ∈ M̂S is good, annR(g) = annR(aσl). Using this equality,
similarly as in the proof of Lemma 3.4(vii), one can check that gR and aσl ·R
are isomorphic as right R-modules. This gives (2).

(3) Suppose that the additional assumption holds and gS is a prime sub-

module of M̂S. Then, by (1), aσl ·S is a prime submodule of (M̂σl)S. Thus, for
any b ∈ R such that aσl · b 6= 0, we have annS(aσl · bS) = annS(aσl · S). Hence,
using Lemma 3.7(3), we obtain (annR(aσl · bR))F = (annR(aσl ·R))F and our
additional hypothesis gives annR(aσl · bR) = annR(aσl ·R). This, in turn, can

be translated to aσl ·R is a prime submodule of (M̂σl)R

Lemma 5.6. Suppose that f ∈ M̂S is a good polynomial of degree n and leading
coefficient a. Set P = annR(aR). Then:

1. If σ(P ) = P and δ(P ) ⊆ P , then annS(fS) = PS

2. If δ is a q-quantized σ-derivation and σ(P ) = P , then annS(fS) = PδS.

3. If δ is a q-quantized σ-derivation, aR is a prime submodule of MR and fS
contains good polynomials of any degree greater than n, then annS(fS) =
σ−n(Pσ,δ)S.
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Proof. (1) Since σ(P ) = P , Lemma 3.7 (5) gives the desired conclusion.
(2) Suppose that δ is q-quantized and σ(P ) = P . Then, for any x ∈ Pδ

and i ≥ 0, we have σ(δi(x)) ∈ σ(P ) = P so that δi(σ(x)) = qiσ(δi(x)) ∈ P .
This shows that σ(Pδ) ⊆ Pδ. Hence PδS is a two-sided ideal of S and PδS ⊆
annS(fS) easily follows.

Now we claim that the reverse inclusion holds. Since δ is q-quantized,
f i

j =
(

i
j

)
q
σjδi−j. Therefore, as σ(P ) ⊆ P , for any b ∈ R and any k ≥ 1 the

following property holds:

(5.I) If {b, δ(b) · · · , δk−1(b)} ⊆ P then {fk
j (b) | 1 ≤ j ≤ k} ⊆ P.

Let g =
∑l

s=0 bsx
s ∈ annS(fS). We show, by induction on k, that for any

k ≥ 0 and 0 ≤ s ≤ l , δk(bs) ∈ P . Since f is good and σ(P ) = P , Lemma
3.4 yields that annS(fR) = σ−n(P )S = PS, where n = deg f . This gives the
above statement for k = 0.

Assume that k ≥ 1 and {bs, δ(bs), · · · , δk−1(bs)} ⊆ P for any 0 ≤ s ≤ l.
Then, by (5.I), {fk

j (bs) | 1 ≤ j ≤ k} ⊆ P for all 0 ≤ s ≤ l. Now, since
fRxkg = 0 and annS(fR) = PS we get:

0 = frxk(
l∑

s=0

bsx
s) =

l∑
s=0

k∑
j=0

frfk
j (bs)x

s+j =
l∑

s=0

frfk
0 (bs)x

s

for any r ∈ R. This means that fR
∑l

s=0 δk(bs)x
s = 0 and shows that δk(bs) ∈

P for any k ≥ 0 and 0 ≤ s ≤ l. This implies that g ∈ PδS, as desired.
(3) Suppose that all assumptions of (3) are satisfied. In particular, for any

i ≥ n = deg f there exists a good polynomial fi ∈ fS of degree i. Let αi

denote the leading coefficient of fi. Obviously αi ∈ aR.
By assumption, aR is a prime submodule of MR, so annR(αiR) = P for all

i ≥ n. The elements fi are good so, by Lemma 3.4, annS(fiR) = σ−i(P )S for

all i ≥ n. Let E denote the R-submodule of M̂R defined by E =
∑

i≥n fiR.
Then E ⊆ fS and

(5.II) annS(fS) ⊆ annS(E) =
⋂
i≥n

σ−i(P )S = σ−n(Pσ)S.

