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Abstract. Let R be a noetherian P.I. ring and S an automorphism of R. Neces-
sary and sufficient conditions for the primitivity of the skew Laurent polynomial
ring R[t; t−1; S] and the skew polynomial ring R[t, S] are given.

Introduction

The problem of primitivity and primitive ideals of various kinds of ring exten-
sions has been extensively studied since a few decades (e.g. [D], [GW], [IS], [J1],
[J2], [J3], [L], [O], [R1] ). One of the problems in this wide framework is to char-
acterize primitivity of Ore extensions. The problem is far from being completely
solved but during the last few years essential progress has been made. Good-
earl and Warfield [GW] characterized the primitivity of Ore extensions R[t; d] of
derivation type for R commutative noetherian. Ouarit [O] extended this result
to the case R is a noetherian P.I. ring. Recently, D. Jordan [J3] gave necessary
and sufficient conditions for a skew Laurent polynomial ring over a commutative
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noetherian ring to be primitive. The aim of the paper is to extend this result
of Jordan to the case of a noetherian P.I. coefficient ring. As an application
we also obtain a characterization of the primitivity for skew polynomial rings
of automorphism type over noetherian P.I. rings. This characterization seems
to be new even for commutative noetherian rings. Our approach owes much to
that of [J3] and [R1].

Throughout the paper R will denote a unital ring and S will stand for an
automorphism of R.

Recall that the skew polynomial ring R[t;S] is a ring of polynomials in t

with coefficients in R and subject to the relation ta = S(a)t, a ∈ R. The skew
Laurent polynomial ring R[t, t−1; S] is a localization of R[t; S] with respect to
the set of powers of t.

An ideal I of R is S-stable if S(I) = I. Such ideals will also be called S-
ideals. We say that R is S-prime if the product of any two non-zero S-ideals is
non-zero.

It is well-known that T = R[t, t−1; S] is prime if and only if R is S-prime.
Therefore, while investigating primitivity of T , we may assume that R is S-
prime.

The following lemma is standard and will be used frequently.

Lemma 0.1. (cf [G]) Suppose R is right noetherian.

(1) An ideal I of R is S-stable if and only if S(I) ⊆ I.
(2) If R is S-prime then R is semiprime and the minimal prime ideals of R

form a single finite orbit under the action of S. ¤

1 - Sufficient conditions

In this section we will introduce two definitions and analyze them. These
notions will give sufficient conditions for T = R[t, t−1; S] to be primitive.

Definitions 1.1.

(1) A ring R is right S-primitive if there exists a maximal right ideal in R

containing no non-zero S-stable ideals.
(2) A ring R is right S-special (resp. S-special central) if there exists a ∈ R

(resp. a ∈ Z(R), the center of R) such that the following conditions are
satisfied

a) For any n ≥ 1, NS
n (a) := aS(a) . . . Sn−1(a) 6= 0

b) For any non-zero S-ideal I of R, there exists n ≥ 1 such that
NS

n (a) ∈ I.
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When S = id, Definition 1.1 (2) gives back the notion of speciality introduced
by Rowen [R1] ; when R is commutative we obtain the definition of S-speciality
as given by Jordan [J3].

It is clear that if R is either S-special or S-primitive then R is S-prime.
Let us remark that if R is right artinian and S-prime then R is semi-simple

(cf. Lemma 0.1). S-primeness of R then implies S-simplicity of R. Therefore
for right artinian rings, S-primitivity and S-speciality boil down to S-simplicity.

Let us point out that the notions of S-primitivity and S-speciality pass to
matrix rings. Concretely : if R is either S-primitive or S-special then so is
Mn(R) for any n ≥ 1. We leave the easy proof to the reader.

In [J3] D. Jordan presented examples of commutative noetherian domains
showing that S-primitivity and S-speciality are logically independent conditions.

In the following lemma we present a useful characterization of S-special rings
in the case when R is right noetherian. It is essentially the same as Lemma 2.6
[J3].

