
Coding Theory as Pure Mathematics

Steven T. Dougherty

July 1, 2013



Origins of Coding Theory
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Foundations

To communicate you need:

I Efficiently encode the information.

I Have a code where the distance between vectors is as large as
possible so that errors can be corrected.

I Have as many elements in the code as possible so that as
much information as possible can be sent.

I An efficient algorithm to decode the information.
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Classical Fundamental Question of Coding Theory

What is the largest number of points in Fn
2 such that any two of

the points are at least d apart, where

d(v,w) = |{i | vi 6= wi}|?

Linear version: What is the largest dimension of a vector space
in Fn

2 such the weight of any non-zero vector is at least d , where
the weight of v is wt(v) = |{i |vi 6= 0}|.
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Basic Definitions

A code over an alphabet A of length n is a subset of An.

Initially, A was F2, then Fq was considered. More, recently A is
allowed to be a ring, module or group.
In general, we are concerned with any alphabet A but we are
particularly concerned with A when it has an algebraic structure.
We say the code is linear when the code itself has that algebraic
structure, e.g. a code over Fq is linear when it is a vector space,
and a code over a ring is linear if it is a submodule.
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Mathematical Foundations

A code C of length n is a subset of Fn
q of size M and minimum

distance d , denoted [n,M, d ].

If C is linear M = qk , k the dimension, and it is denoted by
[n, k, d ].

Attached to the ambient space is the inner-product

[v,w] =
∑

viwi .

Define C⊥ = {v | [v,w] = 0,∀w ∈ C}.
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Mathematical Foundations

If C is a linear code in Fn
q then dim(C ) + dim(C⊥) = n.

All codes have a minimal generating set (basis) so it has a
generating matrix G . The code C⊥ has a generating matrix H
(parity check matrix) so

v ∈ C ⇐⇒ HvT = 0.

The matrix H is used extensively in decoding.
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Example: Hamming Code

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



Then C is a [7, 4, 3] code such that any vector in Fn
2 is at most

distance 1 from a unique vector in the code.
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Connection to Finite Geometry

The weight 3 vectors in the [7, 4, 3] Hamming code correspond to
the lines in a projective plane of order 2.

The weight 4 vectors in the [7, 4, 3] Hamming code correspond to
the correspond to the hyperovals in the projecitve plane of order 2.



Connection to Finite Geometry

The weight 3 vectors in the [7, 4, 3] Hamming code correspond to
the lines in a projective plane of order 2.

The weight 4 vectors in the [7, 4, 3] Hamming code correspond to
the correspond to the hyperovals in the projecitve plane of order 2.



Hamming Code

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
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Assume the vector received is v = (1010111), then HvT = (110).

So the correct vector is (1010101) which corresponds to a
hyperoval in the projective plane of order 2.
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Classical Engineering Use of Coding Theory

I Construction of a communication system where errors in
communication are not only detected but corrected.

I Used in telephones, television, CDs, DVDs, computer to
computer communication.

I Cryptography and secret sharing schemes.
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Mathematical Use of Coding Theory

I Constructing lattices, e.g. recent construction of extremal
lattice at length 72

I Connections to number theory (modular forms, etc.)

I Connection to designs (constructing, proving non-existence
and proving non-isomorphic), e.g. proof of the non-existence
of the projective plane of order 10

I Connections to algebraic geometry

I Connections to combinatorics, e.g. MDS codes and mutually
orthogonal latin squares and arcs in projective geometry
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Singleton Bound

Theorem
Let C be an [n, qk , d ] code over an alphabet of size q, then
d ≤ n − k + 1.

Proof.
Consider the first n − (d − 1) coordinates. These must all be
distinct, otherwise the distance between two vectors would be less
than d . Hence k ≤ n − (d − 1) = n − d + 1.

If C meets this bound the code is called a Maximum Distance
Separable (MDS) code.
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Singleton Bound

Connection to combinatorics.

Theorem
A set of s MOLS of order q is equivalent to an MDS
[s + 2, q2, s + 1] MDS code.

Extremely difficult question in pure mathematics.