Let p =
∑l

s=0 psx
s ∈ annS(fS). We will prove, by induction on k, that for

all k ≥ 0 and 0 ≤ s ≤ l we have δk(ps) ∈ σ−n(Pσ). The case when k = 0 is
given by (5.II).

Suppose that k ≥ 1 and δi(ps) ∈ σ−n(Pσ) for i < k and 0 ≤ s ≤ l. Since
σ(σ−n(Pσ)) ⊆ σ−n(Pσ), we can apply (5.I) to σ−n(Pσ) obtaining {fk

j (ps) | 1 ≤
j ≤ k} ⊆ σ−n(Pσ) for 0 ≤ s ≤ l. Therefore, as Exk ⊆ fS, we get:

0 = Exkp =
l∑

s=0

k∑
j=0

Efk
j (ps)x

j+s = E

l∑
s=0

fk
0 (ps)x

s.



ON INDUCED MODULES OVER ORE EXTENSIONS 19

By (5.II), annS(E) = σ−n(Pσ)S and the above equation implies that δk(ps) ∈
σ−n(Pσ) for all 0 ≤ s ≤ l and k ≥ 0, as desired. This means that annS(fS) ⊆
(σ−n(Pσ))δS. It is easy to check, using the equality δσ = qσδ, that (σ−n(Pσ))δ =
σ−n(Pσ, δ). This shows that annS(fS) ⊆ σ−n(Pσ ,δ)S.

In order to prove the reverse inclusion let b ∈ σ−n(Pσ,δ). Then σn(σjδk(b)) ∈
P for any j, k ≥ 0. Hence, as f is a good polynomial of degree n and leading
coefficient a, fRσjδk(b) = 0. Now, it is easy to check that for any i ≥ 0,
fRxib = 0. From this we conclude easily that σ−n(Pσ ,δ)S ⊆ annS(fS), as
desired.

With the help of the above lemma we easily get the following:

Theorem 5.7. Suppose that MR contains enough prime submodules and let
Q ∈ AssM̂S. Then:

1. If for every P ∈ Ass(MR) σ(P ) = P and δ(P ) ⊆ P , then Q = PS for
some P ∈ Ass(MR).

2. If δ is q-quantized and σ(P ) = P for all P ∈ Ass(MR), then Q = PδS
for some P ∈ Ass(MR).

3. If δ is q-quantized and M̂S is a good module, then Q = Pσ,δS for some
P ∈ Ass(MR) and σ(Pσ,δ) = Pσ,δ

Proof. Let BS be a prime submodule of M̂S such that annS(B) = Q. Then,
by Lemma 5.4, we can pick a good polynomial f ∈ BS such that aR is prime
submodule of MR, where a denotes the leading coefficient of f . Let P =
annR(aR) ∈ Ass(MR).

Since BS is a prime module, its submodule fS is also prime and annS(fS) =
annS(B) = Q. Therefore, replacing B by fS, we may assume that BS = fS.

Now, the statements (1) and (2) of the theorem are direct consequences of
Lemma 5.6 (1) and (2), respectively.

(3) Suppose that the assumptions of (3) are satisfied. Let n = deg f . Since

the module M̂S is good, B = fS contains a good polynomial g of degree n+1.
Notice that annS(gS) = Q, because fS is prime module. On the other hand, by
Lemma 5.6(3), we have annS(gS) = σ−n−1(Pσ,δ)S and annS(fS) = σ−n(Pσ,δ)S.
This implies that σ(Pσ,δ) = Pσ,δ and, consequently, Q = annS(fS) = Pσ,δS, as
required.

In the following example we present a ring R with an automorphism σ and
an R-module MR such that Ass(MR) = ∅ but Ass(M̂)S is not empty, where
S = R[t; σ] is a skew polynomial ring of automorphism type. Therefore the
assumption that MR contains enough prime submodules is necessary in the
above theorem.
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Example 5.8. Let K be a field and M a K-linear space with basis {vi}i∈Z.
For k ∈ Z define ϕk ∈ EndK(V ) by setting

ϕk(vi) =

{
vi+1 if i ≤ k

0 otherwise.

