
WEDDERBURN POLYNOMIALS OVER DIVISION RINGS, I

T. Y. LAM AND ANDRÉ LEROY

Abstract. A Wedderburn polynomial over a division ring K is a minimal
polynomial of an algebraic subset of K. Such a polynomial is always a product
of linear factors over K, although not every product of linear polynomials is
a Wedderburn polynomial. In this paper, we establish various properties and
characterizations of Wedderburn polynomials over K, and show that these
polynomials form a complete modular lattice that is dual to the lattice of full
algebraic subsets of K. Throughout the paper, we work in the general setting
of an Ore skew polynomial ring K[t, S, D], where S is an endomorphism of K
and D is an S-derivation on K.

§1. Introduction

The main purpose of this paper is to develop the theory of a class of polyno-
mials over a division ring K, which we call Wedderburn polynomials (or simply
W-polynomials). Roughly speaking, a W-polynomial over K is one which has
“enough zeros” in K. (For a more precise definition, see (3.1).) In the case when
K is a field, W-polynomials are simply those of the form (t− a1) · · · (t− an), where
a1, . . . , an are distinct elements of K. In the general case of a division ring K,
a W-polynomial still has the form (t − a1) · · · (t − an), although the ai ’s need no
longer be distinct. And even if the ai ’s are distinct, (t− a1) · · · (t− an) need not
be a W-polynomial. The recognition of a W-polynomial turns out to be a very
interesting problem over a division ring K.

The early work of Wedderburn [We] (ca. 1921) showed that, if a ∈ K is an
algebraic element over the center F of K, then the minimal polynomial of a over
F (in the usual sense) is a W-polynomial in K[t] (and in particular splits completely
over K). This classical result of Wedderburn has led to much research on K[t], and
has found important applications to the study of subgroups and quotient groups
of the multiplicative group K∗, central simple algebras of low degrees and crossed
product algebras, PI-theory, Vandermonde matrices, Hilbert 90 Theorems, and the
theory of ordered division rings, etc. For some literature along these lines, the
reader may consult [Al], [HR], [Ja3], [La1], [LL1]-[LL3], [Ro1]-[Ro3], [RS1], [RS2],
[Se], and [Tr].
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Our definition of W-polynomials was directly inspired by the afore-mentioned
work of Wedderburn, although our W-polynomials will have coefficients in K, in-
stead of in F . These W-polynomials are rather rich in structure, and seem to be
quite basic in working with the polynomial theory over K. Some examples and a
few characterizations of W-polynomials are given in §3. In §4, we introduce two
of the main technical tools for analyzing W-polynomials; these are (essentially)
self-maps from K to K, called respectively the Φ-transform and the λ-transform.
These transforms are then used in §5 to derive results on factors and products of
W-polynomials, and on idealizers of certain left ideals in the (Ore) polynomial ring.
The notion of W-polynomials in the quadratic case turns out to be closely related
to the solution of certain “metro-equations” in division rings; some applications in
this direction are presented in §6. In §7, we establish a basic Rank Theorem (7.3),
which relates the ranks of the union and the intersection of two algebraic sets in the
spirit of the dimension equation in the theory of finite-dimensional vector spaces.
We then show in §8 that the set of W-polynomials over K (suitably augmented if
necessary) has the natural structure of a complete modular lattice, and that fur-
thermore, this lattice is dual to the lattice of sets of roots of polynomials over K.
The paper concludes with two sections on questions, examples, and applications.

It is relevant to point out that our W-polynomials are a special case of the class
of “completely reducible” polynomials introduced by Ore in his seminal paper [Or].
While Ore’s completely reducible polynomials are lcm ’s (least common multiples)
of irreducible polynomials (over K), our W-polynomials are lcm ’s of linear poly-
nomials. The use of linear polynomials enables us to relate the W-polynomials
readily to their root sets, and thereby get the lattice duality mentioned in the last
paragraph. Retrospectively, we find it rather surprising that this viewpoint was not
exploited by Ore.

Following Ore [Or], we work in the setting of skew polynomials (rather than just
ordinary polynomials) over the division ring K. This added degree of generality is
definitely worthwhile considering that skew polynomials have become increasingly
important with the growing interests in quantized structures and noncommutative
geometry. The basic mechanism of skew polynomials is recalled in §2, where we
also set up the terminology and general framework for the paper. As a matter
of fact, once the general mechanism of skew polynomials is set in place, the work
of developing the theory of W-polynomials is no more complicated in the skew
case than in the ordinary case. Therefore, although skew polynomials may appear
difficult to some, to try to avoid them in this paper would be an unnecessary sacrifice
of generality. In giving basic examples for the theory, however, we will not hesitate
to go back to the case of ordinary polynomials, where the indeterminate commutes
with all coefficients.

§2. Recapitulation

To work with skew polynomials, we start with a triple (K, S, D), where K is
a division ring, S is a ring endomorphism of K, and D is an S-derivation on K.
(The latter means that D is an additive endomorphism of K such that D(ab) =
S(a)D(b) + D(a)b, ∀a, b ∈ K.) In this general setting, we can form K[t, S, D],
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the Ore skew polynomial ring consisting of (“left”) polynomials of the form
∑

bit
i

(bi ∈ K) which are added in the usual way and multiplied according to the rule

(2.1) tb = S(b)t + D(b) ( ∀ b ∈ K).

In case D = 0 (resp. S = I), we’ll write K[t, S] (resp. K[t,D]) for the skew
polynomial ring. Of course, when (S,D) = (I, 0) (we’ll refer to this as the “classical
case”), K[t, S, D] boils down to the usual polynomial ring K[t] with a central
indeterminate t. Throughout this paper, we’ll write R := K[t, S, D]. It is easy to
check that R admits an euclidean algorithm for right division, so R is a principal
left ideal domain.

In working with R, it is important to be able to “evaluate” a polynomial f(t) =∑
bit

i at any scalar a ∈ K, that is, to define f(a). Following our earlier work
[LL1], we take f(a) to be

∑
biNi(a), where the “i th power function” Ni is defined

inductively by

(2.2) N0(a) = 1, and Ni(a) = S(Ni−1(a))a + D(Ni−1(a)) ∀ a ∈ K.

That this gives the “right” definition of f(a) is seen from the validity of the Re-
mainder Theorem [LL1: (2.4)]: there is a unique q ∈ R such that

(2.2)′ f(t) = q(t)(t− a) + f(a).

¿From this, it follows immediately that f(a) = 0 iff t− a is a right factor of f(t).
This important fact will be used freely throughout the paper. In case f(a) = 0,
we say that a is a (right) root, or (right) zero, of f . (Throughout this paper, the
word “root” will always mean right root.)

Readers of our earlier papers have often been deterred by the apparently tricky
definition of evaluation in (2.2). For these readers, the following remarks should
bring some solace. First, it is entirely possible to take f(a) (∀a ∈ K) as defined
by the equation (2.2)′. Once this is done, it is not difficult to check that the second
formula in (2.2) is simply dictated upon us. Or. from a module-theoretic viewpoint,
if we identify the cyclic R-module R/R(t− a) with K, then the action of f(t) on
the cyclic generator 1 is simply given by f(t) · 1 = f(a). Lastly, in case D = 0,
the definition (2.2) simplifies down to Ni(a) = Si−1(a) · · ·S(a)a (∀i), which is
a familiar expression in many ways, e.g. from the norm formula for cyclic Galois
extensions. For more detailed explanations of these viewpoints, see [LL1] and [LL2].

Another remarkable fact about evaluating skew polynomials at scalars is the
“Product Formula” [LL1: (2.7)] for evaluating f = gh at any a ∈ K:

(2.3) (gh)(a) =
{

0 if h(a) = 0,
g(ah(a))h(a) if h(a) 6= 0.

Here, for any c ∈ K∗, ac denotes S(c)ac−1 + D(c)c−1, which is called the (S, D)-
conjugate of a (by c). With this general conjugation notation, it is easy to verify
by a direct calculation that

(2.4) (ac)d = adc for any c, d ∈ K∗.

However, we must caution the reader that, in general, (ab)c need not be equal to
acbc . Also, in using the expression ac, we have to constantly keep in mind that this
is the (S, D)-conjugacy notation, not to be confused with the usual exponentiation
(meaningful in the division ring K when the exponent is an integer). For instance,
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the “usual” exponentiation a−1 would mean the inverse of a, while the (S, D)-
conjugate of a by −1 is S(−1)a(−1)−1 + D(−1)(−1)−1, which is just a ! (More
generally, it is useful to note that a−c = ac.)

In the following, we shall write

(2.5) ∆S,D(a) := { ac : c ∈ K∗ };
this is called the (S, D)-conjugacy class of a. All such classes form a partition of K.
For instance, ∆S,D(0) is the set of all logarithmic derivatives {D(c)c−1 : c ∈ K∗}.
And, in the classical case, ∆I,0(a) is just the “usual” conjugacy class

∆(a) = {cac−1 : c ∈ K∗}.
A routine extension of the Gordon-Motzkin Theorem (using the Product Formula)
shows the following (cf. [La1: Thm. 4] and [La2: (16.4)]):

Proposition 2.6. (1) If f ∈ R has degree n, then f can have roots in at most
n (S,D)-conjugacy classes of K. (2) If f(t) = (t− a1) · · · (t− an), then each root
of f in K is (S, D)-conjugate to some ai.

Next, we introduce two basic notations for this paper. For g ∈ R, let

(2.7) V (g) := {a ∈ K : g(a) = 0},
and for any subset ∆ ⊆ K, let I(∆) be the left ideal

(2.8) {g ∈ R : g(∆) = 0}.
We’ll say that the set ∆ is algebraic (or, more precisely, (S, D)-algebraic) if I(∆) 6=
{0}. In this case, the monic generator of I(∆) is called the minimal polynomial
of ∆; we denote it by f∆. The degree of f∆ is called the rank of the algebraic
set1 ∆; we denote it by rk(∆). According to the Remainder Theorem, f∆ is
just the (monic) “llcm” (least left common multiple) of the linear polynomials
{t − d : d ∈ ∆}. As in [La1: Lemma 5], it is easy to see that f∆ has always the
form (t− a1) · · · (t− an) where each ai is (S, D)-conjugate to some element of ∆.

Of course, all of the above was inspired in part by classical algebraic geometry.
Going a little further, we get a theory of polynomial dependence (or P-dependence
for short) for the elements of K. By definition, an element b is P-dependent on
an algebraic set ∆ if g(b) = 0 for every g ∈ I(∆). We see easily that the set of
elements P-dependent on ∆ is precisely V (f∆), which we shall henceforth call the
“P-closure” of ∆ and denote by ∆. As in [La1], we can also define P-independence
and the notion of a P-basis for an algebraic set ∆ in a natural manner. The
cardinality of a P-basis for ∆ is just rk(∆). If {b1, . . . , br} is a P-basis of ∆,
then f∆ is in fact the llcm of the linear polynomials {t − bi : 1 ≤ i ≤ r}. We
refer the reader to [La1: §4] (see also [Tr]) for the rudiments of the theory of P-
dependence. Although this theory was developed in [La1] in the case D = 0, it
holds word-for-word also in the (S, D)-case.)

§3. Wedderburn Polynomials: Examples and Characterizations

1For technical reasons, it is convenient to define the rank of a non-algebraic set too: it is simply
taken to be the symbol ∞. The “minimal polynomial” for a non-algebraic set is taken to be 0.
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We now come to two of the central themes of the paper.

Definition 3.1. An algebraic set ∆ ⊆ K is said to be full if ∆ = ∆(= V (f∆)).
A (monic) polynomial f ∈ R is said to be a Wedderburn polynomial (or simply a
W-polynomial) if f = fV (f).

¿From (3.1), it is easy to see that an algebraic set ∆ is full iff ∆ = V (f) for
some nonzero f ∈ R, and a polynomial f ∈ R is a W-polynomial iff f = f∆ for
some algebraic set ∆. Let us first give some examples of full algebraic sets.

Examples 3.2.

(1) The empty set ∅ is a full algebraic set, with minimal polynomial 1 (and rank
0). In particular, 1 is a W-polynomial.

(2) Any singleton {a} is also always a full algebraic set, with minimal polynomial
t− a. Thus, any monic linear polynomial is a W-polynomial.