Sphere Packing Bound

Theorem
(Sphere Packing Bound ) Let C be a code over Fq of length n
with M = |C | and minimum distance 2t + 1. Then

M(1 + (q − 1)n + (q − 1)2
(

n
2

)
+ · · ·+ (q − 1)t

(
n
t
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) ≤ qn.

A code meeting this bound is called a perfect code.
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The [23, 12, 7] binary Golay code is a perfect code.

The [11, 6, 5] ternary Golay code is a perfect code.
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Perfect Code

Example of a connection to combinatorics. A Steiner system is a
t-design with λ = 1. A t − (v , k, λ) Steiner system is denoted
S(, t, v , k).

Theorem
(Assmus and Mattson) If there exists a perfect binary t-error
correcting code of length n, then there exists a Steiner system
S(t + 1, 2t + 1, n).
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Jessie MacWilliams (1917-1990)

Theorem
(MacWilliams I) Let C be a linear code over a finite field, then
every Hamming isometry C → F n can be extended to a monomial
transformation.



Jessie MacWilliams (1917-1990)

MacWilliams, Jessie A theorem on the distribution of weights in a
systematic code. Bell System Tech. J. 42 1963 79-94.



Jessie MacWilliams (1917-1990)

Hamming Weight Enumerator:

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c)

Theorem
(MacWilliams Relations) Let C be a linear code over Fq then

WC⊥(x , y) =
1

|C |
WC (x + (q − 1)y , x − y).
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Cyclic Codes

Cyclic codes are an extremely important class of codes – initially
because of an efficient decoding algorithm.

A code C is cyclic if
(a0, a1, . . . , an−1) ∈ C =⇒ (an−1, a0, a1, a2, . . . , an−2) ∈ C .

Let π((a0, a1, . . . , an−1)) = (an−1, a0, a1, a2, . . . , an−2). So a cyclic
code C has π(C ) = C .
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Cyclic Codes

There is a natural connection from vectors in a cyclic code to
polynomials:

(a0, a1, . . . , an−1)↔ a0 + a1x + a2x2 . . . an−1xn−1

Notice that π((a0, a1, . . . , an−1)) corresponds to
x(a0 + a1x + a2x2 . . . an−1xn−1) (mod xn − 1).
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Cyclic Codes

Then if C is linear over F and invariant under π then a cyclic code
corresponds to an ideal in F [x ]/〈xn − 1〉.

Cyclic codes are classified by finding all ideals in R[x ]/〈xn − 1〉.

Easily done when the length of the code is relatively prime to the
characteristic of the field, that is we factor xn − 1 uniquely in F [x ].
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A code C is constacyclic if
(a0, a1, . . . , an−1) ∈ C =⇒ (λn−1, a0, a1, a2, . . . , an−2) ∈ C for
some λ ∈ F .

If λ = −1 the codes are said to be negacyclic.

Under the same reasoning, constacyclic codes corresponds to ideals
in F [x ]/〈xn − λ〉.
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Hamming Codes

Let H be the matrix whose columns consist of the (qr − 1)/(q− 1)
distinct non-zero vectors of Fr

q modulo scalar multiples. Then let

C = 〈H〉⊥.

Then C is a [(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r , 3] perfect
code.

These codes are the Generalized Hamming Codes.
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C is a [13, 10, 3] perfect code over F3.



Hamming Codes

For example r = 3, q = 3,

H =

 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2



C is a [13, 10, 3] perfect code over F3.



Simplex Codes

The Simplex Codes are [2r − 1, r , 2r−1] codes and are the
orthogonals to the binary Hamming Codes.



BCH Codes

Let Fq = {0, b1, . . . , bq−1}, let ai = bj for some j and ai 6= aj if
i 6= j .

The let

H =


1 1 1 . . . 1
a1 a2 a3 . . . an
a21 a22 a23 . . . a2n
...

ad−21 ad−22 ad−23 . . . ad−2n
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BCH Codes

The matrix H is a Vandermonde matrix and as such has a non-zero
determinant. Hence the d − 1 rows and d − 1 columns are linearly
independent.

Let C = 〈H〉⊥. Then C is a [n, n − (d − 1), d ] code.