Then M has an R = K〈X〉 module structure, where K〈X〉 denotes the
free algebra over K on the set X = {xi | i ∈ Z}, given by vixk = ϕk(vi).

Let 0 6= m ∈ MR. Then m can be written in the form
∑

i≥n λivi, where
n ∈ Z, λi ∈ K are equal to zero for all but finite number of indexes and
λn 6= 0. Notice that for such m, mxn = λnvn+1 6= 0. Thus the submodule
mR contains a decreasing sequence of submodules Ml = spanK{vi | i ≥ l},
l = n + 1, n + 2, . . ., with strictly increasing sequence of annihilators. This
shows that Ass(MR) = ∅.

Let σ denote the right shifting K-automorphism of R, i.e. σ(xk) = xk+1

for any k ∈ Z and define S = R[t, σ]. Then M̂S is a prime S-module with

Ass(M̂S) = {0}. Indeed, for any nonzero elements m ∈ M and w ∈ R one can
choose a big enough k ∈ N such that mtkw 6= 0. This easily yields that every
S-submodule of M̂S is faithful.

In the following example we present a module NS with a submodule A
such that every submodule of NS is faithful but the factor module (N/A)S has
no enough prime submodules, i.e. the class of modules having enough prime
submodules is not homomorphically closed.

Example 5.9. Let R = K〈X〉, S = R[t; σ], MR and NS = M̂S be as in
Example 5.8. We have seen that every nonzero submodule of NS is faithful,
so MS has enough prime submodules.

We claim, that (N/Nt2S)S has no enough prime submodules. To this end,
remark that N/Nt2S as an S-module is isomorphic to M + Mt where the ac-
tion of t on M + Mt is given by (m0 + m1)t = m0t. Mt is an S-submodule of
(N/Nt2S)S which, as an R-module is isomorphic to the σ-twisted module Mσ

of the R-module MR. As we have seen in Example 5.8, MR has no prime sub-
modules, so MtR also has no prime submodules. However every R-submodule
B of Mt is also an S-submodule and annS(Mt) = annR(Mt)+St. This implies
that the S-submodule Mt of (N/Nt2S)S has no prime submodules.

We will now consider building associated primes of M̂S starting with the
ones of MR.

Theorem 5.10. Let MR be a prime module with P = annR(M). Then:

1. Suppose that σ(P ) = P and δ(P ) ⊆ P . Then the induced module M̂S is
prime with the associated prime ideal equal to PS = Q.
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2. Suppose that δ is a q-quantized σ-derivation and σ(P ) = P . Then M̂S is
prime with the associated prime ideal equal to PδS = Q.

3. Suppose that δ is a q-quantized σ-derivation and the module M̂S is good.
Then M̂S is a prime module if and only if σ(Pσ,δ) = Pσ,δ. Moreover, if

M̂S is prime, then its associated prime ideal is equal to Pσ,δS = Q.

Proof. One can easily check that in all cases M̂SQ = 0, i.e. Q ⊆ annS(M̂).

Let BS be a nonzero submodule of M̂S and 0 6= f ∈ BS be a polynomial of
minimal degree among elements from BS. Then, by Lemma 3.4, f is a good
polynomial. Let a denote the leading coefficient of f . Since MR is prime, aR
is a prime submodule of MR with annR(aR) = P .

Assume now, that while considering case (3) of the theorem, σ(Pσ,δ) = Pσ,δ.
Then in all cases, using Lemma 5.6, we get annS(fS) = Q. Hence we have:

Q ⊆ annS(M̂) ⊆ annS(B) ⊆ annS(fS) = Q.

This shows that annS(B) = Q for any nonzero submodule BS of M̂S, i.e. M̂S

is a prime module with the associated prime ideal equal to Q.
The above gives the proof of (1), (2) and one implication of (3). Thus,

to finish the proof of the theorem, it is enough to remark that if M̂S is a
prime module, then σ(Pσ,δ) = Pσ,δ. However, when M̂S is prime, then fS is
also a prime submodule with the same annihilator and Theorem 5.7(3) yields
σ(Pσ,δ) = Pσ,δ.