(3) Consider a doubleton set ∆ = {a, b}. By the product Formula (2.3), it is
easy to see that ∆ has minimal polynomial

f∆(t) =
(
t− bb−a

)
(t− a).

Thus, any quadratic of this form is a W-polynomial. Notice that, by symmetry, we
have automatically

(3.3)
(
t− bb−a

)
(t− a) =

(
t− aa−b

)
(t− b).

However, a doubleton set may not be full, as the example of {i, j} over the quater-
nions shows. (The P-closure of {i, j} is the set of all quaternions of square −1.)

(4) If an (S, D)-conjugacy class ∆ := ∆S,D(a) happens to be algebraic, then
∆ is full. In fact, if f := f∆, then as we have noted in §2, there is a splitting
f(t) = (t − a1) · · · (t − an), where ai ∈ ∆. By (2.6), we have V (f) ⊆ ∆, and so
∆ = V (f) is full.

(5) For any algebraic set ∆, the P-closure ∆ is the smallest full algebraic set
containing ∆, and ∆ = ∆. If ∆ ⊆ ∆S,D(a), then ∆ ⊆ ∆S,D(a) as well: this
follows from (2.6).

For later reference, we state two more convenient characterizations of W-polynomials.
The proofs are easy, and can be found in [LL4: (2.7)].

Proposition 3.4. For a monic polynomial f ∈ R of degree n, the following are
equivalent :

(1) f is a W-polynomial ;
(2) rk(V (f)) = n (“f has enough zeros”);
(3) For any p ∈ R, V (f) ⊆ V (p) =⇒ p ∈ R · f .

Several other characterizations of W-polynomials will be given later in [LL5].
Here, we give a list of nontrivial examples (and one non-example) of Wedderburn
polynomials.

Examples 3.5.

(1) A monic quadratic polynomial f ∈ R is a W-polynomial iff CardV (f) ≥ 2.
Indeed, if f is a W-polynomial, then V (f) has rank 2 by (3.4), so it has at least



6 T. Y. LAM AND ANDRÉ LEROY

two elements. Conversely, if V (f) has at least two elements, clearly no linear
polynomial can vanish on V (f). Therefore, f must be the minimal polynomial of
V (f), so f is a W-polynomial. Note that the criterion CardV (f) ≥ 2 above for
f to be a W-polynomial can also be expressed by saying that f has at least two
different factorizations into a product of monic linear factors. (Here, “different” is
taken in the absolute sense.)

For instance, over the real quaternions with (S, D) = (I, 0), the polynomial

(†) f(t) = t2 − (i + j)t− k = (t− j)(t− i)

has a unique root {i} (see [La3: Ex. 16.3, p. 181]), and hence only one factoriza-
tion (into monic linear factors) as above. Thus, f is not a W-polynomial. The
polynomial g(t) = t2 +1 has infinitely many roots (namely, all conjugates of i), so
g is a W-polynomial, with infinitely many factorizations. Finally, the polynomial
h(t) = t2 − it + (k + 1) has the factorizations

h(t) = [t− (i− j)] (t− j) = (t + j) [t− (i + j)],

so h is a W-polynomial. In fact, one can show that V (h) = {j, i+ j}, so the above
are the only factorizations of h into monic linear factors. (For a more general
perspective on this, see (6.3) and (6.4).)

(2) If K is a field and (S, D) = (I, 0), the algebraic sets are precisely the finite
subsets of K. From this, it follows that the W-polynomials are the polynomials of
the form (t− a1) · · · (t− an), where the ai ’s are distinct elements in K. These are
precisely the separable, completely split polynomials over K.

(3) In general, if f(t) ∈ R is a W-polynomial with a splitting (t−a1) · · · (t−an),
the ai ’s need not be distinct. We shall give two such examples here. For the first
one, let K be a division ring of characteristic 2 in which there exist elements a 6= b
with a2 = b2. Then, for (S, D) = (I, 0),

f(t) := (t− a)2 = t2 − a2

has both root a and root b, so f is a W-polynomial over K. For the second example
(in arbitrary characteristic), let k be any field, and let K = k(x) be equipped with
S = I and the usual derivation D = d

dx . By (2.1), N2(b) = b2 + D(b). Therefore,
for b = x−1, we have N2(b) = 0. Thus, the polynomial t2 ∈ K[t, D] vanishes
on x−1 as well as on 0. By (1) above, t2 is a W-polynomial. (For yet another
example, see (6.10)(3) below.)

(4) If ai ’s are distinct elements in K, (t − a1) · · · (t − an) need not be a W-
polynomial: see the example (†) in (1) above.

(5) Let F = Z(K) (the center of K). If f(t) ∈ F [t] is an irreducible polynomial
with a root a ∈ K, then f is a W-polynomial over K (with respect to (S,D) =
(I, 0)). In fact, f is the minimal polynomial of a over F (in the usual field-
theoretic sense), so by Wedderburn’s Theorem in [We], the usual conjugacy class
∆ = ∆(a) is algebraic with f∆ = f(t) (and by (3.3)(4), V (f) = ∆). Therefore,
f ∈ F [t] is a W-polynomial over K. In fact, the following proposition shows that
all W-polynomials over K with coefficients in F “essentially” arise in this way.

Proposition 3.6. Let g(t) be a polynomial in F [t], and let (S,D) = (I, 0) on K.
Then g(t) is a W-polynomial over K iff g = f1 · · · fr where each fi is the minimal
polynomial of some ai over F and a1, . . . , ar are pairwise non-conjugate in K.
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Proof. First suppose g(t) is a W-polynomial over K. If a ∈ K is a root of g,
then so is any conjugate of a. Therefore, V (g) is the union of a finite number of
distinct conjugacy classes, say ∆(a1), . . . , ∆(ar). Let fi := f∆(ai), which by (5)
above is an irreducible polynomial in F [t]. Then g ∈ K[t] · fi for each i, and so
g ∈ F [t] ·fi. From this, we see that g ∈ F [t] ·f1 · · · fr. On the other hand, f1 · · · fr

clearly vanishes on
∆(a1) ∪ · · · ∪∆(ar) = V (g),

which has minimal polynomial g. Therefore, f1 · · · fr ∈ K[t] · g, so we have g =
f1 · · · fr. Conversely, suppose g has the form f1 · · · fr described in the Proposition.
By Wedderburn’s Theorem, rk(∆(ai)) = deg(fi), so by [La1: Thm. 22], ∆ :=
∆(a1) ∪ · · · ∪ ∆(ar) has rank

∑
i deg(fi) = deg g. Since g vanishes on ∆, it

follows that g = f∆, so g is a W-polynomial over K. ¤

§4. The Union Theorem, the Φ -Transform, and the λ-Transform

In this section, we shall obtain some preliminary results on the ranks of algebraic
subsets of K, and set up two basic transformations called the Φ-transform and the
λ-transform. All of these will be presented in the general (S,D)-setting, which turns
out not to require any additional effort. We begin with the following observation on
the degrees of the left least common multiple (llcm) and the right greatest common
divisor (rgcd) of two given polynomials.

Degreee Equation 4.1. For any two nonzero polynomials f, h ∈ R, let p =
rgcd(f, h), and q = llcm(f, h). Then

deg(f) + deg(h) = deg(p) + deg(q).

Proof. This result is part of the folklore of the subject; see [Or: Ch. 1, (24)]. How-
ever, the proof given by Ore in this reference was quite indirect. For the convenience
of the reader, we include a “modern” proof here. By the definitions of llcm and
rgcd, we have Rf ∩ Rh = Rq, and Rf + Rh = Rp. Thus, Noether’s Isomorphism
Theorem gives an R-module isomorphism Rp/Rf ∼= Rh/Rq. Evaluating the left
K-dimensions of both sides gives the desired formula. ¤

Next, we observe the following special property for polynomials f which factor
completely in R = K[t, S, D].

Proposition 4.2. Let f, h ∈ R \ {0}, and assume that f is a product of linear
factors. Then V (f) ∩ V (h) = ∅ iff Rf + Rh = R. In this case,

deg
(
llcm(f, h)

)
= deg(f) + deg(h).

Proof. First assume Rf + Rh = R. Then rf + sh = 1 for suitable r, s ∈ R. If
there exists a ∈ V (f) ∩ V (h), plugging a into the equation rf + sh = 1 would
yield a contradiction, so we must have V (f) ∩ V (h) = ∅. On the other hand,
if Rf + Rh 6= R, then Rf + Rh = Rp, where p := rgcd(f, h) is non-constant .
Write f = f1p and h = h1p, where f1, h1 ∈ R. Since f is a product of linear
factors, so is its factor p. (This follows from the fact that, if f is factored in any
way into a product of irreducible factors, the degrees of these irreducible factors
are uniquely determined; see, e.g. [Or: Ch.2, Th.1].) Thus, there exists a ∈ V (p),
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and the equations f = f1p and h = h1p show that a ∈ V (f) ∩ V (h). Hence
V (f) ∩ V (h) 6= ∅. The last part of the Proposition now follows from (4.1). ¤

The Union Theorem 4.3. Let ∆ and Γ be algebraic sets in K, with minimal
polynomials f, h ∈ R, of degrees n and m respectively. Then

(1) the minimal polynomial for ∆ ∪ Γ is llcm(f, h), and we have rk(∆ ∪ Γ) ≤
n + m.

(2) If ∆ ∩ Γ = ∅, then equality holds in (1), and, if B1, B2 are respectively
P-bases for ∆ and Γ, then B1 ∪B2 is a P-basis for ∆ ∪ Γ.

Proof. A nonzero polynomial r(t) ∈ R vanishes on ∆ ∪ Γ iff it is right divisible
by f as well as by h. Therefore, the monic r(t) of the smallest degree is exactly
q := llcm(f, h). In particular, by (4.1), rk(∆ ∪ Γ) = deg(q) ≤ n + m. This proves
(1). To prove (2), assume that ∆ ∩ Γ = ∅. This amounts to V (f) ∩ V (h) = ∅.
Since f is indeed a product of linear factors, (4.2) implies that

deg(q) = deg(f) + deg(h) = n + m,

and the rest follows. ¤

A further refinement of (4.3) will appear later in the Rank Theorem (7.3). The
following useful special case of (4.3) is essentially the “Union Theorem 22” in [La1].

Corollary 4.4. (1) Let ∆, Γ be algebraic sets such that no element of ∆ is (S,D)-
conjugate to an element of Γ. Then rk

(
∆ ∪ Γ

)
= rk

(
∆

)
+ rk

(
Γ
)
. If B1, B2 are

respectively P-bases for ∆ and Γ, then B1 ∪ B2 is a P-basis for ∆ ∪ Γ, and
∆ ∪ Γ = ∆ ∪ Γ.
(2) If ∆i (1 ≤ i ≤ r) are algebraic sets contained in different (S, D)-conjugacy
classes of K, then

rk
( r⋃

i=1

∆i

)
=

r∑

i=1

rk
(
∆i

)
.

A P-basis for
⋃r

i=1 ∆i is given by a union of any P-bases for the ∆i ’s, and we
have the P-closure formula ∪i∆i =

⋃
i ∆i.

Proof. By (2.6)(2), we have

∆ ⊆ {x : x is (S, D)-conjugate to an element of ∆},
and similarly for Γ. By assumption, therefore, ∆ ∩ Γ = ∅, so Theorem 4.3 applies
to give the statement on rank and P-basis in (1). For the equation on P-closures
in (1), it suffices to prove that ∆ ∪ Γ ⊆ ∆ ∪ Γ. Consider any element a ∈ K that
is P-dependent on ∆ ∪ Γ. Let A = ∆S,D(a) (the (S, D)-conjugacy class of a, as
defined in (2.5)). By the Excision Theorem in [La1], a is already P-dependent on

A ∩ (∆ ∪ Γ) = (A ∩∆) ∪ (A ∩ Γ).

Now, by the hypothesis on ∆ and Γ again, one of the intersections A ∩ ∆ and
A ∩ Γ must be empty. Say A ∩ Γ = ∅. Then a is P-dependent on A ∩ ∆, and
hence on ∆. This shows that a ∈ ∆, which completes the proof of (1). ¿From this,
(2) follows easily by induction. ¤

To get more refined results on the ranks of algebraic sets, we shall need some
information on a certain “Φ -transform”, which maps algebraic sets to algebraic sets
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in K. Let us now introduce the method of this Φ -transform. A few applications of
this method will be given in (4.9) and (4.13); more applications of the Φ -transform
will be given in the next section.