Lemma 1.2. Suppose R is right noetherian and a ∈ R is such that NS
n (a) 6= 0

for all n ≥ 1. The following conditions are equivalent :

(1) For every non-zero S-stable ideal I of R, there exists m ≥ 1 such that
NS

m(a) ∈ I.
(2) R is S-prime and for every non-zero S-prime ideal P of R, there exists

m ≥ 1 such that NS
m(a) ∈ P .

If moreover a is central in R then :
(3) a is regular and for every non-zero S-ideal J of R there exist

1 ≤ n ≤ m, and positive intergers kn, . . . , km such that Sn(akn) . . .

Sm(akm) ∈ J .
(4) a is regular and the localization RA is an S-simple ring, where A is the

S-invariant multiplicatively closed set generated by a.

Proof. The equivalence (3) ↔ (4) and the implication (1) → (2) are clear.
(2) → (1) Assume (1) is not satisfed. Let I be an S-ideal maximal among

ideals not satisfying (1). If P, Q are S-ideals strictly containing I, then there
exist m, n ≥ 1 such that NS

n (a) ∈ P and NS
m(a) ∈ Q. Hence NS

n+m(a) =
NS

n (a)Sn(Nm(a)) ∈ PQ and so PQ 6⊆ I. This means that I is S-prime, and
contradicts our hypothesis.

(1) → (3) Suppose a is central. Since R is right noetherian and S-prime,
R is semiprime and the set of minimal prime ideals of R is of the form
{Q,S(Q), . . . , Sn−1(Q)} for some minimal prime ideal Q. Let 0 6= r ∈ R. Since
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0 = ∩n−1
i=0 Si(Q), there exists i ∈ {0, 1, . . . , n− 1} such that r /∈ Si(Q). If ar = 0

then aRr = 0 ⊂ Si(Q) and so a ∈ Si(Q) and NS
n (a) ∈ Q ∩ . . . ∩ Sn−1(Q) = 0

(since Sn(Q) = Q). This contradiction shows that a is regular. The last asser-
tion of (3) is clear.

(3) → (2) Let P be a non-zero S-prime ideal of R. Since R is
right noetherian, P is semiprime. Now, the fact that a is central gives
easily (2). ¤

Recall that an automorphism S of an S-prime ring R is of infinite X-inner
order if no non-zero power of S becomes inner while extended to the symmetric
Martindale quotient ring of R constructed with respect to the filter of non-zero
S-ideals (see [MR] 10.6.15 or [P]).

Lemma 1.3. For an S-prime ring R, the following conditions are
equivalent :

(1) Every non-zero ideal of R[t, t−1;S] has a non-zero intersection with R.
(2) S is of infinite X-inner order.

Proof. This is a direct consequence of Theorem 10.6.17 [MR] and its
proof. ¤

Lemma 1.4. Suppose that R is right S-special and S is of infinite X-inner
order. If a ∈ R is the element defining right S-speciality of R then every non-zero
ideal of R[t, t−1;S] = T contains a power of at, so T is special.

Proof. Let I be a non-zero ideal of T . Then, by Lemma 1.3, I ∩ R is a
non-zero S-stable ideal of R, so NS

n (a) ∈ I for some n ≥ 1. This shows that
0 6= (at)n = NS

n (a)tn ∈ I. ¤

Theorem 1.5. Suppose that S is of infinite X-inner order and R is either
right S-primitive or right S-special. Then T = R[t, t−1; S] is right primitive.

Proof. Suppose R is right S-primitive and let M be a maximal right ideal
of R containing no non-zero S-ideals. Let N be a maximal right ideal of T

containing MT . Then N ∩ R ⊇ MT ∩ R = M . Since N 6= T and M is a
maximal right ideal of R, we get N ∩ R = M . By Lemma 1.3, every non-zero
ideal of T has a non-zero intersection with R. Therefore N does not contain non-
zero ideals, otherwise M would contain a non-zero S-stable ideal. This shows
that T is right primitive.