Then n − k + 1 = n − (n − (d − 1)) + 1 = d and the code meets
the Singleton bound.
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As an example, let

H =

 1 1 1 1
1 2 3 4
1 4 4 1



Then C is a [4, 1, 4] code and 4− 1 + 1 = 4 and the code is MDS
over F5.

In this case C = 〈(1, 2, 3, 4)〉.
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Quote

We do not have to pretend that what we are doing has anything to
do with information transfer any more. – Sasha Barg, University of
Cincinnati, Cincinnati Ohio, Oct 2006.



Expansion of Coding Theory

In MacWilliams and Sloane, there are around 1500 cited works
from 1948 to 1977.

A search on MathSciNet for titles with the word code, there are
12,267 items.
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orthogonal C⊥ with

|C ||C⊥| = |R|n

I MacWilliams Theorem 1
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A big step forward – Gray Map

Classical Coding Theory gets a shock!

A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and
P. Solé, The Z4-linearity of kerdock, preparata, goethals and
related codes, IEEE Trans. Inform. Theory, vol. 40, pp. 301-319,
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A big step forward – Gray Map

φ : Z4 → F2
2

0 → 00

1 → 01

2 → 11

3 → 10



A big step forward – Gray Map

The map φ is a non-linear distance preserving map.

Important weight in Z4 is Lee weight, i.e. the weight of the binary
image.

The authors show that the Kerdock, the Preparata and the
Nordstrom-Robinson codes, while non-linear binary codes, are the
images of linear quaternary codes.
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A big step forward – Gray Map

In retrospect, the following paper should have helped understand
this earlier.
Delsarte, P., An algebraic approach to the association schemes of
coding theory. Philips Res. Rep. Suppl., Vol. 10, (1973). (Cited
216 times).



A New Beginning

It now becomes interesting to study codes over a larger class of
alphabets with an algebraic structure, namely rings.



Codes over Rings

New Definitions

field → ring

dimension → rank, type, other

Hamming weight → appropriate metric

vector space → module



Modified Fundamental Question of Coding Theory

What is the largest (linear) subspace of Rn, R a ring, such that
any two vectors are at least d units apart, where d is with respect
to the appropriate metric?



Quote

Why should we care about codes over Frobenius rings anyway? –
Vera Pless. AMS Special Topic Session, Notre Dame University,
April 2000.



Jay Wood

Wood, J.: Duality for modules over finite rings and applications to
coding theory, Amer. J. Math., Vol. 121, No. 3, pp. 555-575
(1999).



Jay Wood

What is the largest class of codes you can use for coding theory?

You want an algebraic structure to linear codes and a well defined
orthogonal inner-product which gives an orthogonal C⊥ with
|C ||C⊥| = |R|n. You also want both MacWilliams Theorems to be
true in order to use most of the tools of coding theory.

Answer: Frobenius Rings
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Nakayama’s Definition of Frobenius Rings

We are concerned with finite rings so all of the rings we consider
are Artinian but the definitions apply to all Artinian rings.

A left module M is irreducible if it contains no non-trivial left
submodule.

A left module M is indecomposable if it has no non-trivial left
direct summands. (N.B. every irreducible module is
indecomposable, but not the converse).
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Nakayama’s Definition of Frobenius Rings

An Artinian ring (as a left module over itself) admits a finite direct
sum decomposition:

RR = Re1,1 ⊕ . . .Re1,µ1 ⊕ · · · ⊕ Ren,1 ⊕ · · · ⊕ Ren, µn,

where the ei ,j are primitive orthogonal idempotents with
1 =

∑
ei ,j .



Nakayama’s Definition of Frobenius Rings

This is the principal decomposition of RR.

The Rei ,j are indexed so that Rei ,j is isomorphic to Rek,l if and
only if i = k .

Set ei = ei ,1 then we can write:

RR ∼= ⊕µiRei



Nakayama’s Definition of Frobenius Rings

This is the principal decomposition of RR.

The Rei ,j are indexed so that Rei ,j is isomorphic to Rek,l if and
only if i = k .