In the Product Formula (2.3) for evaluating gh at a, we first encountered the
expression ah(a) (in case h(a) 6= 0). This led us to the following useful definition.

Definition 4.5. For h ∈ R = K[t, S, D], we define the “Φ -transform” (associated
to h)

Φh : K \ V (h) −→ K

by Φh(x) = xh(x), whenever h(x) 6= 0. (We do not attempt to define Φh on V (h).)
Note that Φh always preserves the (S,D)-conjugacy class of its argument x.

Examples 4.6.

(1) For a field K with (S, D) = (I, 0), the transform Φh (for any h) is the
inclusion map K \ V (h) −→ K.

(2) Consider the case when h is a nonzero constant (polynomial) c ∈ K∗. Here,
Φc(x) = xc for all x ∈ K, so Φc is defined on all of K and is exactly (S, D)-
conjugation by the element c. (In particular, Φ1 is just the identity map on K.)
In view of this example, we can think of the Φ-transform as a kind of generalization
of (S, D)-conjugation.

(3) Suppose D is the inner S-derivation defined by D(x) = ax− S(x)a, where
a is a fixed element of K. Then, for h(t) = t− a, we have, for any x 6= a:

Φh(x) = xx−a = S(x− a)x(x− a)−1 + D(x− a)(x− a)−1

= [S(x− a)x + a(x− a)− S(x− a)a ] (x− a)−1

= S(x− a) + a

= S(x) +
(
a− S(a)

)
.

Thus, Φh : K \ {a} −→ K is just the map S followed by a translation by the
constant a− S(a). In particular, if a = 0 (for which D = 0), Φt is just the map
S on K∗.

(4) Suppose an (S,D)-conjugacy class ∆S,D(a) is algebraic of rank 2. Then its
minimal polynomial f has the form (t − b)(t − a) for some b ∈ ∆S,D(a). Take
h(t) = t − a. For any c ∈ ∆S,D(a) \ {a}, the fact that f(c) = 0 implies (by
the Product Formula) that Φh(c) = b. Therefore, the transform Φh restricted to
∆S,D(a) \ {a} is the constant map taking everything to b.

For the applications we have in mind for the Φ -transform in §5, we shall need
the next three propositions. The first one is a useful composition result for the
Φ -transform.

Proposition 4.7. Let h(t) = p(t)q(t) ∈ R, and A := K\V (h). Then Φh = Φp◦Φq

on A. In particular, im(Φh) ⊆ im(Φp).

Proof. For a ∈ A, we have h(a) 6= 0, so (2.3) gives q(a) 6= 0 and p
(
aq(a)

) 6= 0.
Thus, Φq is defined on A, and Φp is defined on Φq(A). Our job is to prove the
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commutativity of the following diagram:

A
Φq−→ Φq(A)

Φh ↘ ↓ Φp

Φp

(
Φq(A)

)
.

This is checked by the following calculation using (2.3) and (2.4):

Φh(a) = ah(a) = ap(aq(a)) q(a)

=
(
aq(a)

)p(aq(a)) = Φp

(
aq(a)

)

= Φp

(
Φq(a)

)
=

(
Φp ◦ Φq

)
(a),

which is valid for any a ∈ A. From this calculation, it follows immediately that
im(Φh) ⊆ im(Φp). ¤

Remark. The refere pointed out that a somewhat more conceptual proof of (4.7) is
possible. One notes that, for x /∈ V (h), the element Φh(x) is uniquely characterized
by the equation llcm (h(t), t−x) = (t−Φh(x))h(t). The formula in (4.7) then easily
follows upon computing llcm (p(t)q(t), t− x) = llcm {p(t)q(t), llcm(q(t), t− x)}.

With the notation of the Φ-transform, we can rephrase the second case of the
Product Formula (2.3) as follows. If f = gh ∈ R and a ∈ K, then

(4.8) f(a) = g
(
Φh(a)

)
h(a) if h(a) 6= 0.

Thus, for any a /∈ V (h), we have a ∈ V (f) iff Φh(a) ∈ V (g). This observation
leads easily to the following explicit way for constructing the minimal polynomial
of a union of two algebraic sets in terms of the Φ -transform (cf. (4.3)(1)).

Proposition 4.9. Let Γ be an algebraic set in K, with h := fΓ. Then for any
algebraic set ∆, f∆∪Γ = fΦh(∆\Γ) fΓ. (Recall that the P-closure Γ of Γ is simply
given by V (h), so Φh is defined on ∆ \ Γ .)

Proof. We do know, from (4.3), that ∆ ∪ Γ is algebraic. To find f∆∪Γ, we look
for the monic polynomial f of the least degree that vanishes on ∆ ∪ Γ. Since
f(Γ) = 0, f has the form gh for some monic g. To make sure that f(∆ \ Γ) = 0
too, we need to have g

(
Φh(∆ \ Γ)

)
= 0, by (4.8). The monic g of the least degree

satisfying this is fΦh(∆\Γ). ¤

For use in later sections, we shall recall another transform, called the λ-transform,
which we have introduced earlier in [LL3].

Definition 4.10. For h ∈ R and b ∈ K, we define the λ-transform λh,b : K −→
K by taking

(4.11) λh,b(d) =
{

0 if d = 0,
h(bd) d if d 6= 0.

The (S, D)-centralizer of b is defined to be the set

CS,D(b) := {0} ∪ {c ∈ K∗ : bc = b}.
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This (S, D)-centralizer is easily seen to be a division subring of K. As noted in
[LL3], λh,b is an endomorphism of K as a right vector space over C := CS,D(b).
In fact, for any d ∈ K∗ and c ∈ C∗, we have (by (2.4)):

λh,b(dc) = h
(
bdc

)
dc = h

(
(bc)d

)
dc = h(bd) dc = λh,b(d) c.

The additivity of λh,b can be deduced from the calculation in the proof of (3.16)
in [LL1]. Alternatively, it can also be checked very quickly as follows. According to
the Product Formula (in the case when the second factor is a constant polynomial),
we have the relation

(4.12) λh,b(d) = h(bd) d = (h · d)(b) (for any d ∈ K∗).

Since (h ·d)(b) is clearly additive in d, the desired conclusion follows. Incidentally,
the formula (4.12) also provides a nice example for the λ-transform: taking b = 0
and h = tn, we see that λtn,0 is just the operator Dn, since (4.12) implies

λtn,0(d) = (tn · d)(0) = (const. term of tn ·d) = Dn(d) (∀ d ∈ K).

It should come as no surprise to the reader that the λ-transform λh,b is closely
related to the Φ -transform Φh. In fact, in a manner of speaking, working with the
λ-transform is equivalent to working with the Φ-transform. The following result
summarizes the exact relationship between these two transforms, and records some
of their key properties.

Proposition 4.13. (1) For any d ∈ K∗, we have Φh(bd) = bλh,b(d).
(2) For d, e ∈ K∗, Φh(bd) = Φh(be) iff λh,b(d) ∈ λh,b(e) · CS,D(b).
(3) For any d ∈ K∗, bd ∈ im

(
Φh

)
iff d ∈ im

(
λh,b

)
.

(4) If h has no zeros on ∆ := ∆S,D(b), then λh,b : K −→ K and Φh : ∆ −→
∆ are both injective maps.

(5) (“Closure Property” of im(Φh).) If ∆ is any algebraic set contained in
im(Φh), then ∆ ⊆ im(Φh).

Proof. To simplify the notation, let us write λ for λh,b below (with h and b
fixed).
(1) For any d ∈ K∗, the conjugation rule (2.4) gives

Φh(bd) =
(
bd

)h(bd) = bh(bd)d = bλ(d).

(2) Assume first that λ(d) = λ(e) · c, for some c ∈ CS,D(b). Using (2.4) again, we
get

bλ(d) = bλ(e)·c =
(
bc

)λ(e) = bλ(e),

so by (1) we get Φh(bd) = Φh(be). Conversely, suppose Φh(bd) = Φh(be). By (1)
again, we have bλ(d) = bλ(e). Thus, λ(d) = λ(e) c for some c ∈ CS,D(b).
(3) If d = λ(d′) for some d′, then by (1):

bd = bλ(d′) = Φh

(
bd′) ∈ im

(
Φh

)
.

Conversely, suppose bd = Φh(a) for some a. Since Φh preserves (S, D)-conjugacy
classes, we have a = be for some e ∈ K∗. Then bd = Φh(be) = bλ(e), so for some
c ∈ CS,D(b), we have

d = λ(e) c = λ(ec) ∈ im(λ).
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(4) Assume that h has no zeros on ∆. Then

d 6= 0 =⇒ h(bd) 6= 0 =⇒ λ(d) = h(bd) d 6= 0.

Therefore, ker(λ) = 0, so λ : K −→ K is injective. Next, suppose Φh(bd) =
Φh(be). By (2) above, we have λ(d) = λ(e) c = λ(ec) for some c ∈ CS,Di(bi). The
injectivity of λ implies that d = ec, and so bd = bec = (bc)e = be.
(5) Since ∆ intersects only finitely many (S, D)-conjugacy classes, we can write
it as a disjoint union ∆1 ∪ · · · ∪ ∆n, where the ∆i ’s lie in different classes. By
(4.4)(2), we have ∆ =

⋃n
i=1 ∆i. Thus, it is enough to handle the case when ∆ lies

in a single class ∆S,D(b). Here, the quickest way to prove (5) is to use some of the
results from [LL2]. Write

∆ = bY := {by : y ∈ Y },
where Y is some subset of K∗. By (3) above, bY ⊆ im

(
Φh

)
implies that Y ⊆

im(λ). Writing C := CS,D(b) and Y · C for the (right) linear C-span of the set
Y , we have Y · C ⊆ im(λ), since im(λ) is a right C-space. By (3) again, we have
therefore bY ·C ⊆ im

(
Φh

)
. Now by Th. 4.5 in [LL2], bY ·C is exactly the P-closure

of bY . Hence we have ∆ = bY ·C ⊆ im
(
Φh

)
. ¤

Remark 4.14. To see what the “closure property” (in (5)) means in a special
case, take h(t) = t and D = 0. In this case, by (4.6)(3), Φt is the map S on K∗.
Hence im(Φt) = S(K∗). The closure property tells us that if an element b ∈ K
is P-dependent on a set S(a1), . . . , S(an) for some ai ’s in K∗, then b = S(a) for
some a ∈ K∗. This seems to be a somewhat nontrivial statement.

§5. Factors and Products of W-Polynomials

In this section, we shall study the Wedderburn polynomials as a whole in a fixed
Ore skew polynomial ring R = K[t, S,D]. For the rest of the paper, let us write
W(= W(K,S, D)) for the set of all W-polynomials in R. Our formation of the
set W is, in part, motivated by the classical work of Oystein Ore. In [Or], Ore
defined a completely reducible polynomial to be the llcm (least left common multiple)
of a finite number of irreducible polynomials in R. Since linear polynomials are
obviously irreducible, our W-polynomials are a special case of Ore’s completely
reducible polynomials.

In retrospect, it may seem a bit surprising that Ore himself did not study the
class of W-polynomials (as a subclass of his completely reducible polynomials).
We believe the reason may very well have been that Ore was not aware of the
possibility of a theory of evaluation of skew polynomials at constants. Without
such a theory, the interpretation of the llcm of linear polynomials {t − ai} as
the minimal polynomial of the set {ai} is lacking, and as a result, such llcm’s
may not have invited particular attention. But, again retrospectively, since linear
polynomials are a very special kind of irreducible polynomials, one should have
expected their llcm’s (the W-polynomials) to have a much richer structure than
the llcm’s of irreducible polynomials (Ore’s completely reducible polynomials).

The main goal of this section is to establish some basic results on the factors
and products of W-polynomials. We have to clarify what exactly is meant by the
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word “factor” in this paper. Throughout the sequel, we’ll say that a polynomial p
is a factor of another polynomial f if f = f1pf2 for some polynomials f1, f2 ∈ R.
Right and left factors of f have their usual meanings, and these are, of course,
particular kinds of factors in our sense. The following result, which essentially
goes back to Ore, gives an interesting description of W-polynomials in terms of its
factors, and more specifically, its quadratic factors.