The assumptions of Theorems 5.7 and 5.10 are very technical, so let us
record a few direct consequences of those theorems. Recall that the global
assumption that the module MR has enough prime submodules holds always
when the ring R satisfies the ACC on ideals. Parts (1) and (2) of the above
mentioned theorems give the following:

Corollary 5.11. Let MR be a module having enough prime submodules. Then:

1. Suppose that σ(P ) = P and δ(P ) ⊆ P for any P ∈ Ass(MR). Then

there is one-to-one correspondence between Ass(MR) and Ass(M̂S) given
by extension and contraction to R.

2. Suppose that δ is a q-quantized σ-derivation and σ(P ) = P for all P ∈
Ass(MR). Then the map Ψ: Ass(MR) → Ass(M̂S) given by Ψ(P ) = PδS
is onto.

The analogue of (1) in the above corollary was proved by S. Annin in [A2]
in case σ is a monomorphism under a stronger assumption that for any element
m ∈ MR, σ(annR(m)) = annR(m) and δ(annR(m)) ⊆ annR(m).

A usual derivation d of the ring R is an idR-derivation. Therefore the
statement (2) of the above corollary give us:
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Corollary 5.12. Let MR be a module having enough prime submodules and
S = R[t; d] be a differential polynomial ring. Then the map Ψ: Ass(MR) →
Ass(M̂S) given by Ψ(P ) = PdS is onto.

This corollary can also be seen as a counterpart of Theorem 1.3 from [Ši].
It is shown there that for an ideal I of the finite dimensional Lie algebra L
over a field of characteristic 0 and an associated prime P of a finitely generated
module V over the enveloping algebra U(I), PU(L) is an associated prime of
the induced module V ⊗U(I) U(L).

Recall that in Proposition 4.5 we described situations when the induced
module is good.

Corollary 5.13. Suppose that δ is a q-quantized σ-derivation. Let MR be a
nonsingular R-module over a noetherian ring R. Then the map Ψ: Ass(MR) →
Ass(M̂S) given by Ψ(P ) = Pσ,δS is onto.

Proof. If σ(I) ⊆ I for some ideal I of a noetherian ring, then σ(I) = I. Now
the thesis is a direct consequence of Proposition 4.5 and Theorem 5.7.

Suppose that R and MR are as in the above corollary. Then S = R[t; σ, δ]

is also noetherian and, by Lemma 4.1(4), the induced module M̂S is nonsin-
gular. This means that when T = R[t1; σ1, δ1] . . . [tn, σn, δn] is an iterated Ore
extension such that all δi’s are quantized skew derivations, then Corollary 5.13
induces an appropriate map Φ: Ass(MR) → Ass((M ⊗R T ))T which is onto.

Let us record one more application.

Theorem 5.14. Let A = A(R, σ, v, p) be an ambiskew polynomial extension
of R. Suppose that the module MR has enough prime submodules and satisfies
the weak (σ, 0)-compatibility condition. Then Ass((M ⊗R A)A) = {PA | P ∈
Ass(MR)}.
Proof. We begin the proof with two general observations. Let τ and d denote
an automorphism and an τ -derivation of R, respectively.

First remark that if MR satisfies the weak (τ, d)-compatibility condition,
then τ(P ) = P and d(P ) ⊆ P for any P ∈ Ass(MR). Indeed, let NR be a
prime submodule of MR with annihilator P . Then there exists 0 6= a ∈ NR

such that annR(a) is (τ, τ−1, d)-stable. Then it is easy to show that τ(I) = I
and d(I) ⊆ I, where I = annR(aR). Since NR is a prime submodule, I = P .

