Characterizations of left orders in left Artinian rings

V. V. Bavula (University of Sheffield) *

*talk-genGoldie-12.tex
R is a ring with 1,

$\mathcal{C} = \mathcal{C}_R$ is the set of regular elements of R,

$Q = Q_{l,cl}(R) := \mathcal{C}^{-1}R$ is the left quotient ring (the classical left ring of fractions) of R (if it exists),

n is a prime radical of R and ν is its nilpotency degree ($n^\nu \neq 0$ but $n^{\nu+1} = 0$),

$\overline{R} := R/n$ and $\pi : R \to \overline{R}$, $r \mapsto \overline{r} = r + n$,

$\overline{\mathcal{C}} := \mathcal{C}_{\overline{R}}$ is the set of regular elements of \overline{R},

$\overline{Q} := \overline{\mathcal{C}}^{-1}\overline{R}$ is its left quotient ring,

$\mathcal{C}' := \pi^{-1}(\overline{\mathcal{C}}) := \{c \in R \mid c + n \in \overline{\mathcal{C}}\}$,

$Q' := \mathcal{C}'^{-1}R$.

2
A ring R is a left Goldie ring if

(i) R satisfies ACC for left annihilators,

(ii) R contains no infinite direct sums of left ideals.

Thm (Goldie, 1958, 1960). A ring R is a semiprime left Goldie ring iff it has an Artinian left quotient ring which is semi-simple.

Question: When Q does exist and is a left Artinian ring?

In all the proofs of the criteria above Goldie’s Thm is used.
Theorem. Let A be a left Artinian ring and τ be its radical. Then

1. The radical τ of A is a nilpotent ideal.

2. The factor ring A/τ is semi-simple.

3. An A-module M is semi-simple iff $\tau M = 0$.

4. There is only finite number of non-isomorphic simple A-modules.

5. The ring A is a left noetherian ring.
Robson’s Criterion.

Let \(W \) be the sum of all the nilpotent ideals of the ring \(R \).

Theorem (Robson, 1967). \(TFAE \)

1. The ring \(R \) has a left Artinian left quotient ring \(Q \).

2. (a) The ring \(R \) is \(W \)-reflective,

 (b) the ring \(R \) is \(W \)-quorite,

 (c) \(R/W \) is a left Goldie ring,

 (d) \(W \) is a nilpotent ideal of \(R \), and

 (e) the ring \(R \) satisfies ACC on \(C \)-closed left ideals.
R is W-reflective if, for $c \in R$, then $c \in C$ iff $c + W \in C_{R/W}$ ($\Leftrightarrow C' = C$).

R is W-quorite if, given $w \in W$ and $c \in C$, there exist $c' \in C$ and $w' \in W$ s.t. $c'w = w'c$.

A l.ideal I of R is C-closed if $cr \in I$, where $c \in C$ and $r \in R$, then $r \in I$.

Thm (Small’s Criterion, 1966, 1966) \(TFAE \)

1. \(R \) has a left Artinian left quotient ring \(Q \).

2. (a) \(R \) is a left Goldie ring,

(b) \(W \) is a nilpotent ideal of \(R \),

(c) for all \(k \geq 1 \), \(R/(r(W^k) \cap W) \) is a left Goldie ring,

(d) \(r + W \in \mathcal{C}_{R/W} \implies r \in \mathcal{C} \) (i.e. \(\mathcal{C}' \subseteq \mathcal{C} \)).
Thm (Hajarnavis, 1972) TFAE

1. R has a left Artinian left quotient ring Q.

2. (a) R and R/W are left Goldie rings,

 (b) W is a nilpotent ideal of R,

 (c) for all $k \geq 1$, $R/r(W^k)$ has finite left uniform dimension,

 (d) $r + W \in C_{R/W} \implies r \in C$ (i.e. $C' \subseteq C$).

His approach is very close to Small’s but improvement has been done by using some of the results of Goldie and Talintyre.
Suppose that \(\overline{R} := R/n \) is a (semiprime) left Goldie ring.

By Goldie’s Thm, \(\overline{Q} := \overline{C}^{-1} \overline{R} \) is a semi-simple (Artinian) ring.

The \(n \)-adic filtration: \(R \supset n \supset \cdots \supset n^i \supset \cdots \)

\(\text{gr } R = \overline{R} \oplus n/n^2 \oplus \cdots \oplus n^i/n^{i+1} \oplus \cdots \)

For \(i \geq 1 \), \(\tau_i := \text{tor}_C(n^i/n^{i+1}) := \{u \in n^i/n^{i+1} | \overline{c}u = 0 \text{ for some } \overline{c} \in \overline{C}\} \) is the \(\overline{C} \)-torsion submodule of the left \(\overline{R} \)-module \(n^i/n^{i+1} \).

\(\tau_i \) is an \(\overline{R} \)-bimodule. Then the \(\overline{R} \)-bimodule \(f_i := (n^i/n^{i+1})/\tau_i \) is a \(\overline{C} \)-torsion free, left \(\overline{R} \)-module.