Factor Theorem 5.1. For any monic f ∈ R, the following are equivalent :
(1) f is a W-polynomial ;
(2) f splits completely,2 and every monic factor of f is a W-polynomial ;
(3) f splits completely, and every monic quadratic factor of f is a W-polyno-

mial .

Proof. In §2, we have already observed that any W-polynomial splits completely.
Thus, (1) =⇒ (2) follows from [LL4: (5.9)]. (2) =⇒ (3) being trivial, it only remains
for us to prove (3) =⇒ (1). Assume (3), and write f = g(t− a), where g is monic
(as f is). Since g has the same properties as f , we may assume (by induction
on n := deg(f) ) that g ∈ W. Take a P-basis {d1, . . . , dn−1} for V (g), and write
g = gi(t − di) for 1 ≤ i ≤ n − 1. Then f = gi(t − di)(t − a), so by assumption
(t−di)(t−a) ∈ W. If ci is a root of (t−di)(t−a) other than a, we have di = cci−a

i

(for 1 ≤ i ≤ n− 1) by (4.8). Applying (4.9) for Γ = {a} and ∆ := {c1, . . . , cn−1},
we see that the minimal polynomial of ∆ ∪ Γ is given by

fΦt−a(∆) · (t− a) = f{d1,...,dn−1} · (t− a) = g(t− a) = f.

(Here, f{d1,...,dn−1} = g since g ∈ W.) ¿From this, we see that f ∈ W. ¤

Remarks 5.2.

(1) The result (5.1) is essentially a specialization of Theorem 3 in Chapter II of
[Or] to W-polynomials. We presented here a treatment of (5.1) for two reasons.
First, Ore’s proof for his Theorem 3 has not been re-examined in the literature for
quite some time, and is likely to be difficult for a modern reader to follow. In fact,
we ourselves were not able to fill in some of the omitted steps in Ore’s proof. Thus,
it seems that an alternative treatment is desirable. Second, Ore’s Theorem 3 was
proved for the more general class of completely reducible polynomials. Since W-
polynomials are so special (and also so nice!) in nature, it would seem reasonable
to give a direct proof of (5.1) in our context without taking a detour into Ore’s
theory of completely reducible polynomials. For further generalizations of Ore’s
result, see, e.g. [Co2: III.6.11].

(2) One may wonder if, in the statement of (5.1)(3), the word “factor” can be
replaced by “right factor”. The following example shows that this is not the case.
Let R = K[t, S] where K = Q((x)) and S is the Q -endomorphism of K defined
by S(x) = x2. Clearly,

h(t) := t (t− x) =
(
t− x2

)
t ∈ W.

It is easy to see that (t − x) t /∈ W, and hence f(t) := (t − x) t (t − x) /∈ W by
(5.1). But the reader can check that the only monic quadratic right factor of f(t)
is h(t), and hence “all” such right factors of f are W-polynomials.

2By this, we mean that f can be written as a product of linear polynomials in R.
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(3) Note that (3) ⇒ (1) in (5.1) does not mean that f(t) = (t−a1) · · · (t−an) ∈
W if (t− ai)(t− ai+1) ∈ W for every i < n. (An obvious counterexample is given
by t(t−1)t over a field K.) In other words, the “factor” condition in (5.1)(3) must
be imposed on every monic quadratic polynomial q such that f = f1qf2 for some
f1, f2 ∈ R.

(4) For any W-polynomial f(t) = (t−an) · · · (t−a1), let fi(t) = (t−ai) · · · (t−a1)
(i ≤ n). By (5.1)(2), fi ∈ W, so we have rk V (fi) = i (for each i). In particular,
we have strict inclusions

{a1} = V (f1) ( V (f2) ( · · · ( V (fn).

This generalizes a result of Haile and Rowen [HR:Prop. 1.1] in several ways. First
our result holds in the (S,D) setting, and for general W-polynomials (instead of
minimal polynomials of algebraic elements over the center). Second, the above
shows that not only V (fi) ( V (fi+1), but actually rkV (fi) < rk V (fi+1).

Our next goal is to obtain some necessary and sufficient conditions for a product
of two (monic) polynomials to be a W-polynomial (Theorem 5.6). In preparation
for this, we first prove the following key result concerning the “llcm” of two polyno-
mials, one of which is Wedderburn: this is an interesting application of the “closure
property” in (4.13)(5).

Proposition 5.3. Let ` = llcm(f, h), where h ∈ R is monic and f ∈ W, and let
` = pf = gh, where p, g ∈ R are monic. Then g ∈ W, and V (g) ⊆ im(Φh).

Note that the first conclusion here is a generalization of the fact that a left
(monic) factor of a Wedderburn polynomial is Wedderburn, by considering the
special case where f = gh. The second conclusion in this special case gives a
necessary condition for gh to be Wedderburn, which will turn out to be sufficient
as well, if g, h ∈ W.

Proof of (5.3). Let Π := Φh

(
V (f) \ V (h)

) ⊆ im(Φh). For a ∈ V (f) \ V (h), we
have by (4.8):

0 = `(a) = g(Φh(a)) h(a) =⇒ g(Φh(a)) = 0,

so g(Π) = 0. Let g0 be the minimal polynomial of Π. Reversing the argument
above, we see that g0h vanishes on V (f)\V (h), and hence on V (f). Since f ∈ W,
we have g0h ∈ Rf . Thus, g0h is a common left multiple of f and h. Since
deg(g0) ≤ deg(g), we must have g = g0 ∈ W. Finally, by the closure prpperty
(4.13)(5), V (g) = V (g0) = Π ⊆ im(Φh), as desired. ¤

A second result we need for the proof of (5.5) is a certain characterization of
im(Φh) for polynomials h ∈ W. This depends rather heavily on some results
in [LL4]. Specifically, we’ll need from that paper the symmetry theorem on W-
polynomials [LL4: (4.5)], which states that a monic polynomial h belongs to W iff
hR =

⋂
j (t− bj)R for some set of elements {bj} in K. Following [LL4], we write

(5.4) V ′(h) := {b ∈ K : h ∈ (t− b)R};
this is the set of “left roots” of h. If h ∈ W and deg(h) = r, [LL4: (4.5)] also
implies that one can write hR =

⋂r
j=1 (t − bj)R for suitable b1, . . . , br ∈ K. In

analogy with the case of right roots, we shall call any such set {b1, . . . , br} a P-basis
for the left root set V ′(h).
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Proposition 5.5. Let h ∈ W, and let {b1, . . . , br} be any P-basis of V ′(h). Then
im(Φh) =

⋂
j im

(
Φt−bj

)
.

Proof. The inclusion “⊆” follows from the last statement of (4.7). For the reverse
inclusion, let x ∈ ⋂

j im
(
Φt−bj

)
, say x = c

cj−bj

j , where cj 6= bj . Then the minimal
polynomial fj for {bj , cj} has the form (t − x)(t − bj) as well as the form (t −
yj)(t− cj), where yj := b

bj−cj

j (see (3.3)). According to [LL4: (4.4)], the left ideal
representation Rfj = R(t − bj) ∩ R(t − cj) leads to a right ideal representation
fjR = (t− x)R ∩ (t− yj)R. Therefore,

(t− x)hR = (t− x) ·⋂j (t− bj)R

=
⋂

j (t− x)(t− bj)R

=
⋂

j [ (t− x)R ∩ (t− yj)R ]

= (t− x)R ∩ ⋂
j (t− yj)R.

By [LL4: (4.5)], this implies that (t − x)h ∈ W. It then follows from (5.3) that
x ∈ im(Φh). ¤

Having proved (5.3) and (5.5), we can now formulate various criteria for a product
of two W-polynomials to be a W-polynomial.

Theorem 5.6. For f := gh ∈ R where g, h are monic, the following are equiva-
lent:

(1) f ∈ W.
(2) g, h ∈ W, and V (g) ⊆ im(Φh).
(3) g, h ∈ W, and some P-basis B of V (g) is contained in im(Φh).
(4) g, h ∈ W, and (t− a)(t− b) ∈ W for every a ∈ V (g) and b ∈ V ′(h).
(5) g, h ∈ W, and, for some P-basis {ai} of V (g) and some P-basis {bj} of

V ′(h), we have (t− ai)(t− bj) ∈ W for all i, j.

In case f ∈ W, a P-basis for V (f) is given by A ∪ C where C is a P-basis for
V (h) and A is any subset of K \ V (h) that is mapped bijectively by Φh to a
P-basis for V (g).

Proof. (1) =⇒ (2) follows from the Factor Theorem and (5.3), and (2) =⇒ (3) is
trivial. (We have (3) =⇒ (2) too, by the “closure property” of im(Φh). But we
can get by below without using this.)
(3) =⇒ (1). For the P-basis B for V (g) given in (3), take any set A ⊆ K \ V (h)
that Φh maps bijectively onto B. Since (by assumption) g, h ∈ W, we have
fB = g, and fV (h) = h. By (4.9),

fA∪V (h) = fΦh(A\V (h)) fV (h) = fB fV (h) = gh.

This shows that gh ∈ W, proving (1). Now take a P-basis C for V (h). Then,

fA∪C = fA∪V (h) = gh = f.

Since |A ∪C| = |A|+ |C| = deg(f), A ∪C is necessarily a P-basis for V (f). This
proves the claim in the last paragraph of the theorem.

Next, (1) =⇒ (4) follows from the Factor Theorem, and (4) =⇒ (5) is clear. So
we can complete the proof of (5.6) with the following last step.
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(5) =⇒ (3). Since (t − aj)(t − bj) ∈ W, it has a root cj 6= bj , and hence ai =
c
cj−bj

j ∈ im(Φt−bj
) for all i, j. Thus, ai ∈ im(Φh) by (5.5). Since this holds for all

i, we have (3). ¤

Remarks 5.7. (A) The advantage of the criterion (5) is that it reduces the checking
of f ∈ W to verifying that a certain finite set of quadratic polynomials are W-
polynomials. In §6, we’ll see that quadratic W-polynomials are detected by the
solvability of certain (S,D)-metro equations. In view of this result (see (6.6)),
(5.6) has the effect of reducing the testing of f = gh ∈ W to the solvability of a
finite number of (S, D)-metro equations.

(B) Note that the criterion V (g) ⊆ im(Φh) in (2) above has a very clear meaning
in the classical case when K is a field and (S, D) = (I, 0). Here, we have g(t) =
(t−b1) · · · (t−br) where the bi ’s are distinct, and h(t) = (t−a1) · · · (t−as) where
the aj ’s are distinct. Since (by (4.6)(1)) im(Φh) = K \ {a1, . . . , as}, the condition
V (g) ⊆ im(Φh) amounts to {b1, . . . , br} and {a1, . . . , as} being disjoint, which is,
of course, the expected criterion for gh to be again a W-polynomial.

There is another major characterization for gh ∈ W that is not yet covered in
Theorem 5.6. This characterization involves idealizers of left (principal) ideals in
the ring R. Recall that, for g ∈ R, the idealizer of the left ideal Rg ⊆ R is defined
to be

(5.8) IR(Rg) = {k ∈ R : gk ∈ Rg },
which is just the largest subring of R in which Rg is an ideal. Repeating a
part of the proof of (5.3) (with f, h there replaced by g, k), we obtain easily
the following characterization of the idealizer IR(Rg) via the Φ-transform, (The
“closure property” argument in the proof of (5.3) is not needed for this.)

Proposition 5.9. For any polynomials g′, k ∈ R and any W-polynomial g, we
have

g′k ∈ Rg ⇐⇒ Φk(V (g) \ V (k)) ⊆ V (g′).

In particular, k ∈ IR(Rg) iff Φk(V (g) \ V (k)) ⊆ V (g).

Using this result, we can now give our new criteria for a product of two W-
polynomials g, h to be a W-polynomial, in terms of the solvability of the equation
ug + hv = 1, and in terms of the idealizer IR(Rg) of Rg.

Theorem 5.10. For g, h ∈ W, the following are equivalent:
(1) gh ∈ W.
(2) 1 ∈ Rg + hR.
(3) IR(Rg) ⊆ Rg + hR.
(4) For every k ∈ R such that Φk

(
V (g) \V (k)

) ⊆ V (g), we have k ∈ Rg +hR.

(5) There exists k ∈ R such that V (g) ⊆ Φk

(
V (g) \ V (k)

)
and k ∈ Rg + hR.