Now suppose R is right S-special and let a ∈ R be as in Definition 1.1 (2).
Let us assume that (1−at)T = T . Then there exist integers r and l, l ≤ r, such
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that (1 − at)(art
r + · · · + alt

l) = 1 for some ar, . . . , al ∈ R, al 6= 0. This gives
−aS(ar)tr+1 +(−aS(ar−1)+ar)tr + · · ·+(−aS(al)+al+1)tl+1 +alt

l = 1 and we
get successively l = 0, al = 1, al+1 = a, · · · , ar = NS

r−l(a), NS
r−l+1(a) = 0. This

last equality contradicts the choice of a and we conclude that (1 − at)T 6= T .
Let N be a maximal right ideal of T containing (1− at)T . If N would contain
a non-zero ideal of T then, by Lemma 1.4 (at)n ∈ N for some n ≥ 1 and
(at)n−1 = (1− at)(at)n−1 + (at)n ∈ N as well. Hence 1 ∈ N . Therefore N does
not contain non-zero ideals and the right T -module T/N is simple faithful. ¤

In connection with the first part of the proof, let us briefly mention the

Example 1.6. It may happen that M is maximal in R but MT is not max-
imal in T = R[t, t−1;S]. Take R = K(x) ⊕K(y) the direct sum of fields of ra-
tional functions and define a K-automorphism S of R by S(p(x), q(y)) = (q(x+
1), p(y + 1)). M = K(x), then MT ( N := MT + (t2 + (0, y)))T ( T i.e. MT

is not maximal. To see that N 6= T notice that for every f ∈ T = R[t, t−1; S],
(t2 + (0, y))f − (0, 1) /∈ MT . Notice also that R is S-simple and T is primitive
in this example.

2 - Reduction to the prime case

Let R be an S-prime right noetherian ring. Then R is semi-prime and the set
of minimal prime ideals of R is the orbit {Q, S(Q), . . . , Sn−1(Q)} of some mini-
mal prime ideal Q. Notice that, since Sn(Q) = Q, Sn induces an automorphism
of R/Q. This automorphism will be denoted also by Sn. In this short section
we want to analyze S-properties of R and Sn properties of R/Q with respect
to the notions introduced in Definition 1.1. But let us first compare R[t, t−1;S]
and R/Q[t, t−1; Sn] with respect to primitivity.

Proposition 2.1. Let R be a noetherian S-prime ring and Q be a minimal
prime ideal. The following conditions are equivalent :

(1) T = R[t, t−1; S] is right primitive
(2) QU is a right primitive ideal of U = R[tn, t−n; Sn] ⊆ T

(3) R/Q[t, t−1; Sn] is right primitive

where n denotes the number of minimal prime ideals of R.

Proof. Q is an Sn-ideal of R. Thus QU is an ideal of U and it is easy
to see that the rings R/Q[t, t−1; Sn] and U/QU are isomorphic. This gives the
equivalence of (2) and (3).
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(1) ↔ (2) Using the isomorphism described above, it is clear that QU is
a prime ideal of U . Let P ⊂ QU be a minimal prime ideal of U . Since
∩n−1

i=0 Si(Q) = 0, 0 = ∩n−1
i=0 (Si(Q)U) ⊆ P . Therefore Si(Q)U ⊆ P ⊂ QU

for some 0 < i ≤ n − 1. Then P = QU . This shows that QU is a mini-
mal prime of U . Now observing that T is a finite normalizing extensions of U ,
the equivalence (1) ↔ (2) is a direct consequence of Corollary 10.4.15 (ii) in
[MR]. ¤

Notice that if in the above proposition we replace R[t, t−1;S] by R[t, S] and
U by R[t, Sn], then exactly the same proof gives us the following

Corollary 2.2. Let R and Q be as in Proposition 2.1. The following con-
ditions are equivalent :

(1) R[t, S] is right primitive
(2) R/Q[t, Sn] is right primitive

where n denotes the number of minimal prime ideals of R.

