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Preliminaries

R : ring with an identity element which is not necessarily commutative,
M : left R�module,
S(M) : the set of M-valued sequences (u : N !M),
R [X ] : the algebra of the polynomials with coe¢ cients in the ring R (the
indeterminate X commutes with the coe¢ cients of R).

De�nition
A sequence u 2 S (M) is called a linear recurring sequence if it satis�es a
relation of the form

8n 2 N, u(n+ h) = ah�1u(n+ h� 1) + � � �+ a1u(n+ 1) + a0u(n),

where h 2 N and ai 2 R.

The set of M-valued linear recurring sequences with coe¢ cients in R is
denoted LRSR (M).
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Preliminaries

Problem

u, v 2 LRSR (M)) u + v 2 LRSR (M)?

α 2 R, u 2 LRSR (M)) αu 2 LRSR (M)?

Reference :
Linear recurring sequences over noncommutative rings, Journal of Algebra
and its Applications,Vol. 11, N�2. (2012)
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Preliminaries

The set S(M), endowed with the ordinary addition and multiplication by a
scalar is an R-module. We get an R [X ]-module structure for S(M) by
de�ning, for p(X ) = a0 + a1X + � � �+ ahX h 2 R [X ] :

8u 2 S (M) , 8n 2 N,

(p(X ).u)(n) = a0u(n) + a1u(n+ 1) + � � �+ ahu(n+ h).

Let u 2 S(M). Denote by Iu the annihilator of u in R [X ]. We thus have :

Iu = fp 2 R [X ], p.u = 0g.

u 2 LRSR (M), Iu contains a monic polynomial.
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Preliminaries

De�nitions
A monic polynomial contained in Iu is called characteristic polynomial of
u. A characteristic polynomial with minimal degree h is called minimal
polynomial of u and h is called order of the sequence u.
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Preliminaries

If fu = 0 and gv = 0 with fg = gf ,then

fg (u + v) = g (fu) + f (gv) = 0.

Or, if there exists ϕ,ψ such that ϕf = ψg , then

ϕf (u + v) = ϕ (fu) + ψ(gv) = 0.
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A counterexample

Example
Let k be an arbitrary ring and R = k hx , yi the ring with noncommutative
independant indeterminates x and y . Denote by u and v the linear
recurring sequences de�ned over R by :

8n 2 N, u (n) = xn and v (n) = yn.

As Rx \ Ry = f0g, then the sequence u + v is not a linear recurring
sequence.
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Case of division rings

Proposition

Let D be a division ring and M a D-module. Then the set LRSD (M) of
all M-valued linear recurring sequences with coe¢ cients in D is a
submodule of the D [X ]-module S (M).

Remark

If f (X ) = X h + ah�1X h�1 + � � �+ a0 is a characteristic polynomial for
the linear recurring sequence u, then for all α 2 D, α 6= 0, the polynomial

g (X ) = X h + αah�1α
�1X h�1 + � � �+ αa0α�1

is a characteristic polynomial for the sequence αu.
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Case of �nite dimension

Lemma (Jacobson)

Let m and d be two positive integers and let D be a division ring of
dimension d over its center F . Then, for any polynomial f (X ) 2 D [X ] of
degree m, there exists a nonzero polynomial g(X ) 2 D [X ] of degree
m(d � 1) such that f (X )g(X ) = g(X )f (X ) 2 F [X ].
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Case of �nite dimension

Determining the polynomial g (X ) .

f (X ) = Xm + am�1Xm�1 + � � �+ a0,

V = De1 �De2 � � � � �Dem ,
ϕ the endomorphisme of V de�ned by ϕ (ei ) = ei+1 if 1 � i � m� 1, and
ϕ (em) = �a0e1 � a1e2 � � � � � am�1em .
ϕ is also an endomorphism of V regarded as a vector space over F . Let h
be the characteristic polynomial of ϕ, then dividing h by f on the right, we
obtain g .
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Case of �nite dimension