Proof. The equivalence of (3) and (4) follows from (5.9). In the following, we shall
prove the equivalence of (2), (3), and then prove the equivalence of (1), (2) and (5).
(3) =⇒ (2) is trivial, since 1 ∈ IR(Rg).
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(2) =⇒ (3) Write 1 = ug + hv, where u, v ∈ R. For any k ∈ IR(Rg), we have
gk ∈ Rg, and so

k = 1 · k ∈ (Rg + hR) · k ⊆ R · gk + hR ⊆ Rg + hR.

(2) =⇒ (5) is trivial, since (2) implies that (5) holds for k = 1. (Recall that Φ1 is
the identity map on K.)

(5) =⇒ (1). Let k be as in (5), and write k = ug + hv where u, v ∈ R. To
prove (1), it suffices (according to (5.6)) to verify that V (g) ⊆ im(Φh) . For any
a ∈ V (g), write a = Φk(b) for a suitable b ∈ V (g) \ V (k). Since

0 6= k(b) = (ug)(b) + (hv)(b) = (hv)(b),

we have
a = Φk(b) = bk(b) = b(hv)(b) = Φhv(b) = Φh(Φv(b)),

where the last equality follows from (4.7). Therefore, a ∈ im(Φh), as desired.

(1) =⇒ (2). This is the hardest (and perhaps the most interesting) implication
of all. To begin its proof, assume that gh ∈ W. Fix a P-basis A for V (h), and
extend it to a P-basis A ∪B for V (gh). Let g′ = fB (the minimal polynomial of
B). Then gh = h′g′ for some h′ ∈ R. Since gh ∈ W, it is the minimal polynomial
of A ∪ B, and thus gh = llcm {g′, h}. Now A ∪ B is P-independent, so we have
V (g′) ∩ V (h) = ∅. By (4.2), this implies that there exist u, v ∈ R such that
ug′ + vh = 1. We claim that

(5.11) {p ∈ R : ph ∈ Rg′} = Rg.

The inclusion “⊇” is clear from gh = h′g′, so we only need to prove “⊆”. Let
p ∈ R be such that ph ∈ Rg′. Then ph is right divisible by both h and by g′,
and hence by llcm {h, g′} = gh. Writing ph = qgh (for a suitable q ∈ R), we
see by cancellation of h that p = qg ∈ Rg, thus proving (5.11). Left-multiplying
1 = ug′ + vh by h, we get hug′ + hvh = h, and so (hv− 1)h ∈ Rg′. By (5.11), we
have then hv − 1 ∈ Rg, from which we get 1 ∈ Rg + hR, as desired. ¤

Remarks 5.12. (1) For readers who are familiar with P. M. Cohn’s book [Co2],
it is relevant to point out that, in a left principal ideal domain, the condition
1 ∈ Rg + hR is equivalent to the existence of what Cohn called a “comaximal
relation” gh = h′g′ in R (see [Co2: p. 28, p. 171]). Theorem 5.10 above is partly
inspired by Cohn’s result.

(2) In the special case where g(t) = t − b, there is an alternative proof for
(1) =⇒ (2) in (5.10) which yields an “explicit” expression u1g + hv1 = 1. In fact,
if (t− b)h ∈ W, we know from (5.3) that b ∈ im(Φh), and therefore, by (4.13)(3),
1 = λh,b(a) = h(ba)a for some a ∈ K∗. By the Product Formula, we can rewrite
this as (h · a)(b) = 1. Then by the Remainder Theorem (applied to h · a “divided
by” t − b), we have h · a = q(t)(t − b) + 1 for some q ∈ R. Therefore, we have
a solution for u1g + hv1 = 1 with u1 := −q of degree one less than deg(h), and
with v1 := a ∈ K.

(3) In the general case, the referee pointed out that, starting from any equation
ug + hv = 1 (u, v ∈ R), one can always derive a new equation of the same type
with the degree bounds deg(v) < deg(g) and deg(u) < deg(h) (assuming that
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deg(g), deg(h) > 0). In fact, using the division algorithm to write v = wg + v1

with deg(v1) < deg(g), we get

1 = ug + hv = ug + h(wg + v1) = (u + hw)g + hv1.

Setting u1 = u + hw, we have

deg(u1g) = deg(hv1) = deg(h) + deg(v1) < deg(h) + deg(g).

Therefore, deg(u1) < deg(h), along with deg(v1) < deg(g).

Combining (5.10) with (5.6), we reach the following curious conclusion:

Corollary 5.13. For g, h ∈ W, let {ai} and {bj} be as in (5.6)(5). Then we
can solve the equation ug + hv = 1 iff, for each i, j, we can solve the equation
1 = uij(t− bj) + (t− ai)vij.

§6. Algebraic Conjugacy Classes and (S, D)-Metro Equations

We begin this section by giving some applications of the results in §5 to the theory
of algebraic (S, D)-conjugacy classes initiated in [LL2]. Such algebraic conjugacy
classes and their minimal polynomials have many special properties, as the following
two results show.

Theorem 6.1. Suppose ∆ := ∆S,D(b) is an algebraic set, with minimal polynomial
f∆. Then:

(1) A monic polynomial h ∈ R is a right factor of f∆ iff h ∈ W and h(t) =
(t− br) · · · (t− b1) for some b1, . . . , br ∈ ∆.

(2) Suppose each of h1, . . . , hr is a monic right factor of f∆. Then hr · · ·h1 is
a right factor of f∆ iff it is a W-polynomial. (For instance, for d ∈ K∗, (t−bd)h1

is a right factor of f∆ iff d ∈ im
(
λh1,b

)
.)

Proof. (1) First assume f∆ ∈ R · h. By by the Factor Theorem, h ∈ W. As
a W-polynomial, h has a splitting (t − br) · · · (t − b1) where each bi is (S, D)-
conjugate to some element of V (h). Since V (h) ⊆ V

(
f∆

)
= ∆, and ∆ is closed

under (S, D)-conjugation, we have each bi ∈ ∆. Conversely, if h ∈ W and

h(t) = (t− br) · · · (t− b1) with bi ∈ ∆,

then by (2.6), V (h) ⊆ ∆ = V (f∆). Therefore, it follows from (3.4) that h is a
right factor of f∆.
(2) The “only if” part follows from the Factor Theorem. For the converse, assume
that hr · · ·h1 ∈ W. By (1), each hi is a product of linear factors of the form t−d
where d ∈ ∆. Then, hr · · ·h1 has the same property. Therefore, by (1) again,
hr · · ·h1 is a right factor of f∆. The statement in parentheses follows from (5.6)
and (4.13)(3), by letting r = 2 and h2 = t− bd. ¤

Note that the “if” parts of the Theorem remain true with the adjective “right”
replaced by “left” everywhere. In fact, by [LL2: (5.2)], f∆ is a left invariant
polynomial in the sense that f∆R ⊆ Rf∆.3 For such a polynomial, any right
factor is automatically a left factor.

3In [LL2], we have called f∆ right invariant instead. The referee pointed out that f∆ should
be called left invariant in accordance with the usage in [Co2: p. 203].
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Theorem 6.2. Let ∆i = ∆S,D(bi) (1 ≤ i ≤ r) be different algebraic conjugacy
classes of K, and let h(t) ∈ K[t, S, D] be a polynomial with no zeros on

⋃
i ∆i.

Then
(a) For each i, λh,bi : K → K is a bijection, and Φh : ∆i → ∆i is a bijection.
(b) Assume that h above is a W-polynomial. Then, for any W-polynomial g(t)

with V (g) ⊆ ⋃
i ∆i, we have f := gh ∈ W, and V (f) = V (h) ∪ Φ−1

h (V (g)).

Proof. (a) Since ∆i is an algebraic (S, D)-conjugacy class, K is finite-dimensional
as a right vector space over the division ring Ci := CS,D(bi), by [LL2: Th. (5.10)].
Now the lack of zeros of h on ∆i means that the right Ci-linear map λh,bi : K →
K has a zero kernel. Therefore, λh,bi

must be an isomorphism. From this, it
follows from (3) and (4) of (4.13) that Φh : ∆i −→ ∆i is a bijection.
(b) Let h and g be as in (b). Then V (g) ⊆ ⋃

i ∆i implies that V (g) ⊆ im(Φh),
since Φh is a bijection from

⋃
i ∆i to itself. Thus, by (5.6), f = gh ∈ W, and the

Product Formula implies that V (f) = V (h) ∪ Φ−1
h (V (g)). ¤

Theorem 6.2 has some interesting consequences, which we shall now explore.

Corollary 6.3. Let c ∈ K be such that the class ∆ := ∆S,D(c) is (S, D)-algebraic.
If t − c is a factor of f(t) ∈ K[t, S, D ] (in the sense of §5), then f has a root
in ∆ . In particular, if a polynomial has c as a left root, then it has a (right) root
that is (S, D)-conjugate to c.

Proof. Write f(t) = h′(t)(t − c)h(t), where h, h′ are suitable polynomials. We
may assume h has no root in ∆, for otherwise we are done already. By (6.2)(a),
Φh is then a bijection from ∆ to itself. Therefore, c = Φh(c′) for some c′ ∈ ∆.
Evaluating f0(t) := (t−c)h(t) on c′ by the Product Formula, we see that f0(c′) =(
Φh(c′)− c

)
h(c′) = 0. Thus, c′ is a root of f0, and hence of f . ¤

Remark. In (6.3), the assumption that the class of c is (S, D)-algebraic turns out
to be essential, even in the classical case when (S, D) = (I, 0). An example to this
effect, with deg(f) = 2, will be constructed in §10 below.

Corollary 6.4. Let {∆i = ∆S,D(bi)} be n different algebraic conjugacy classes
of K. For any b /∈ ⋃

i ∆i, f(t) = (t − bn) · · · (t − b1)(t − b) is a W-polynomial,
with V (f) = {a1, . . . , an, b} where ai ∈ ∆i for each i.

Proof. The conclusion is clear if n = 0, and follows easily from (6.2) by induction
on n. In the inductive step, we take h(t) to be

(t− bn−1) · · · (t− b1)(t− b),

and g(t) to be t− bn. (Alternatively, we could also have applied (6.3).) ¤

Remark. In the case when (S,D) = (I, 0) and K is algebraic over its center
F , all conjugacy classes of K are algebraic, so the above corollary implies that,
whenever b1, . . . , bn are pairwise non-conjugate elements in K, the zeros of the
polynomial (t− bn) · · · (t− b1) are {a1, . . . , an}, where each ai is conjugate to bi

(and a1 = b1). This result has been proved independently by Lok Sun Siu, in the
case where dimF K < ∞. [As Siu has pointed out, this result may be viewed as the
converse to the result that, if b1, . . . , bn are pairwise non-conjugate in K, there is
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a unique monic polynomial of degree n that vanishes on {b1, . . . , bn} (namely, the
minimal polynomial of this set).] This result is, however, not true in general for
centrally infinite division algebras, as we will see in an example in §10.

Next we come to the topic of metro equations. In the theory of division rings,
the study of the equation ax − xb = d has had a long history, going back to
the work of R. E. Johnson [Jo] and N. Jacobson [Ja2] in the 1940s. By a slight
abuse of the terminology of P. M. Cohn ([Co2], [Co3]), we shall call ax − xb = d
a “metro equation” over K. (For an account on the origin of this terminology,
see [Co3: p.418].) It turns out that the notion of metro equations bears a close
relationship to that of Wedderburn polynomials. In the following, we’ll try to
explain this interesting relationship. In the process of doing so, we actually obtain
an extension of the metro equation notion to the general (S,D)-setting, which did
not seem to have been introduced before.

For a, b, d ∈ K, let us call

(6.5) ax− S(x)b−D(x) = d

the (S, D)-metro equation (associated with a, b, d). (Of course, when (S, D) =
(I, 0), (6.5) boils down to the ordinary metro equation ax − xb = d.) In the case
d = 0, (6.5) has an obvious solution x = 0, so in the following, we’ll assume d 6= 0
whenever (6.5) is considered. The following result gives the precise relationship
between (6.5) and quadratic Wedderburn polynomials, in the general (S, D)-setting.
(We continue to write W for the set of W-polynomials in R = K[t, S,D].)

Theorem 6.6. For any a, b ∈ K and d ∈ K∗, the following are equivalent :
(1) The (S,D)-metro equation ax− S(x)b−D(x) = d has a solution in K ;
(2) The equation bx = a− dx−1 has a solution x ∈ K∗ ;
(3) (t− bd)(t− a) ∈ W .
(4) 1 ∈ R · (t− bd) + (t− a) ·R.