Proposition 2.3. Suppose R is S-prime right noetherian and
{Q,S(Q), . . . , Sn−1(Q)} is the set of minimal prime ideals of R. If R/Q is
right Sn-primitive then R is right S-primitive.

Proof. Let M be a maximal right ideal of R containing Q and such that
M/Q does not contain non zero Sn-ideals of R/Q. We claim that M does not
contain non-zero S-ideals. Let I be an S-ideal of R contained in M . Then I +Q

is an Sn-ideal included in M and so, by the choice of M, I ⊂ Q and hence
I ⊂ Q ∩ S(Q) ∩ . . . ∩ Sn−1(Q) = 0. ¤

The following lemma is a well-known generalization of Posner’s theorem to
the case of semiprime rings.

Lemma 2.4. (see 1.7.22 [R3]) Let R be a semiprime, right noetherian, P.I.
ring. Then the localization of R with respect to the set of all central regular
elements is a semi-simple ring. ¤

Proposition 2.5. Suppose R is an S-prime, right noetherian, P.I. ring and
{Q,S(Q), . . . , Sn−1(Q)} is the set of minimal prime ideals of R. If R/Q is
Sn-special central then R is S-special central.

Proof. By hypothesis there exits c ∈ R such that :

(1) c = c + Q ∈ R/Q is central,
(2) for any l ∈ N, NSn

l (c) /∈ Q,
(3) every Sn-ideal I of R such that Q ( I contains NSn

l (c) for some l ≥ 1.
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Let us first show that we can assume that c is regular and belongs to Z(R),
the center of R. Since c ∈ R/Q is central, cR + Q is a two-sided ideal of
R. Now, if cR + Q ⊆ Si(Q) for some i ∈ {0, 1, . . . , n − 1} then Q ⊆ Si(Q).
Thus i = 0 and c ∈ Q, a contradiction. Hence for any i ∈ {0, 1, . . . , n − 1},
cR + Q 6⊂ Si(Q). So if A is the right annihilator of cR + Q, then (cR + Q)A =
0 ⊂ Si(Q) and therefore A ⊂ ∩n−1

i=0 Si(Q) = 0. This shows in particular that
the two-sided ideal cR + Q of the semi-prime ring R is essential. Since R is
right noetherian and P.I., Lemma 2.4 implies that there exists a central regular
element d ∈ cR+Q. Clearly NSn

l (d) /∈ Q for any l ≥ 1, as this element is central
and regular. Moreover, since c is central in R/Q, for any l ≥ 1 there is αl ∈ R

such that NSn

l (d) = dSn(d) . . . S(l−1)n(d) ∈ NSn

l (c)αl + Q. The above shows
that eventually replacing c by d, we may additionally assume that c is a central
regular element of R.

Now let I be a non-zero S-ideal of R. Then I 6⊂ Q and I + Q is an Sn-ideal
of R. By hypothesis there exists l > 0 such that NSn

l (Si(c)) = Si(NSn

l (c)) ∈
Si(I + Q) = I + Si(Q), for all i. This yields

∏n−1
i=0 NSn

l (Si(c)) ∈ I and shows
that I intersects the S-invariant multiplicatively closed set generated by c. So
R is S-special central by Lemma 1.2. ¤

3 - Necessary and sufficient conditions for
the primitivity of R[t, t−1; S] and R[t; S]

We will assume, up to the end of the paper, that R is an S-prime, right
noetherian P.I. ring having n minimal prime ideals : Q,S(Q), . . . , Sn−1(Q) (cf.
Lemma 0.1). Z(R) will stand for the center of R and RZ−1 denotes the local-
ization of R with respect to the regular elements of Z(R). These notations will
remain fixed. In Section 1, we observed that if S is of infinite X-inner order and
R is either right S-primitive or right S-special then T = R[t, t−1;S] is primitive.
We will now show that these properties are in fact necessary.