Secondly, observe that if the module MR has enough prime submodules
then the induced S-module M̂S, where S = R[x; τ, d], also has enough prime

submodules. Indeed, if BS is a nonzero submodule of M̂S then, by Lemma
5.4, there exists a good polynomial g ∈ BS with leading coefficient a ∈ MR

such that aR is a prime submodule of MR. Let P denote the annihilator of
aR in R. By the first observation τ(P ) = P and d(P ) ⊆ P . Now consider the
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submodule aτn ·R of the twisted R-module Mτn . Then aτn ·R is also a prime
module with the associated prime ideal P . Therefore, by Theorem 5.10(1),

(âτn ·R)S is a prime module and PS is its associated prime ideal. However,

by Lemma 3.4, (âτn ·R)S is isomorphic to the S-module gS. This shows that
gS is prime and finishes the proof of the second observation.

Now we are ready to finish the proof. Recall that A = R[x; σ][y; σ−1, δ]. By
assumption, MR satisfies (σ, 0)-compatibility condition. Thus, the first obser-
vation together with Corollary 5.11(1) yield that Ass((M ⊗R R[x; σ])R[x;σ]) =
{PR[x; σ] | P ∈ Ass(MR)}. Recall also that the σ−1-derivation δ of R[x; σ]
is the extension of the σ−1-derivation 0 of R. Thus, Lemma 4.3(2) implies
that the R[x, σ]-module M ⊗R R[x, σ] satisfies the weak (σ−1, δ)-compatibility
condition. By the second observation we know also that this R[x; σ]-module
has enough prime submodules. Therefore, using the first observation together
with Corollary 5.11(1) again, we obtain Ass((M ⊗R R[x, σ]⊗R[x,σ] A)A) =
{QA | Q ∈ Ass((M ⊗R R[x; σ])R[x;σ])}. Hence Ass((M ⊗R A)A) = {PA |
P ∈ Ass(MR)} follows.

The following example will show that the hypotheses in Theorem 5.10 are
not superfluous. Namely, we will construct a ring R with an automorphism
σ and a prime R-module MR such that Ass(MR) = {P} and σ(P ) ⊂ P

but nevertheless the induced module M̂S has no associated primes, where
S = R[t; σ] is a skew polynomial ring of automorphism type.

Example 5.15. Let X = {xi | i ∈ Z} be the set of commuting indeterminates
and R = K[X] denote the polynomial ring on X over a field K. Let P =
(xi | i ≥ 0) denote the ideal of R generated by the set {xi | i ≥ 0} and set
MR = R/P . Then MR is a prime R-module and P is the associated prime of
MR. For any k ≥ 1, let yk denote the canonical image of x−k in MR. Then

ykxl =

{
0 if l ≥ 0,

yky−l otherwise.

Now consider the K-automorphism σ of R defined by σ(xi) = xi+1 for all
i ∈ Z. Then clearly σ(P ) ⊆ P .

Let S = R[t; σ] and M̂S = M ⊗R S be the induced module. The addi-

tive structure of M̂S is naturally isomorphic to that of the polynomial ring
K[yk | k ≥ 1][t] and we will write nonzero elements of M̂S in the form
m =

∑n
i=l αit

i where all αi’s are from K[yk | k ≥ 1] and αl 6= 0. We

claim that Ass(M̂S) = ∅. Indeed, assume that the submodule mS is prime

for some m ∈ M̂S. We may assume that m =
∑n

i=l αit
i with αl 6= 0. Then

we have mx−l−1 = αly1t
l 6= 0 and so αly1t

lS is also a prime submodule of

M̂S. But this is impossible since x−l−1 ∈ annR(αly1t
l+1S) \ annR(αly1t

lS), i.e.
annR(αly1t

lS) ⊂ annR(αly1t
l+1S).
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There is another notion of associated prime ideals a module (Cf. [MR]).
Namely, when NR is a uniform R-module, then the u-associated prime of NR

is equal to the sum of all annihilators of proper submodules of NR. When MR

is an arbitrary R-module, then an ideal P of R is an u-associated prime of
MR if P is an u-associated prime of some uniform submodule NR of MR. By
Assu(MR) we will denote the set of all u-associated primes of the module MR.