In fact, x ∈ K∗ is a root for the equation in (2) (or the equation in (1)) iff bx is
a root of (t− bd)(t− a) different from a.

Proof. In view of the definition of (S,D)-conjugation, the equation in (2) amounts
to

S(x)bx−1 + D(x)x−1 = a− dx−1.

Right multiplying this by x and transposing, we obtain the (S, D)-metro equation
in (1). This shows that (1) ⇐⇒ (2). (Note that, since d ∈ K∗, any solution x for
(1) is necessarily nonzero.)

Next, we prove (2) ⇐⇒ (3). For h(t) := t − a, we may rewrite the equation in
(2) in the form

−d = (bx − a)x = h(bx)x = λh,b(x).

Thus, (2) amounts to d ∈ im
(
λh,b

)
, or equivalently, bd ∈ im(Φh) (by (4.13)(3)).

By (1) ⇐⇒ (3) in (5.6), this last condition is equivalent to (t− bd)h(t) ∈ W.
Finally, (3) ⇐⇒ (4) follows from (5.10) since t−a and t−bd are W-polynomials.

The proof for the last statement in the Theorem can be easily extracted from the
arguments above. ¤
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Having nailed down the basic connection between W-polynomials and the (S, D)-
metro equations, it is now a simple matter to apply the result (6.1) to get useful
information on such metro equations. The two corollaries below are extensions of
classical results to the general (S,D)-setting; see the explanations after the proof
of (6.8).

Corollary 6.7. Let ∆ := ∆S,D(b) be an algebraic (S, D)-conjugacy class, and let
a ∈ K \∆, and d ∈ K∗. Then (t− bd)(t− a) ∈ W, and the (S,D)-metro equation
(6.5) has a unique solution in K.

Proof. This follows by taking p(t) = t − a in (6.1)(3), and then applying (6.6).
Since the map λp,b is bijective in this case, the proof of (6.6) shows that the solution
for the (S, D)-metro equation exists and is unique (in K). ¤

We can also deduce easily some criteria for the (S,D)-metro equation (6.5) to
be solvable, in the case when a and b lie in a single (S, D)-conjugacy class that is
algebraic.

Corollary 6.8. Let ∆ := ∆S,D(a) be an algebraic (S, D)-conjugacy class, with
minimal polynomial f(t) ∈ R. Write f(t) = g(t)(t − a), and let b ∈ ∆, and
d ∈ K∗. Then the following are equivalent :

(1) The (S,D)-metro equation ax− S(x)b−D(x) = d has a solution in K ;
(2) f(t) ∈ R · (t− bd)(t− a) ;
(3) (t− bd)(t− a) ∈ W .
(4) g(bd) = 0.

Proof. (1) ⇐⇒ (3) is directly from (6.6). By cancellation, (2) amounts to g(t) ∈
R · (t − bd), which, in turn, amounts to g(bd) = 0 (by the Remainder Theorem).
Therefore, we have (2) ⇐⇒ (4).
(2) =⇒ (1). By the remarks made before (3.2), f = f∆ ∈ W . Therefore, by the
Factor Theorem 5.1, (2) implies that (t − bd)(t − a) ∈ W . Now (1) follows from
(6.6).
(1) =⇒ (2). Reversing the argument, (1) implies that q(t) := (t− bd)(t− a) ∈ W ,
by (6.6). Since a, bd ∈ ∆, (6.1)(2) yields f(t) ∈ R · q(t). ¤

In the classical case where (S,D) = (I, 0), (6.7) and (6.8) are well known, and
can be found in Theorem 8.5.4 of [Co3]. In this case, (6.8) was first proved by
P. M. Cohn in [Co1], and the special case when b = a goes back to R. E. Johnson
[Jo: Thm. 2]. But even in this classical case, our proofs differ substantially from
those of Cohn and Johnson.

The following special case of (6.8) will perhaps help us better appreciate its
meaning.

Corollary 6.9. Suppose ∆ := ∆S,D(a) is algebraic of rank 2, with minimal
polynomial f(t) = (t−e)(t−a), and let b ∈ ∆, d ∈ K∗. Then ax−S(x)b−D(x) = d
is solvable in K iff bd = e.

For instance, when (S, D) = (I, 0) and K is the division ring of the real
quaternions, this Corollary says that, if a, b /∈ R are conjugate quaternions, then
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ax−xb = d has a solution iff db = a d where a is the quaternionic conjugate of a.
In the case when a = b, this was noted by R. E. Johnson in 1944 (see [Jo: Cor. 1]).

By specializing the parameters a, b, d and varying the choices of S and D in
(6.6), we get many nice examples of quadratic Wedderburn polynomials. Let us
record some explicit ones.

Examples 6.10.

(1) t(t − a) ∈ K[t, S] is a W-polynomial iff a 6= 0. (This follows from (6.6) by
setting D = 0, b = 0, and d = 1.)

(2) For d ∈ K∗,
(
t−D(d)d−1

)
t ∈ K[t, S, D] is a W-polynomial iff d ∈ Im(D).

(This follows from (6.6) by setting a = b = 0.)
(3) Let K be the division hull of the Weyl algebra Q 〈u, v〉 with the relation

uv − vu = 1, and take (S, D) = (I, 0). Then the quadratic polynomial f(t) =
(t− u)2 ∈ K[t] is a W-polynomial. (This follows from (6.6) by setting a = b = u
and d = 1. More directly, it also follows by checking that f(t) vanishes on both
u and u − v−1.) In fact, it can be shown that all powers (t − u)n ∈ K[t] are
W-polynomials; the proof of this will be given in [LL5]. This is noteworthy since
(t − u)n (for n ≥ 2) is not a W-polynomial over Q (u), but “becomes” a W-
polynomial when we pass from the field Q (u) to the division ring K. On the
other hand, it is easy to see that, if (K1, S1, D1) ⊆ (K2, S2, D2) (in the sense
that S2, D2 restrict to S1, D1), any W-polynomial in K1[t, S1, D1] remains a
W-polynomial in K2[t, S2, D2].

§7. The Rank Theorem

This section will be devoted to some further applications of the Factor Theorem
(5.1), particularly to questions on the union and intersection of algebraic sets and
their ranks. The principal result here is the Rank Theorem 7.3. The proof of this
requires the basic proposition below, which will also turn out to be crucial for the
applications to modular lattices we have in mind for §8.

Proposition 7.1. The intersection of any nonempty family of full algebraic sets
{∆j : j ∈ J} is also a full algebraic set, with minimal polynomial given by
rgcd{f∆j : j ∈ J}.

Proof. Let fj = f∆j , for every j ∈ J . Then V (fj) = ∆j since ∆j is full. Let
x ∈ K be any element that is P-dependent on ∆ :=

⋂
j∈J ∆j . Then x is P-

dependent on each ∆j and hence fj(x) = 0. Therefore, x ∈ ⋂
j V (fj) = ∆. This

shows that ∆ is a full algebraic set. Let p := f∆. Of course, p is a right common
divisor of the fj ’s. To see that it is the greatest right common divisor, consider
any g ∈ R that right divides all fj . By the Factor Theorem, g is a W-polynomial.
On the other hand,

V (g) ⊆
⋂

j

V (fj) =
⋂

j

∆j = ∆ = V (p),

since ∆ is full. Therefore, (3.4) implies that g is a right divisor of p. This shows
that p = rgcd{f∆j : j ∈ J}. ¤
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Remark 7.2. The fact that
⋂

j ∆j has minimal polynomial rgcd{f∆j : j ∈ J}
is generally not true if the algebraic sets ∆j are not all full . For instance, in the
division ring K of real quaternions, ∆ = {i} is full and Γ = {j, k} is not full.
The rgcd of f∆ = t − i and fΓ = t2 + 1 is t − i. But ∆ ∩ Γ = ∅ has minimal
polynomial 1.

With the aid of (the finite case of) (7.1), we can also translate our earlier Degree
Equation (4.1) into the following, which provides an ultimate refinement to (4.3).

The Rank Theorem 7.3. For any two algebraic sets ∆ and Γ, we have

(7.4) rk(∆) + rk(Γ) = rk(∆ ∪ Γ) + rk(∆ ∩ Γ).

In particular, rk(∆ ∪ Γ) = rk(∆) + rk(Γ) iff ∆ ∩ Γ = ∅.

Proof. Let f := f∆ = f∆, h := fΓ = fΓ, and p := rgcd(f, h), q := llcm(f, h).
Then q = f∆∪Γ by (4.3), and p = f∆∩Γ by (7.1). Therefore, the Degree Equation

deg(f) + deg(h) = deg(p) + deg(q)

in (4.1) transcribes into (7.4). The last statement in the Theorem follows immedi-
ately from this equation. ¤

Remark 7.5. The above Rank Theorem may be viewed as an analogue of the well-
known dimension equation for the sum and intersection of two finite-dimensional
subspaces in a given vector space. This analogy, however, may belie the depth
of (7.4). As a matter of fact, the usual approach to the dimension equation for
vector subspaces does not seem to work for the proof of (7.3). After observing
that rk(∆ ∪ Γ) = rk

(
∆ ∪ Γ

)
(which is quite easy to prove), we need only prove

(7.3) in the case when ∆ and Γ are both full. Following the “usual” proof, we
would start with a P-basis {c1, . . . , cr} for ∆ ∩ Γ, and complete this to a P-basis
{c1, . . . , cr, ar+1, . . . , an} for ∆, and to a P-basis {c1, . . . , cr, br+1, . . . , bm} for Γ,
where n = rk(∆), and m = rk(Γ). It is easy to see that the union ∆ ∪ Γ is
P-dependent on the set

(7.6) C := {c1, . . . , cr, ar+1, . . . , an, br+1, . . . , bm},
and hence we get

rk(∆ ∪ Γ) ≤ |C| ≤ n + m− r = rk(∆) + rk(Γ)− rk(∆ ∩ Γ).

To see that equality holds here would require proving that the set C in (7.6) is
P-independent. This fact does not seem to be easily checkable from the definition
of (and known facts about) P-independence, although, of course, we do know it to
be true once we have proved (7.4).

§8. A Lattice Duality

Results such as (4.3) and (7.1) in the previous sections lead us quickly to the
construction of several lattices, as follows. For the first one, consider the poset
F = F(K, S,D) of all full algebraic sets in K (with respect to (S, D)), where the
partial ordering is given by inclusion:

(8.1) ∆ ≤ Γ ⇐⇒ ∆ ⊆ Γ (for ∆, Γ ∈ F ).
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This poset is a lattice, with ∆∧Γ given by ∆ ∩ Γ (which lies in F by (7.1)), and
with ∆ ∨ Γ given by ∆ ∪ Γ . (The union ∆∪ Γ is algebraic, but may not be full ,
as the case |∆ | = |Γ | = 1 already shows.) Note that the lattice F has a smallest
element, given by the empty set ∅ (see (3.2)(1)).

In the majority of cases, F will not have a largest element. (In fact, F has a
largest element iff K itself is an algebraic set; e.g. in the case when K is a finite
field.) Technically, however, it would be convenient to have a largest element. We
can achieve this by introducing a lattice F∗, which is defined to be just F if K
happens to be (S, D)-algebraic, and F adjoined with one point K otherwise (this
point being larger than all other points). We shall call F∗ the augmented lattice
of full algebraic sets.

To get a lattice in the context of (skew) polynomials, we consider the set W =
W(K, S, D) of all W-polynomials, partially ordered by:

(8.2) f ≤ h ⇐⇒ Rf ⊆ Rh ⇐⇒ h is a right divisor of f (for f, h ∈ W).

The poset W is again a lattice: for f, h ∈ W as above, f ∨ h is given by
rgcd(f, h) (this being a W-polynomial by the Factor Theorem), and f ∧h is given
by llcm(f, h) (this being a W-polynomial since it is the minimal polynomial of
V (f) ∪ V (h) by (4.3)). The lattice W has a largest element, given by 1 ∈ F , and
it will have a smallest element iff K happens to be (S, D)-algebraic. (The smallest
element in the latter case is the minimal polynomial of K itself. For instance, if
K = Fq and (S, D) = (I, 0), then this smallest element is tq − t.) In analogy with
the case of full algebraic sets, we can introduce an augmented W-polynomial lattice
W∗, which is defined to be W if K is (S, D)-algebraic, and W adjoined with the
polynomial 0 otherwise (this being smaller than all other W-polynomials).