Proposition
Let D be a division ring of dimension d over its center F . Let M be a
D-module. Let u and v be two elements of LRSD (M) with minimal
polynomials f1 and f2 respectively. Set s = deg f1 and t = deg f2 and
assume s � t. Let g1 be the polynomial given by Jacobson�s Lemma and
corresponding to the polynomial f1. Then :

1 The polynomial f1g1f2 is a characteristic polynomial of the sequence
u + v,

2 The linear recurring sequence u + v has order less than or equal to
ds + t.
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Example

Example
Let H be a ring of quaternions with center F and let u and v the
sequences de�ned over H by the relations :

u (0) = 1, u (1) = 0, and 8n 2 N, u (n+ 2) = iu (n+ 1) + u (n)

v (0) = v (1) = v (2) = 1, and 8n 2 N, v (n+ 3) = v (n+ 2) + jv (n) ,

with respective characteristic polynomials

f1 (X ) = X 2 � iX � 1 and f2 (X ) = X 3 � X 2 � j .
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Example (cont)

Example
We have V = He1 �He2 and the endomorphism ϕ is given by :

ϕ (e1) = e2 and ϕ (e2) = e1 + ie2.

Let (u1, � � �, u8) be the canonical basis of the vector space F 8, and remark
that

8a+ bi + cj + dk 2 H, i (a+ bi + cj + dk) = �b+ ai � dj + ck .

Then we have :

ϕ (ui ) = ui+4 for 1 � i � 4,
ϕ (u5) = u1 + u6, ϕ (u6) = u2 � u5,
ϕ (u7) = u3 + u8, ϕ (u8) = u4 � u7.
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Example (cont)

Example
We obtain the matrix :

A =

0BBBBBBBBBB@

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 �1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 �1
0 0 0 1 0 0 1 0

1CCCCCCCCCCA
,
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Example (cont)

Example
with characteristic polynomial

h (X ) = X 8 � 2X 6 + 3X 4 � 2X 2 + 1.

Dividing h (X ) by f1 (X ) , we get

g1 (X ) = X 6 + iX 5 � 2X 4 � iX 3 + 2X 2 + iX � 1.

Therefore f1g1f2 is a characteristic polynomial for the sequence u + v .
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Generating function

De�nition
Let R be a ring. The generating function of the sequence u 2 S (R) is the
formal series

Gu (X ) = ∑
n�0

u (n)X n 2 R [[X ]] .

Proposition

Let D be a division ring and let u 2 S (D) . Then the following statements
are equivalent :
1. u 2 SRLD (D) ,
2. The generating function of u is rational of the form g�1 (X ) f (X ) ,
where f (X ) and g (X ) are polynomials in D [X ] with g (0) 6= 0.
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Generating function

Proof.
Let u 2 SRLD (D) , with characteristic polynomial
p (X ) = X h � a1X h�1 � � � � � ah 2 D [X ] . Set
g (X ) = 1� a1X � � � � � ahX h. The coe¢ cient of Xm in g (X )Gu (X ) is
equal to 0 for m � h and then we have

g (X )Gu (X )

= u (0) + (u (1)� a1u (0))X + � � �
+ (u (h� 1)� a1u (h� 2)� � � � � ah�1u (0))X h�1

= f (X ) .

Hence Gu (X ) = g�1 (X ) f (X ) , with g (0) 6= 0.
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Proof.
Conversely, let u 2 S (D) and assume that the generating function of u is
(left) rational : Gu (X ) = g�1 (X ) f (X ) , where
f (X ) = a0 + a1X + � � �+ ahX h, g (X ) = b0 + b1X + � � �+ bkX k and
b0 6= 0. Then�

b0 + b1X + � � �+ bkX k
� �
u (0) + u (1)X + u (2)X 2 + � � �

�
= b0u (0) + (b0u (1) + b1u (0))X + � � �

+
�
b0u (h) + � � �+ bku (h� k)X h

�
.

Therefore, we obtain for any n 2 N,

u (n+ h+ 1)

= �b�10 (b1u (n+ h) + b2u (n+ h� 1) + � � �+ bku (n+ h� k)) ,

hence u 2 SRLD (D) .
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THANK YOU
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