It is easy to see that u-associated prime ideals are really prime and when
the ring R is noetherian, then the above new notion coincides with the classical
one, i.e. Assu(MR) = Ass(MR) in this case.

In general those two notions are different. In the following proposition we
will show that there is not too much hope to relate Assu(MR) and Assu(M̂S)
even in the case when S = R[x; σ] is a skew polynomial ring of automorphism
type.

Proposition 5.16. There exist a ring R with an automorphism τ and a uni-
form R-module MR such that:

1. Assu(MR) = {P}, where P is nonzero and τ(P ) = P .

2. Assu((M ⊗R R[y; τ ])R[y;τ ]) = {0}
3. Assu((M ⊗R R[y; τ−1])R[y;τ−1]) = {PR[y, τ−1]}

Proof. Let R be the same ring as the ring S in Example 5.15, and MR denote
the module M̂S from this example, i.e. R = K[X][t; σ], where σ(xi) = xi+1 for
all xi ∈ X. M = K[yk | k ≥ 1][t] and the action of R on M is given by

ykt
sxl = ykxl+s =

{
0 if l + s ≥ 0,

yky−l−s otherwise.

We have seen in Example 5.15 that for any 0 6= m =
∑n

i=l αivti ∈ MR

where all αi’s are from K[yk | k ≥ 1] and αl 6= 0, we have mx−l−1 = αly1t
l.

Using this, it is easy to check that m1R ∩m2R 6= 0 for any nonzero elements
m1,m2 ∈ MR. Thus MR is uniform.

Let τ denote the automorphism of R defined as the extension of the auto-
morphism σ−1 of K[X] by setting τ(t) = t.

(1) Notice that annR(y1t
kR) =

∑
i≥−k xiR. This yields that Assu(MR) =

{P}, where P = (X)R and (X) denotes the augmentation ideal of the poly-
nomial ring K[X]. Clearly τ(P ) = P .

(2) Let S = R[y; τ ] and M̂S = M ⊗R S. Then any element from M̂S can
be written it the form m =

∑z
i,j=0 αijt

iyj, for some z ∈ N, where αij ∈ K[yk |
k ≥ 1]. For such 0 6= m ∈ M̂S and s ≥ z + |r|+ 1 we have

mysxr =
z∑

i,j=0

αijxr−s−j+it
iyj+s =

z∑
i,j=0

αijyr−s−j+it
iyj+s 6= 0,
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since all indexes appearing at x are negative. Using this, it is easy to see
that for any 0 6= ω ∈ S and 0 6= m ∈ M̂S, there exists n ≥ 0 such that
mynω 6= 0.This shows that annS(mS) = 0, for any nonzero m ∈ M̂S and

Assu(M̂S) = {0}.
(3) Let T = R[y; τ−1]. Notice that for any xk ∈ X we have yxk =

τ−1(xk)y = σ(xk)y and txk = σ(xk)t. Therefore, using similar arguments
as in (1), one can show that Assu((M ⊗R T )T ) = {(X)T} = {PT}.

As we have seen in Example 5.15, for a prime module MR the induced
module M̂S does not have to be prime even if the σ-derivation is q-quantized
and the module M̂S is good. While considering u-associated primes, uniform
modules play the role of prime modules. By Theorem 4.6, for a good module
MR, the module M̂S is uniform if and only if MR is uniform. In this case we
have:

Proposition 5.17. Suppose that δ is q-quantized, MR is a uniform, prime
module and the induced module M̂S is good. Let Assu(MR) = {P}. Then

Assu(M̂S) = {Q}, where Q = (
⋃

n≥0 σ−n(Pσ,δ))S.

Proof. Since every nonzero submodule of M̂S contains a good polynomial,
Q =

⋃
f annS(fS), where the sum ranges over all good polynomials from M̂S.

The assumptions imposed on M̂S and Lemma 5.6(3) imply that AnnS(fS) =

σ−n(Pσ,δ) for any good polynomial f ∈ M̂S of degree n. Now the thesis follows

as, by the assumption, M̂S contains good polynomials of arbitrary degree.
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