Set ei = ei ,1 then we can write:

RR ∼= ⊕µiRei



Nakayama’s Definition of Frobenius Rings

This is the principal decomposition of RR.

The Rei ,j are indexed so that Rei ,j is isomorphic to Rek,l if and
only if i = k .

Set ei = ei ,1 then we can write:

RR ∼= ⊕µiRei



Nakayama’s Definition of Frobenius Rings

The socle of a module M is the sum of the simple (no non-zero
submodules) submodules of M.

The radical of a module M is the intersection of all maximal
submodules of M.



Nakayama’s Definition of Frobenius Rings

The socle of a module M is the sum of the simple (no non-zero
submodules) submodules of M.

The radical of a module M is the intersection of all maximal
submodules of M.



Nakayama’s Definition of Frobenius Rings

Rei ,j has a unique maximal left submodule

Rad(R)ei ,j = Rei ,j ∩ Rad(R)

and a unique irreducible “top quotient”

T (Rei ,j) = Rei ,j/Rad(R)ei ,j .

The socle S(Re,j) is the left submodule generated by the
irreducible left submodule of Rei ,j .



Nakayama’s Definition of Frobenius Rings

Rei ,j has a unique maximal left submodule

Rad(R)ei ,j = Rei ,j ∩ Rad(R)

and a unique irreducible “top quotient”

T (Rei ,j) = Rei ,j/Rad(R)ei ,j .

The socle S(Re,j) is the left submodule generated by the
irreducible left submodule of Rei ,j .



Nakayama’s Definition of Frobenius Rings

Rei ,j has a unique maximal left submodule

Rad(R)ei ,j = Rei ,j ∩ Rad(R)

and a unique irreducible “top quotient”

T (Rei ,j) = Rei ,j/Rad(R)ei ,j .

The socle S(Re,j) is the left submodule generated by the
irreducible left submodule of Rei ,j .



Nakayama’s Definition of Frobenius Rings

Let RR = ⊕µiRei . Then an Artinian ring R is quasi-Frobenius if
there exists a permutation σ of {1, 2, . . . , n}. such that

T (Rei ) ∼= S(Reσ(i))

and
S(Rei ) ∼= T (Reσ(i))

The ring is Frobenius if, in addition, µσ(i) = µi .
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Nakayama’s Definition of Frobenius Rings

A module M over a ring R is injective if, for every pair of left
R-modules B1 ⊂ B2 and every R-linear mapping f : B1 → M, the
mapping f extends to an R-linear mapping f : B2 → M.

Theorem
An Artinian ring R is quasi-Frobenius if and only if R is
self-injective, i.e. R is injective as a left(right) module over itself.



Nakayama’s Definition of Frobenius Rings

A module M over a ring R is injective if, for every pair of left
R-modules B1 ⊂ B2 and every R-linear mapping f : B1 → M, the
mapping f extends to an R-linear mapping f : B2 → M.

Theorem
An Artinian ring R is quasi-Frobenius if and only if R is
self-injective, i.e. R is injective as a left(right) module over itself.



Frobenius Rings

For a commutative ring R, R is Frobenius if and only if it is
quasi-Frobenius.
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Frobenius Rings

Theorem
Let R be a finite quasi-Frobenius ring, with RR = ⊕µiRei and with
permutation σ as inthe definition of quasi-Frobenius. Then, as left
R modules,

R̂ ∼= ⊕µiReσ(i)

and as right modules

R̂ ∼= ⊕µieσ−1(i)R.



Frobenius Rings

Theorem
Suppose R is a finite ring. If R̂ is a free left R-module, then
R̂ ∼=R R and R is quasi-Frobenius.



Frobenius Rings

Theorem
Suppose R is a finite ring. The following are equivalent.

I R is a Frobenius ring.

I As a left module, R̂ ∼=R R.

I As a right module R̂ ∼= RR .



Frobenius Rings

Let R be a Frobenius ring, so that R̂ ∼= RR as both left and right
modules. Let φ : R → R̂ be the right module isomorphism.

Let χ = φ(1) then φ(r) = χr . We call χ a right generating
character.

Theorem
Let R be any finite ring. Then a character χ on R is a left
generating character if and only if it is a right generating character.