Remark 8.3. Of course, there are two other lattices lurking in the background
of the ones we have introduced. If we write L = LR for the set of all (principal)
left ideals in R, then L is a (well-known) lattice under the usual partial ordering
given by inclusion. For convenience, we shall “identify” a monic polynomial f
with the principal left ideal R · f it generates. Then, by (4.3) and (7.1), W and
W∗ are sublattices of L. Similarly, we can look at the lattice A of all algebraic
subsets of K, with the point K adjoined if necessary. Here, the partial ordering
is again given by inclusion, and ∆ ∨ Γ is simply given by ∆ ∪ Γ (without taking
the closure). We have the inclusions F ⊆ F∗ ⊆ A, although here F and F∗ are
no longer sublattices of A. If we define mappings

σ : L −→ A and τ : A −→ L
by taking zero sets and taking vanishing polynomials, we get a Galois connection
between L and A (in the sense of [St: p.xx]). The posets W∗ and F∗ are pre-
cisely the sets of “closed points” under this Galois connection. The fact that these
two posets are anti-isomorphic under the maps σ and τ is a general conclusion
deducible from the basic theory of Galois connections.

Theorem 8.4. For a fixed triple (K, S, D), we have the following :
(1) F∗ and W∗ are both complete modular lattices. The maps ∆ 7→ f∆ and

f 7→ V (f) (extended in the obvious way) define mutually inverse lattice dualities
between F∗ and W∗.
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(2) The map “rk” (extended in the obvious way) is the “dimension function” on
the modular lattice F∗ (in the sense of lattice theory), and the degree map “deg”
is the “dual dimension function” on the modular lattice W∗.

(3) The (nontrivial) minimal elements (the so-called atoms) of the lattice F∗
are the singleton subsets of K, and the (proper) maximal elements of the lattice
W are the monic linear polynomials in R.

(4) A subset A ⊆ K is P-independent in our sense iff the singleton (full alge-
braic) sets {a} (a ∈ A) are independent in the lattice F∗ in the sense of lattice
theory, as expounded, e.g. in [CD: p. 46].

(5) For f ≤ g ∈ W, the “interval” [f, g] in the lattice W is isomorphic to the
lattice of all R-submodules of Rg/Rf .

Proof. First let us clarify the phrase “extended in the obvious way” (used twice
above, in (1) and in (2)). When K itself is not (S, D)-algebraic (which is the
majority of cases), we have the adjoined points K in F∗ and 0 in W∗. We
simply make these correspond to each other. This is reasonable, since V (0) is
indeed K, and the “minimal polynomial” of K can only be taken to be 0 if K is
not algebraic. (See Footnote (1).) To define “rk” and “deg” on the adjoined points,
of course we use the usual conventions: deg (0) = ∞, and rk (K) = ∞ if K is not
(S,D)-algebraic.

Certainly the maps set up in the Theorem are inverses of one another, on F∗
and on W∗. If f ≤ h in W∗ (or even in L as in (8.3)), then f ∈ Rh, and so
V (f) ≥ V (h) in F∗. On the other hand, if ∆ ≤ Γ in F∗ (or even in A as in
(8.3)), then fΓ ∈ R · f∆, and so f∆ ≥ fΓ in W∗. This checks, in particular, that
our maps define poset dualities (and hence lattice dualities) between F∗ and W∗.

In view of this lattice duality, it is sufficient to show that W∗ is a complete
modular lattice. Now it is well-known that L (defined in (8.3)) is a complete
modular lattice. To prove the same for W∗, it is convenient to view W∗ as a
sublattice of L. Consider any subset T of W∗. By the Factor Theorem (5.1), it
is clear that the join

∨
T ∈ L is actually in W∗. As for the meet

∧
T ∈ L, write

T = {Rfi : i ∈ I}, where (as we may assume) each fi ∈ W. Then
⋂

i Rfi = Rf
for some monic f ∈ R. It is easy to see that f is the minimal polynomial of⋃

i V (fi), and therefore
∧

T = Rf ∈ W∗. (It is possible that
⋃

i V (fi) is no
longer (S, D)-algebraic. In this case, we simply have f = 0 ∈ W∗. Otherwise,
f ∈ W.) What the above remarks showed is that W∗ is a complete sublattice of
the complete lattice L, in the sense of lattice theory (see, e.g. [CD: p. 11]). From
this observation, it follows right away that W∗ is also a complete modular lattice.
This establishes (1).

The statement (2) of the Theorem concerning “rk” and “deg” is now clear from
the definition of “dimension functions” for modular lattices, as found, for instance,
in [CD: p. 27]. (3) follows from this (and is easy to see in any case without (2)).

For (4), consider the set of singletons {{a} : a ∈ A} in the complete lattice F∗.
Such a set is independent in the lattice sense if

(∗) {a} ∧
∨
{{b} : a 6= b ∈ A} = ∅ ∈ F∗ (∀ a ∈ A).

Here,
∨ {{b} : a 6= b ∈ A} is given by the P-closure of A\{a} if this set is (S, D)-

algebraic, and is given by K otherwise. Thus, the negation of the statement (∗)
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means that some a ∈ A is P-dependent on its complement A\{a}, and this means
exactly that A ⊆ K is not a P-independent set. This proves the assertion (4).

To prove (5), note that if f ∈ W, any monic h ∈ R with Rh ⊇ Rf is also
in W by the Right Factor Theorem. Therefore, given f ≤ g in W, the interval
[f, g] in W is precisely isomorphic to the lattice of all submodules of the quotient
R-module Rg/Rf . ¤

In the proof above, the modularity of F∗ was not proved directly, but was
rather deduced from that of W∗. It is, therefore, of interest to record the following
statement, which essentially amounts to the modular law for F∗.
Corollary 8.5. Let Γ, Π and ∆ be algebraic sets, where Γ, Π are full, and
∆ ⊆ Γ. If x ∈ Γ is P-dependent on Π ∪∆ , then it is already P-dependent on the
smaller set ( Γ ∩ Π) ∪ ∆ .

Proof. The modular law in F∗, applied to the full algebraic sets Γ, Π, and ∆,
says that

(8.6) Γ ∧ (
Π ∨ ∆

)
=

(
Γ ∧ Π

) ∨ ∆ .

Suppose x ∈ Γ is P-dependent on Π ∪ ∆. Then clearly x belongs to the LHS
of (8.6). According to this equation, x must belong to the RHS, which means
that x is P-dependent on ( Γ ∩ Π) ∪ ∆ . But then x is already P-dependent on
( Γ ∩ Π) ∪ ∆, as desired. ¤

Remark 8.7. If one of Γ, Π is not full, the conclusion in the Corollary may not
hold. For instance, in the real quaternions, ∆ = {j} and Π = {k} are full, but
Γ = {i, j} is not full. Here, x = i is P-dependent on Π ∪ ∆ = {j, k}, but is
obviously not P-dependent on ( Γ ∩Π) ∪ ∆ = ∅ ∪∆ = {j}.

§9. Questions and Examples

In this section, we shall pose, and answer, some natural questions concerning the
behavior of W-polynomials and algebraic (S, D)-conjugacy classes.

The first question is prompted by the original form of Wedderburn’s Theorem in
[We]. If an element a ∈ K is algebraic over F = Z(K), with minimal polynomial
f(t) ∈ F [t], and if (t− a1) · · · (t− an) is any complete factorization of f in K[t],
Wedderburn observed that the product of the linear factors t − ai is unchanged
if they are permuted cyclically. Now, the polynomial f can also be interpreted
as the minimal polynomial of the algebraic set ∆(a) (the usual conjugacy class of
a). Taking this point of view, we can in fact give the following generalization of
Wedderburn’s result.

Proposition 9.1. Let R = K[t, D] (with S = I), and let ∆I,D(a) be an algebraic
(I, D)-conjugacy class of K, with minimal polynomial f(t) = (t− a1) · · · (t− an).
Then f is in the center of R, and the product of the linear factors in this factor-
ization is unchanged if they are permuted cyclically.

Proof. In Lemma 5.2 of [LL2], it is proved that f is a lefmail
mmmt invariant polynomial in the sense that R · f is an ideal (that is, f ·R ⊆

R · f). Now we’ll use an argument due to S. Amitsur. For any a ∈ K, we have
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fa = a′f for some a′ ∈ K. A comparison of the leading coefficients of both sides
(under the assumption that S = I) shows that a′ = a. Similarly, f · t = (bt+ c) · f
for some b, c ∈ K, and a comparison of the coefficients of terms of degree n + 1
and n shows that b = 1 and c = 0. This shows that ft = tf . Since R is
generated as a ring by K and t, the above work shows that f is central. The last
conclusion now follows easily, since if f is any central element in a domain, then
f = gh =⇒ f = hg. ¤

The above extension of Wedderburn’s result leads naturally to the following
question in the general (S, D)-setting.

Question 9.2. If f ∈ R = K[t, S, D] is the minimal polynomial of an algebraic
(S,D)-conjugacy class ∆S,D(a), and (t−a1) · · · (t−an) is a complete splitting of f
in R, is the product of the linear factors unchanged if they are permuted cyclically?

We shall show that the answer to Question (9.2) is “no”, even in the case when
∆S,D(a) has rank 2 and D = 0. To construct our counterexample, we begin with
a division ring K with an automorphism S such that S2 = Ia, where S(a) = a.
(Here, Ia denotes the inner automorphism of K sending any x ∈ K to axa−1.)
By Theorem 5.17 in [LL2], the class ∆ := ∆S,0(a) is algebraic of rank 2. Fix an
element b := ac 6= a in ∆. Then, {a, b} is a P-basis of ∆, so according to (3.3)(3),
the minimal polynomial f∆ is given by (t− bb−a)(t− a). Now

bb−a = (ac)b−a = a(b−a)c = abc−ac = aS(c)a−ac.

Let us write d := S(c)a− ac, so that f∆(t) = (t− ad)(t− a). The following lemma
gives a criterion for the two linear factors to be permutable.

Lemma 9.3. In the above notations, f∆(t) is also given by (t − a)(t − ad) iff
ad ∈ KS (the fixed-point set of S).

Proof. By direct expansion, we have

(9.4)
(t− ad)(t− a) = t2 − (

ad + S(a)
)
t + ada,

(t− a)(t− ad) = t2 − (
a + S(ad)

)
t + aad.

Since S(a) = a, these are equal iff ad ∈ KS and ada = aad. Now the lat-
ter amounts to ad = aada−1 = S2(ad), so it is already implied by the former.
Therefore, the criterion for the equality of the two polynomials in (9.4) is simply
ad ∈ KS . ¤

To construct an explicit counterexample to (9.2) (in the rank two case and with
D = 0), it thus suffices to produce a suitable pair (K,S) with a, b, c, d ∈ K as
above such that ad /∈ KS . This can be done as follows. Start with a rational
function field k(c) where k is any field, and let σ be the k-endomorphism on
k(c) defined by σ(c) = c2. We then construct the skew polynomial ring k(c) [ a; σ2 ]
(with the twist law ac = σ2(c)a = c4a). This is a principal left ideal domain, so
it has a classical left ring of quotients, K := k(c)(a, σ2), which is a division ring.
Now define a k-endomorphism on K by the rules: S(a) = a, S(c) = c2. (Note
that the relation ac = c4a is respected by S, since S(a)S(c) = ac2 = c8a, while
also S(c4)S(a) = c8a.) We do have here S2 = Ia, since

Ia(a) = a = S2(a), and Ia(c) = aca−1 = c4 = S2(c).
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(In particular, it follows that S is an automorphism of K.) Now, in the notation
of (9.3), d := S(c)a− ac = c2a− ac = (c2 − c4)a, and so

ad = S(d)ad−1

= S(c2 − c4)S(a) · a · a−1 S(c2 − c4)
= (c4 − c8) a (c4 − c8)
= (c4 − c8)(c8 − c16) a.

This element is clearly not fixed by S, so we have constructed the needed coun-
terexample.

Remark. In the above construction, we made heavy use of the fact that the
automorphism S on K is not the identity. Indeed, in the case S = I, if ∆ =
∆I,D(a) has rank 2 and f∆(t) = (t−b)(t−a) (a, b ∈ K), then f∆(t) = (t−a)(t−b)
by (9.1).