There is a unique ideal \(t_i \) of \(R \) s. t. \(n^{i+1} \subseteq t_i \subseteq n^i \) and \(t_i/n^{i+1} \equiv \tau_i \). Clearly, \(f_i \simeq n^i/t_i \).
Thm (B., 2012) TFAE

1. The ring \(R \) has a left Artinian left quotient ring \(Q \).

2. (a) The ring \(\overline{R} \) is a left Goldie ring,
(b) \(n \) is a nilpotent ideal,
(c) \(C' \subseteq C \),
(d) the left \(\overline{R} \)-modules \(f_i \), where \(i \geq 1 \), contain no infinite direct sums of nonzero submodules, and
(e) for every element \(c \in \overline{C} \), the map \(\cdot c : f_i \rightarrow f_i, f \mapsto f \overline{c} \), is an injection.

If one of the equivalent conditions holds then \(C = C' \), \(C^{-1}n \) is the prime radical of the ring \(Q \) which is a nilpotent ideal of nilpotency degree \(\nu \), and the map \(Q/C^{-1}n \rightarrow \overline{Q}, c^{-1}r \mapsto \overline{c^{-1}r} \), is a ring isomorphism with the inverse \(\overline{c^{-1}r} \mapsto c^{-1}r \).
Corollary. Let R be a left Noetherian ring. \textit{TFAE}

1. R has a left Artinian left quotient ring.

2. $C' \subseteq C$.

3. For each element $\alpha \in \overline{C}$, there exists an element $c = c(\alpha) \in C$ such that $\alpha = c + n$.

$1 \Leftrightarrow 2$ is due to Small (1966).
Corollary. Let R be a commutative ring. TFAE

1. The ring R has an Artinian quotient ring.

2. (a) The ring \bar{R} is a Goldie ring.
 (b) n is a nilpotent ideal.
 (c) $C' \subseteq C$.
 (d) The \bar{R}-modules f_i, $1 \leq i \leq \nu$, contain no infinite direct sums of nonzero submodules.

3. (a) The ring \bar{R} is a Goldie ring.
 (b) n is a nilpotent ideal.
 (c) For each element $\alpha \in \bar{C}$, there exists an element $c = c(\alpha) \in C$ such that $\alpha = c + n$.
 (d) The \bar{R}-modules f_i, $1 \leq i \leq \nu$, contain no infinite direct sums of nonzero submodules.
4. \(R \) is a Goldie ring and \(C' \subseteq C \).

5. \(R \) is a Goldie ring and, for each element \(\alpha \in \overline{C} \), there exists an element \(c = c(\alpha) \in C \) such that \(\alpha = c + n \).

1 \(\Leftrightarrow \) 4 P. F. Smith (1972).
Theorem (B., 2012) Let R be a ring. TFAE

1. The ring R has a left Artinian ring left quotient ring Q.

2. The set \overline{C} is a left denominator set in the ring $\text{gr } R$, $\overline{C}^{-1}\text{gr } R$ is a left Artinian ring, \mathfrak{n} is a nilpotent ideal and $C' \subseteq C$.

3. The set \overline{C} is a left denominator set in the ring $\text{gr } R$, the left quotient ring $Q(\text{gr } R/\tau)$ of the ring $\text{gr } R/\tau$ is a left Artinian ring, \mathfrak{n} is a nilpotent ideal and $C' \subseteq C$.

If one of the equivalent conditions holds then $\text{gr } Q \simeq Q(\text{gr } R/\tau) \simeq \overline{C}^{-1}\text{gr } R$ where $\text{gr } Q$ is the associated graded ring with respect to the prime radical filtration.
Criteria similar to Robson’s criterion

Theorem (B., 2012) Let R be a ring. TFAE

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring \overline{R} is a left Goldie ring.

 (b) n is a nilpotent ideal.

 (c) $C' \subseteq C$.

 (d) If $c \in C'$ and $n \in n$ then there exist elements $c_1 \in C'$ and $n_1 \in n$ such that $c_1 n = n_1 c$.

 (e) The ring R satisfies ACC for C'-closed left ideals.
A left quotient ring of a factor ring

Theorem (B., 2012) Let R be a ring with a left Artinian left quotient ring Q, and I be a C-closed ideal of R such that $I \subseteq \mathfrak{n}$. Then

1. The set $C_{R/I}$ of regular elements of the ring R/I is equal to the set $\{c + I \mid c \in C\}$.

2. The ring R/I has a left Artinian left quotient ring $Q(R/I)$ and the map $Q/C^{-1}I \to Q(R/I)$, $c^{-1}r + C^{-1}I \mapsto (c + I)^{-1}(r + I)$, is a ring isomorphism with the inverse $(c + I)^{-1}(r + I) \mapsto c^{-1}r + C^{-1}I$.