Frobenius Rings

Let R be a Frobenius ring, so that R̂ ∼= RR as both left and right
modules. Let φ : R → R̂ be the right module isomorphism.

Let χ = φ(1) then φ(r) = χr . We call χ a right generating
character.

Theorem
Let R be any finite ring. Then a character χ on R is a left
generating character if and only if it is a right generating character.



Frobenius Rings

Let R be a Frobenius ring, so that R̂ ∼= RR as both left and right
modules. Let φ : R → R̂ be the right module isomorphism.

Let χ = φ(1) then φ(r) = χr . We call χ a right generating
character.

Theorem
Let R be any finite ring. Then a character χ on R is a left
generating character if and only if it is a right generating character.



MacWilliams I revisited

Theorem
(MacWilliams I) (A) If R is a finite Frobenius ring and C is a
linear code, then every hamming isometry C → Rn can be
extended to a monomial transformation.

(B)If a finite commutative ring R satisfies that all of its Hamming
isometries between linear codes allow for monomial extensions,
then R is a Frobenius ring.
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MacWilliams I revisited

By an example of Greferath and Schmidt MacWilliams I does not
extend to quasi-Frobenius rings.

M. Greferath, S.E. Schmidt, Finite-ring combinatorics and
MacWilliams equivalence theorem, J. Combin. Theory A, 92, 2000,
17-28.



MacWilliams I revisited

Theorem
Suppose R is a finite commutative ring, and suppose that the
extension theorem hold over R, that is every weight-preserving
linear homomorphism f : C → Rn from a linear code C ⊆ Rn to
Rn extends to a monomial transformation of Rn. Then R is a
Frobenius ring.



Frobenius Rings

For Frobenius rings R, R̂ has a generating character χ, such that
χa(b) = χ(ab).



MacWilliams relations revisited

Complete Weight Enumerator:

Define cweC (x0, x1, . . . , xk) =
∑

c∈C x
ni (c)
i where ni (c) is the

number of occurences of the i-th element of R in c.

The matrix Ti is a |R| by |R| matrix given by:

(Ti )a,b = (χ(ab)) (1)

where a and b are in R.
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MacWilliams relations revisited

For a code C in Rn define

L(C ) = {v | [v,w] = 0,∀w ∈ C}

and
R(C ) = {v | [w, v] = 0, ∀w ∈ C}.
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MacWilliams relations revisited

Theorem
(Generalized MacWilliams Relations) Let R be a Frobenius ring. If
C is a left submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|R(C )|
cweR(C)(T t · (x0, x1, . . . , xk)).

If C is a right submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|L(C )|
cweL(C)(T · (x0, x1, . . . , xk)).



MacWilliams relations revisited

For commutative rings L(C ) = R(C ) = C⊥.

Theorem
Let C be a linear code over a commutaive Frobenius rings R then

WC⊥(x0, x1, . . . , xk) =
1

|C |
WC (T · (x0, x1, . . . , xk)) (2)
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Corollary

If C is a linear code over a Frobenius ring then |C ||C⊥| = |R|n.

This often fails for codes over non-Frobenius rings.
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Non Frobenius Example

For example:
Let

R = F2[X ,Y ]/(X 2,Y 2,XY ) = F2[x , y ],

where x2 = y2 = xy = 0.
R = {0, 1, x , y , 1 + x , 1 + y , x + y , 1 + x + y}.
The maximal ideal is m = {0, x , y , x + y}.
m⊥ = m = {0, x , y , x + y}.
m is a self-dual code of length 1.
But |m||m⊥| 6= |R|.



Useful rings

I Principal Ideal Rings – all ideals generated by a single element

I Local rings – rings with a unique maximal ideal

I chain ring – a local rings with ideals ordered by inclusion
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Chinese Remainder Theorem

Let R be a finite commutative ring and let a be an ideal of R.