Lemma 3.1. Suppose R is an S-prime right noetherian P.I. ring. Then the
following conditions are equivalent :

(i) the restriction of S to Z(R) is of finite order,
(ii) there exist k ≥ 1 and an invertible element d ∈ RZ−1 such that S(d) = d

and Sk(r) = drd−1 for all r ∈ RZ−1.

Proof. Clearly (ii) implies (i).
Suppose that (i) holds. The extension of S to RZ−1 is also of finite order

on Z(RZ−1), say of order l. By Lemma 2.4 RZ−1 is a semisimple ring. Let
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e1, . . . , em be central primitive idempotents of RZ−1 such that
∑m

i=1 ei = 1.
Then, for any i ∈ {1, . . . , m}, Si = Sl|eiRZ−1 is an automorphism of a cen-
tral simple algebra eiRZ−1. Moreover Si is identity on the center of eiRZ−1.
Therefore, by Skolem-Noether Theorem, Si is an inner automorphism of eiRZ−1.
Let qi ∈ eiR denote the element determining Si. Then q =

∑m
i=1 qi is invert-

ible in RZ−1 and Sl = Iq is the inner automorphism determined by q. Set d :=
NS

l (q) and observe that S(d) = S(qS(q) . . . Sl−1(q)) = (q−1q)S(q) . . . Sl−1(q)q =
NS

l (S−l(q)) = NS
l (q) = d. Moreover, since SiSlS−i = Sl for any i ≥ 1 we have

ISi(q) = Iq and also Sl2 = IqIS(q) . . . ISl−1(q) = INS
l

(q) = Id. Setting k = l2, we
obtain Sk = Id for some d ∈ RZ−1 satisfying S(d) = d. ¤

Proposition 3.2. Suppose R is a right noetherian P.I. ring. If T =
R[t, t−1; S] is primitive, then S is of infinite order in Z(R).

Proof. Since T is primitive, R is S-prime. Assume that S is of finite order
on Z(R). Then, by Lemma 3.1, there exist k ≥ 1, and an invertible element d ∈
RZ−1 such that S(d) = d and Sk is the inner automorphism determined by d.
This means that the elements d−1tk and dt−k are central in RZ−1[t, t−1; S] and
shows that RZ−1[d−1tk, dt−k] is a P.I. ring. Since RZ−1[t, t−1;S] is a module
of finite type over RZ−1[d−1tk, dt−k] we conclude that RZ−1[t, t−1; S] is P.I.
Therefore T = R[t, t−1; S] is a primitive P.I. ring and Kaplansky’s Theorem
implies that T is a central simple algebra finite dimensional over its center. Since
T is not right artinian we get a contradiction and this shows that S cannot be
of finite order on Z(R). ¤

Before proving that the sufficient conditions given in Section 1 are also nec-
essary, let us introduce two technical lemmas.

Lemma 3.3. Let R be an S-prime right noetherian ring and let M be a
maximal right ideal of T = R[t, t−1; S]. The set of leading (resp. minimal)
coefficients of elements from M is an essential right ideal of R.

Proof. Define U := {a ∈ R| there are n ∈ Z and elements a1, a2, . . . ∈ R

almost all equal to zero, such that atn+a1t
n−1+. . . ∈ M} and also D := {a ∈ R|

there are n ∈ Z and elements a1, a2, . . . ∈ R almost all equal to zero such that
atn +a1t

n+1 + . . . ∈ M}. Obviously U and D are right ideals of R. We will now
show that U is an essential right ideal. The proof for D is the same. Assume U

is not essential and let I be a non-zero right ideal of R such that U ∩ I = 0. We
deduce easily that IT ⊕M = T . Therefore 0 6= IT is contained in the right socle
soc(T ) of T . The assumption on R implies that T is a prime right noetherian
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ring. We have seen that soc(T ) 6= 0 and Theorem 1.24 [CH] shows that T is
simple artinian. This contradiction yields that U is an essential right ideal
of R. ¤

Lemma 3.4. Let T be the skew Laurent polynomial ring T = R[t, t−1;S]
and XT be a right T -module. Suppose 0 6= x ∈ X is such that (annR(x))T (
annT (x). Then there exists n ≥ 1 such that for any c ∈ Z(R)∩annR(x) we have
annR(x) ( annR(xS−n(c)).