Since the counterexample produced above for Question 9.2 involved the use of
(S,D) 6= (I, 0), one might get the impression that things have gone awry as a result
of the (S, D)-twist. To correct this impression, let us now go back to the untwisted
case (S, D) = (I, 0), and consider the following alternate question to (9.2) that is
also prompted by Wedderburn’s cyclic permutation result in [We]:

Question 9.5. If f is a W-polynomial in R = K[t] and (t − a1) · · · (t − an) is
a complete splitting of f over K, is the product of the linear factors unchanged if
they are permuted cyclically?

In the following, we shall show by constructing some explicit counterexamples
that the answer to this question is also “no” in general. Again, it turns out that
counterexamples can be found already in degree two. We begin our considerations
here by a close examination of cubic minimal polynomials of elements over the
center.

Proposition 9.6. Suppose a ∈ K is cubic over F = Z(K), with minimal poly-
nomial f(t) = (t − c)(t − b)(t − a), where b, c ∈ K are conjugate to a. Then
(t− a)(t− b) ∈ W iff a, b, c pairwise commute (in which case the splitting field of
f over F is embeddable in K).

Proof. By the Factor Theorem (5.1), (t − b)(t − a) ∈ W . If ab = ba, then of
course (t−a)(t− b) ∈ W . Conversely, suppose (t−a)(t− b) ∈ W . By (6.1)(1), we
have f(t) = (t− d)(t− a)(t− b) for some d ∈ K. Since f is central, the original
factorization of f also gives f(t) = (t− a)(t− c)(t− b). Thus,

(t− d)(t− a) = (t− a)(t− c).

This gives d + a = a + c, and da = ac. Therefore, d = c, and ca = ac. It follows
that F (a, c) is a field, which must contain b (since cba ∈ F ∗.). We have thus
proved that a, b, c pairwise commute, and that F (a, c) is a splitting field of f
that is embedded in K. ¤

Proposition 9.7. Suppose K is a central F -division algebra of dimension 9,
and suppose F (a)/F is a non-Galois cubic extension contained in K. If f(t) =
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(t− c)(t− b)(t− a) ∈ F [t] is the minimal polynomial of a over F as in (9.6), then
(t− b)(t− a) ∈ W, but (t− a)(t− b) /∈ W.

Proof. If (t − a)(t − b) ∈ W, then, as in the proof of (9.6), ac = ca and F (a, c)
is a splitting field for f . Since dimF K = 9, F (a) is a maximal subfield of K.
Thus, we must have F (a) = F (a, c), so F (a)/F is Galois, a contradiction. Thus,
(t− a)(t− b) cannot be a W-polynomial. ¤

It is now easy to produce an explicit example (in the classical case (S, D) =
(I, 0)) where (t− b)(t− a) ∈ W but (t− a)(t− b) /∈ W. We can take, for instance,
Dickson’s 9-dimensional cyclic Q -division algebra K generated by two elements
x, v with the relations

(9.8) v3 + v2 − 2v − 1 = 0, x3 = 2, and xv = (v2 − 2)x.

(See [La2: p. 239].) Here, if we choose a = x, F (a) = F (x) is a non-Galois cubic
extension of Q contained in K. A straightforward calculation shows that the
minimal polynomial of x over F has a Wedderburn splitting

(9.9) t3 − 2 =
[
t + (v + 1)x

]
(t− vx)(t− x).

Thus, it follows from (9.7) that (t−vx)(t−x) is a W-polynomial, while (t−x)(t−
vx) is not. On the other hand, if we choose a = v, then F (a) = F (v) is a (Galois)
cyclic extension, and the minimal polynomial of v over F has the splitting

(9.10) t3 + t2 − 2t− 1 =
[
t− (1− v − v2)

][
t− (v2 − 2)

]
(t− v),

already in F (v)[t]. Here, of course, the product of any two of the three linear
factors is a W-polynomial over F (v) and over K.

It is worth pointing out that, in view of (6.6), an example where (t−b)(t−a) ∈ W
but (t − a)(t − b) /∈ W has also the following interpretation in terms of metro
equations: for such elements a, b ∈ K, the metro equation ax − xb = 1 has a
solution in K, but bx− xa = 1 does not.

§10. Left Root/Right Root Counterexample, and an Application

¿From (6.3), it follows that if an element c ∈ K belongs to an algebraic (S, D)-
conjugacy class, then whenever a polynomial has c as a left root, it has also a
(right) root that is (S,D)-conjugate to c. We shall now show by an example
that this statement is no longer true if ∆S,D(c) is not assumed to be (S, D)-
algebraic. In fact, our example is given in the simple (“untwisted”) case when
(S,D) = (I, 0). We shall construct a division ring K with a quadratic polynomial
f(t) = (t− c)(t− b) ∈ K[t] such that the left root c has no conjugate in K that is
a (right) root. Note that such a polynomial f will have the following properties:
(1) b and c must be nonconjugate, (2) f has a unique root b (so it is not a
Wedderburn polynomial), and (3) c is necessarily transcendental over the center
of K, according to (6.3).

Throughout this section, K denotes a division ring (with (S,D) = (I, 0)), and
CK(x) denotes the centralizer of an element x ∈ K. We begin our construction
with the following observation on split quadratic polynomials.
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Lemma 10.1. Let b, c ∈ K, and f(t) = (t − c)(t − b) ∈ K[t]. Then f(t) has a
root conjugate to c iff there exists r ∈ K∗ such that rc− br ∈ CK(c).

Proof. For any conjugate rcr−1 of c, we have

f(rcr−1) = rc2r−1 − (b + c)rcr−1 + cb =
(
rc2 − (b + c)rc + cbr

)
r−1.

It follows that f(rcr−1) = 0 iff (rc − br)c = c(rc − br), that is, iff rc − br ∈
CK(c). ¤

Now consider a twisted Laurent series division ring K = k((x, σ)), where k
is a division ring, and σ is an automorphism on k. We shall write σ in the
exponential form: a 7→ aσ, and let k0 be the division ring of fixed points of σ.
Fixing an element y ∈ k∗, we shall apply the lemma to the quadratic polynomial

(10.2) f(t) = (t− x)(t− y−1x) ∈ K[t] = k((x, σ))[t].

Lemma 10.3. f(t) has a root in K conjugate to x iff y ∈ k∗ has the form
y = (aσ + ε) a−1 for some a ∈ k∗ and some ε ∈ k0.

Proof. By a slight abuse of notation, let σ also denote the inner automorphism
on K induced by x: rσ = xrx−1 for r ∈ K. (This will not cause any confusion
since the new σ extends the given σ on k.) We look for r ∈ K∗ such that

rx− y−1xr = (r − y−1xrx−1)x ∈ CK(x);

that is, r − y−1rσ ∈ CK(x). If r = dxn + exn+1 + · · · where d, e, . . . ∈ k, d 6= 0,
then

r − y−1rσ = (dxn + exn+1 + · · · )− y−1(dσxn + eσxn+1 + · · · )
= (d− y−1dσ) xn + (e− y−1eσ)xn+1 + · · · .

If this belongs to CK(x), then d − y−1dσ ∈ k0, that is, y = dσ(d − ε)−1 where
ε ∈ k0 \ {d}. Writing a = d − ε ∈ k∗, we have y = (aσ + ε) a−1. Conversely, if y
has this form, then d − y−1dσ ∈ k0 for some d ∈ k∗. Choosing r = d, we’ll have
r − y−1rσ ∈ CK(x) by (a special case of) the calculation above. ¤

Note that f ∈ K[t] in (10.2) has a left root x. To construct such a polynomial
for which no conjugate of x is a (right) root, we need only construct a pair (k, σ)
in which there is an element y ∈ k∗ not of the form (aσ + ε) a−1, where a ∈ k∗

and ε ∈ k0. This can be accomplished as follows.

Lemma 10.4. Let k = R(y) where y is an indeterminate, and let σ be the R-
automorphism on k defined by σ(y) = 2y. Then y is not of the form (aσ +ε) a−1,
where a ∈ k∗ and ε ∈ k0.

Proof. Here, k0 = R. Assume y = (aσ + ε) a−1, or equivalently ya − ε = aσ,
where a = h(y)/g(y), with h, g ∈ R[y] \ {0}, and ε ∈ k0 = R. We may assume
that h/g is reduced to lowest terms. Then we have

(10.5)
y h(y)− ε g(y)

g(y)
=

h(2y)
g(2y)

.

The fraction on the right is reduced to lowest terms; hence so is the fraction on the
left (since deg (g(y)) = deg

(
g(2y))). This implies that g(2y) is a scalar multiple of

g(y), which in turn implies that g(y) = α·ym, where α ∈ R∗, and m ≥ 0. If m ≥ 1,
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the LHS of (10.5) is not in lowest terms, as both numerator and denominator have a
factor of y. Hence m = 0, g(y) = α, and h(2y) = y h(y)− ε α. This is impossible,
again by considering degrees in y. ¤

In the above example, the division ring K in (10.2) is not of the centrally finite
type. Indeed, if K is of the centrally finite type, we know that such an example
is impossible. This observation leads to the following curious consequence of (6.3)
and (10.3).

Proposition 10.6. Let (k, σ) be a centrally finite division ring equipped with
an automorphism σ of finite inner order (i.e. a positive power of σ is an inner
automorphism). Then any y ∈ k has the form (aσ + ε) a−1 where a ∈ k∗ and
ε ∈ {0, 1}.

Proof. Under the given hypotheses, it is known that K = k((x, σ)) is also a cen-
trally finite division ring (see, e.g. [Pi: p. 384-385]). Applying (6.3) to the quadratic
polynomial f(t) in (10.2) for any y ∈ k∗, we know that f has a root in K conju-
gate to x. Thus, by (10.3), y has the form (aσ + ε) a−1, where a ∈ k∗, and ε ∈ k
with σ(ε) = ε. If ε = 0, we get y = aσ a−1; otherwise,

y = (aσ ε−1 + 1) ε a−1 = (bσ + 1) b−1, with b := a ε−1 ∈ k∗.

This proves the Proposition for y 6= 0. If y = 0, the Proposition holds by taking
ε = 1 and b = −1. ¤

This Proposition does not supersede the Hilbert 90 Theorem, but rather, sup-
plements it. For instance, if σn = I in (10.6), and y ∈ k is such that yσn−1 · · · yσy
is not equal to 1, (10.6) implies that y has the form (aσ +1) a−1 for some a ∈ k∗.
This works with only a centrally finite assumption on k, and with no assumptions
on the restriction of σ to the center of k.

References

[Al] A. A. Albert: On ordered algebras, Bull. A.M.S. 45(1940), 521-522.
[Co1] P. M. Cohn: The range of derivations on a skew field and the equation ax − xb = c,

J. Indian Math. Soc. 37(1973), 1-9.
[Co2] P. M. Cohn: Free Rings and Their Relations, 2nd Edition, London Math. Soc. Monograph

No. 19, Academic Press, London/New York, 1985.
[Co3] P. M. Cohn: Skew Fields. Theory of General Division Rings, Encyclopedia in Math.,

Vol. 57, Cambridge Univ. Press, Cambridge, 1995.
[CD] P. Crawley and R. P. Dilworth: Algebraic Theory of Lattices, Prentice Hall Inc., Englewood

Cliffs, N.J., 1973.
[HR] D. E. Haile and L. H. Rowen: Factorization of polynomials over division algebras, Algebra

Colloq. 2(1995), 145-156.
[Ja1] N. Jacobson: The Theory of Rings, Math. Surveys, No. 2, Amer. Math. Soc., Providence,

R.I., 1943.
[Ja2] N. Jacobson: The equation x′ ≡ xd− dx = b , Bull. A.M.S. 50(1944), 902-905.
[Ja3] N. Jacobson: Finite-Dimensional Division Algebras over Fields, Springer-Verlag, Berlin-

Heidelberg-New York, 1996.
[Jo] R. E. Johnson: On the equation χα = γχ + β over an algebraic division ring,

Bull. A.M.S. 50(1944), 202-207.
[La1] T. Y. Lam: A general theory of Vandermonde matrices, Expositiones Mathematicae

4(1986), 193-215.



32 T. Y. LAM AND ANDRÉ LEROY
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