Let Ψa : R → R/a denote the canonical homomorphism x 7→ x + a.
Let R be a finite commutative ring and let m1, . . . ,mk be the
maximal ideals of R. Let e1, . . . , ek be their indices of stability.
Then the ideals me1

1 , . . . ,m
ek
k are relatively prime in pairs and∏k

i=1m
ei
i = ∩ki=1m

ei
i = {0}.
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Chinese Remainder Theorem

Theorem
(Chinese Remainder Theorem) The canonical ring homomorphism
Ψ : R →

∏k
i=1 R/mei

i , defined by x 7→ (x (mod me1
1 ), . . . , x

(mod mek
k )), is an isomorphism.

Given codes Ci of length n over R/mei
i (i = 1, . . . , k), we define

the code C = CRT(C1, . . . ,Ck) of length n over R as:

C = {Ψ−1(v1, . . . , vk) : vi ∈ Ci (i = 1, . . . , k)}
= {v ∈ Rn : Ψ

m
ti
i

(v) ∈ Ci (i = 1, . . . , k)}.



Chinese Remainder Theorem

Theorem
(Chinese Remainder Theorem) The canonical ring homomorphism
Ψ : R →

∏k
i=1 R/mei

i , defined by x 7→ (x (mod me1
1 ), . . . , x

(mod mek
k )), is an isomorphism.

Given codes Ci of length n over R/mei
i (i = 1, . . . , k), we define

the code C = CRT(C1, . . . ,Ck) of length n over R as:

C = {Ψ−1(v1, . . . , vk) : vi ∈ Ci (i = 1, . . . , k)}
= {v ∈ Rn : Ψ

m
ti
i

(v) ∈ Ci (i = 1, . . . , k)}.



Chinese Remainder Theorem

Theorem
If R is a finite commutative Frobenius ring, then R is isomorphic
via the Chinese Remainder Theorm to R1 × R2 × · · · × Rs where
each Ri is a local Frobenius ring.

Theorem
If R is a finite commutative principal ideal ring then then R is
isomorphic to R1 × R2 × · · · × Rs where each Ri is a chain ring.
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MDR Codes

Theorem
Let C be a linear code over a principal ideal ring, then

dH(C ) ≤ n − rank(C ) + 1.

Codes meeting this bound are called MDR (Maximum Distance
with respect to Rank) codes.

Theorem
Let C1,C2, . . . ,Cs be codes over Ri . If Ci is an MDR code for each
i then C = CRT (C1,C2, . . . ,Cs) is an MDR code . If Ci is an
MDS code of the same rank for each i , then
C = CRT (C1,C2, . . . ,Cs) is an MDS code.
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Generating vectors

Over Z6, 〈(2, 3)〉 = {(0, 0), (2, 3), (4, 0), (0, 3), (2, 0), (4, 3)}.

This is strange since we would rather have say it is generated by(
2 0
0 3

)
.
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Generator Matrices over Chain Rings
Let R be a finite chain ring with maximal ideal m = Rγ with e its
nilpotency index.
The generator matrix for a code C over R is permutation
equivalent to a matrix of the following form:

Ik0 A0,1 A0,2 A0,3 · · · · · · A0,e

0 γIk1 γA1,2 γA1,3 · · · · · · γA1,e

0 0 γ2Ik2 γ2A2,3 · · · · · · γ2A2,e
...
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. . .
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. . .

. . .
. . .
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
(3)

A code with generator matrix of this form is said to have type
{k0, k1, . . . , ke−1}. It is immediate that a code C with this
generator matrix has

|C | = |R/m|
∑e−1

i=0 (e−i)ki . (4)
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Minimal Generating Sets

Definition
Let Ri be a local ring with unique maximal ideal mi , and let
w1, · · · ,ws be vectors in Rn

i . Then w1, · · · ,ws are modular
independent if and only if

∑
αjwj = 0 implies that αj ∈ mi for all

j .

Definition
The vectors v1, · · · , vk in Rn are modular independent if
Φi (v1), · · · ,Φi (vk) are modular independent for some i , where
R = CRT (R1,R2, . . . ,Rs) and Φi is the canonical map.
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Let C be a code over R. The codewords c1, c2, · · · , ck is called a
basis of C if they are independent, modular independent and
generate C . In this case, each ci is called a generator of C .
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Minimal Generating Sets

Theorem
All linear codes over a Frobenius ring have a basis.