Proof. Let f ∈ annT (x) r (annR(x))T be of minimal length (if f(t) =∑i1
i=i0

ait
i, length (f) = i1−i0). We may assume that f = atn+· · ·+b where n >

0 and a, b /∈ annR(x). Let c ∈ annR(x) ∩ Z(R). Then cf − fS−n(c) ∈ annT (x)
and is of smaller length than f , so cf − fS−n(c) ∈ (annR(x))T . Hence, in
particular, x(c− Sn(c))b = 0 and thus xS−n(c)b = 0, i.e. b ∈ annR(xS−n(c))r
annR(x). ¤

Definition 3.5. A right T = R[t, t−1; S]-module X is induced if X is iso-
morphic to T/IT for some right ideal I of R.

It is easy to check that if a right induced T -module T/IT is simple and faithful
then I is a maximal right ideal of R containing no non-zero S-stable ideal and
hence R is S-primitive.

Proposition 3.6. Let R be a prime right noetherian ring and X is a simple
faithful right T = R[t, t−1; S]-module. If X is not induced then X is Z(R)-
torsion free.

Proof. Suppose that the simple faithful T -module X is not induced. Since
R is right noetherian, we can choose x ∈ X such that annR(x) is maximal
among annihilators of non-zero elements from X. Put M = annT (x). The
simplicity of X implies that X ∼= T/M and since X is not induced, (annR(x))T (
M = annT (x). Lemma 3.5 shows that there exists n ≥ 1 such that
annR(x) ( annR(xS−n(c)) for any c ∈ annZ(R)(x). Since annR(x) is maximal,
we must have xS−n(c) = 0 for any c ∈ annZ(R)(x) i.e.
S−n(annZ(R)(x)) ⊆ annZ(R)(x). Now R is right noetherian and hence the two
sided ideal I = ∩n−1

i=0 S−i(annZ(R)(x)R) which satisfies S−1(I) ⊂ I is in fact
S-stable. Hence IT is an ideal of T and obviously IT ⊆ (annZ(R)(x))T ⊆
annT (x) = M . Since X = T/M is faithful, we obtain I = 0. Because Z(R) is a
domain, the above shows that annZ(R)(x) = 0. So we have proved that if x ∈ X

is such that annR(x) is maximal then annZ(R)(x) = 0. Now, it is easy to see
that for any y ∈ X, annZ(R)(y) = 0 i.e. X is Z(R)-torsion free.
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For any central subset C of a prime ring R, RC will denote the localization
of R at the multiplicatively closed set generated by C. For any right R-module
X let XC = X ⊗R RC be the corresponding localization of X.

Lemma 3.7. Let R be a prime P.I. noetherian ring and X a right T =
R[t, t−1; S]-module.

(a) If X is simple then there exists a ∈ Z(R) such that X{a} is a finitely
generated Z(R){a}-module

(b) If X is simple faithful and R is not S-special central then X is induced.

Proof. a) Let M be a maximal right ideal of T . Due to Lemma 3.3 we
know that U = {b ∈ R|b is the leading coefficient of some element from M}
and D = {c ∈ R|c is the minimal coefficient of some element from M} are
essential right ideals of R. Posner’s theorem implies that there is a non-zero
b ∈ U ∩D ∩ Z(R). Now, R has P.I. degree n and if gn denotes the Formanek
central polynomial (cf [R2] Chapter 6.1) then 0 6= gn(R) ⊂ Z(R). Choose any
0 6= s ∈ gn(R) and remark that 0 6= a = bs ∈ U ∩D ∩ gn(R). Using Corollary
6.1.36 [R2] we conclude that R{a} is a finitely generated Z(R){a}-module. Since
a ∈ U ∩D, there are n ≥ 1 and f, g ∈ M such that f = atn+ terms of smaller
degree ; g = at−n+ terms of higher degree. Therefore X{a} = T/M ⊗R R{a} is a
finitely generated right R{a}-module, being generated by images of tk, |k| < n.
The above shows that X{a} is also finitely generated as a module over Z(R){a}.

b) Assume, at the contrary, that X = T/M is not induced. Part a) above
shows that there exists 0 6= a ∈ Z(R) such that X{a} is a finite generated
Z(R){a}-module. LetA denote the S-stable multiplicatively closed set generated
by a. Then XA is a central localization of X{a} and so XA is also finitely
generated as a module over Z(R)A. We will show that RA is S-simple. Clearly
it is enough to show that any non-zero S-ideal of R intersects A non trivially.
Let I be a non-zero S-stable ideal of R. Since R is prime P.I., J = I ∩ Z(R)
is a non-zero ideal of Z(R), moreover J is S-stable as I is such. From this we
conclude that XJ is a T -submodule of a simple faithful T -module X. Therefore
XJ = X. Localizing this equality at A, we get XAJA = XA. XA is a finitely
generated module over Z(R)A thus, by Nakayama’s Lemma [MA, p. 8], there
exists z ∈ Z(R)A such that XAz = 0 and z−1 ∈ JA. Writing z = bd−1 for some
b ∈ Z(R) and d ∈ A, we have XAb = 0. Since X is not induced, Proposition
3.6 yields that X is Z(R)-torsion free. Hence X ⊂ XA and Xb = 0. This
implies b = 0 and consequently, z = 0. Therefore 1 ∈ JA. This means that
∅ 6= J ∩ A ⊆ I ∩ A i.e. RA is S-simple. In view of Lemma 1.2 this shows that
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R is S-special central, a contradiction. ¤

Proposition 3.8. Let R be a prime P.I. noetherian ring. If T = R[t, t−1;S]
is right primitive then R is either right S-primitive or S-special central.

Proof. Assume R is not right S-primitive. Let X be a simple faithful T -
module, then X is not induced and part b) of the above lemma yields that R is
S-special central. ¤

Combining the above proposition and results of Section 2, we obtain the
following theorem

Theorem 3.9. Suppose that R is a right noetherian P.I. ring. For the skew
Laurent polynomial ring T = R[t, t−1; S], the following conditions are equivalent
:

(1) T is right primitive,
(2) T is left primitive,
(3) R is either right S-special or right S-primitive and S is of infinite order

on the center of R,
(4) R is either S-special central or right S-primitive and S is of infinite order

on the center of R.

Proof. (1) → (4) Suppose that T is right primitive. Proposition 3.2 shows
that S is of infinite order on Z(R). Let Q be a minimal prime ideal of R. Then,
by Proposition 2.1, R/Q[t, t−1;Sn] is right primitive, where n is the number of
minimal primes in R. Therefore Proposition 3.8 implies that R/Q is either right
Sn-primitive or Sn-special central. Now, Proposition 2.3 and 2.5 yield that R

is either right S-primitive or S-special central.
The implication (4) → (3) is a tautology, while (3) → (1) is a consequence of

Theorem 1.5. This shows that conditions (1), (3) and (4) are equivalent.
(1) ↔ (2) If T is (right or left) primitive then R is S-prime and the assump-

tions imposed on R yields that R is semiprime right noetherian P.I. ring. Thus
R is also left noetherian (see [R2] vol II, pp. 174, ex. 24). Now, we can apply the
equivalence (1) ↔ (4) to the opposite ring T op = Rop[t, t−1;S−1] obtaining T is
left primitive if and only if T op is right primitive if and only if Rop is either right
S-primitive or S-special central and S is of infinite order on Z(Rop) = Z(R).
Therefore for proving the equivalence (1) ↔ (2), it is enough to show that R is
right S-primitive if and only if R is left S-primitive.

Suppose R is right S-primitive. Let M be a maximal right ideal of R contain-
ing no non zero S-stable ideals. Then R/I is a right primitive P.I. ring where
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I = annR(R/M). By Kaplansky’s Theorem R/I is left primitive so there is
a maximal left ideal N of R such that I = annR(R/N). Clearly N does not
contain non-zero S-ideals. The argument is left right symmetric. ¤.

The above theorem enables us to prove the following.

Theorem 3.10. Suppose that R is a right noetherian P.I. ring. For the skew
polynomial ring W = R[t; S] the following conditions are equivalent :

(1) W is right primitive
(2) W is left primitive
(3) R is right S-special and S is of infinite order on the center of R,
(4) R is S-special central and S is of infinite order on the center of R.

Proof. (1) → (4) Suppose W = R[t;S] is right primitive. Let M be a
maximal right ideal of W containing no non-zero ideals. Notice that for any
n ≥ 1, tn /∈ M as otherwise M would contain the non-zero two sided ideal tnW .
Therefore MT is a proper right ideal of T = R[t, t−1; S]. Also for every proper
right ideal K containg MT we have K ∩W = M and (K ∩W )T = K, and we
conclude that MT is maximal. Moreover MT does not contain non-zero ideals
as M has such property in W . The above shows that T is right primitive. Thus,
by Theorem 3.9, S is of infinite order on the center of R and R is either S-special
central or right S-primitive. We distinguish two cases.

Case 1 : R is prime. Assume R is not S-special central. Then, by Lemma 3.7,
every simple faithful T -module is induced from R. This means that MT = NT

for some maximal right ideal N of R. Thus M = W ∩MT = W ∩NT = NW (
NW + tW 6= W . This contradicts maximality of M and yields (1) → (4) in the
case when R is prime.

Case 2 : R is semiprime. Let Q be a minimal prime ideal of R and n the
number of minimal primes. By Corollary 2.2, R/Q[t; Sn] is primitive. Thus,
by Case 1, R/Q is Sn-special central. Now, Proposition 2.5 shows that R is
S-special central and yields (1) → (4) in this case as well.

The implication (4) → (3) is a tautology.
(3) → (1) Suppose (3) holds. Lemma 1.4 implies that T is special. In fact

every non-zero ideal of T contains some power of at where a ∈ R is the element
defining S-speciality of R. Now, let I be a non-zero ideal of W . Then IT is a
two sided ideal of T as W is right noetherian and T is a localization of W with
respect to powers of t. Therefore (at)n ∈ IT ∩ W for some n ≥ 1. It means
that (at)ntk ∈ I for some k ≥ 0 and (at)n+k ∈ I follows. This shows that every
non-zero ideal of W contains some power of at, so W is special. Now, as in the
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proof of Theorem 1.5, one can show that W/M is a simple faithful W -module
where M is a maximal right ideal of W containing (1− at)W .

The above shows that conditions (1), (3) and (4) are equivalent. The equiv-
alence of (1) and (2) can be obtained in the same way as equivalence between
(1) and (2) in Theorem 3.9. ¤

Example 3.11.. Let R = C[x, x−1, y, y−1] be the Laurent polynomial ring
in two commuting variables over the field of complex numbers. Define the
C-automorphism S of R by S(y) = x and S(x) = yx−1. It is shown in [J3,
Prop. 7.13] that R is S-primitive but not S-special. Theorems 3.9 and 3.10
show that R[t, t−1;S] is primitive but R[t; S] is not.
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