Rings in Coding Theory

Steven T. Dougherty

July 3, 2013

Cyclic Codes were first studied by Prange in 1957.

Prange, E. Cyclic error-correcting codes in two symbols. Technical Note TN-57-103, Air Force Cambridge Research Labs., Bedfrod, Mass.

Cyclic codes are an extremely important class of codes – initially because of an efficient decoding algorithm.

A code C is cyclic if $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C.$

Cyclic codes are an extremely important class of codes – initially because of an efficient decoding algorithm.

A code *C* is cyclic if

$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C.$$

Let $\pi((a_0, a_1, \ldots, a_{n-1})) = (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}).$ So a cyclic
code *C* has $\pi(C) = C.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There is a natural connection from vectors in a cyclic code to polynomials:

$$(a_0, a_1, \ldots, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 \ldots a_{n-1} x^{n-1}$$

There is a natural connection from vectors in a cyclic code to polynomials:

$$(a_0, a_1, \dots, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 \dots a_{n-1} x^{n-1}$$

Notice that $\pi((a_0, a_1, \dots, a_{n-1}))$ corresponds to
 $x(a_0 + a_1 x + a_2 x^2 \dots a_{n-1} x^{n-1}) \pmod{x^n - 1}.$

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x]/\langle x^n - 1 \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x]/\langle x^n - 1 \rangle$.

Cyclic codes are classified by finding all ideals in $F[x]/\langle x^n - 1 \rangle$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x]/\langle x^n - 1 \rangle$.

Cyclic codes are classified by finding all ideals in $F[x]/\langle x^n - 1 \rangle$.

Easily done when the length of the code is relatively prime to the characteristic of the field, that is we factor $x^n - 1$ uniquely in F[x].

Theorem

Let C be a non-zero cyclic code in $F[x]/\langle x^n-1\rangle$, then

There exists a unique monic polynomial g(x) of smallest degree in C;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let C be a non-zero cyclic code in $F[x]/\langle x^n-1\rangle$, then

 There exists a unique monic polynomial g(x) of smallest degree in C;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $C = \langle g(x) \rangle;$

Theorem

Let C be a non-zero cyclic code in $F[x]/\langle x^n-1\rangle$, then

 There exists a unique monic polynomial g(x) of smallest degree in C;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $C = \langle g(x) \rangle;$
- g(x) is a factor of $x^n 1$.

To find all cyclic codes of a given length one must simply identify all factors of $x^n - 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To find all cyclic codes of a given length one must simply identify all factors of $x^n - 1$.

A degree r generator polynomial generates a code with dimension n - r.

Let $x^n - 1 = p_1(x)p_2(x) \dots p_s(x)$ over F. Then there are 2^s cyclic codes of that length n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $g(x) = a_0 + a_1 + \cdots + a_r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If g(x) is the generator polynomial, let $h(x) = \frac{x^n - 1}{g(x)}$.

If g(x) is the generator polynomial, let $h(x) = \frac{x^n - 1}{g(x)}$.

Then $c(x) \in C$ if and only if c(x)h(x) = 0.

Let $h(x) = b_0 + b_1 x + \dots + b_k x^k$.

Let
$$h(x) = b_0 + b_1 x + \dots + b_k x^k$$
. C^{\perp} is generated by
 $\overline{h}(x) = b_k + b_{k-1} x + \dots + h_0 x^k$.

Let
$$h(x) = b_0 + b_1 x + \dots + b_k x^k$$
. C^{\perp} is generated by
 $\overline{h}(x) = b_k + b_{k-1} x + \dots + h_0 x^k$.

Golay Code

As an example, if C is the [23, 12, 7] perfect Golay code:

$$g(x) = 1 + x^{2} + x^{4} + x^{5} + x^{6} + x^{10} + x^{11}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Golay Code

As an example, if C is the [23, 12, 7] perfect Golay code:

$$g(x) = 1 + x^{2} + x^{4} + x^{5} + x^{6} + x^{10} + x^{11}$$

If C is the [11, 6, 5] ternary Golay code:

$$g(x) = 2 + x^2 + 2x^3 + x^4 + x^5$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Constacyclic Codes

A code *C* is constacyclic if $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C$ for some $\lambda \in F$.

Constacyclic Codes

A code *C* is constacyclic if $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C$ for some $\lambda \in F$.

If $\lambda = -1$ the codes are said to be negacyclic.

Constacyclic Codes

A code *C* is constacyclic if $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C$ for some $\lambda \in F$.

If $\lambda = -1$ the codes are said to be negacyclic.

Under the same reasoning, constacyclic codes corresponds to ideals in $F[x]/\langle x^n - \lambda \rangle$.

Let n be odd.

Let $\mu : \mathbb{Z}_4[x] \to \mathbb{Z}_2[x]$ that reads the coefficients modulo 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let *n* be odd.

Let $\mu : \mathbb{Z}_4[x] \to \mathbb{Z}_2[x]$ that reads the coefficients modulo 2.

A polynomial f in $\mathbb{Z}_4[x]$ is basic irreducible if $\mu(f)$ is irreducible in $\mathbb{Z}_2[x]$; f is primary if $\langle f \rangle$ is a primary ideal.

Lemma

If f is a basic irreducible polynomial, then f is primary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

If f is a basic irreducible polynomial, then f is primary.

Lemma

If $x^n - 1 = f_1 f_2 \dots f_r$, where the f_i are basic irreducible and pairwise coprime, then this factorization is unique.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Lemma

If f is a basic irreducible polynomial, then f is primary.

Lemma

If $x^n - 1 = f_1 f_2 \dots f_r$, where the f_i are basic irreducible and pairwise coprime, then this factorization is unique.

Lemma

Let $x^n - 1 = f_1 f_2 \dots f_r$ be a product of basic irreducible and pairwise coprime polynomials for odd n and let $\hat{f_i}$ denote the product of all f_j except f_i . Then any ideal in the ring $\mathbb{Z}_4[x]/\langle x^n - 1 \rangle$ is a sum of some $\langle \hat{f_i} \rangle$ and $\langle 2\hat{f_i} \rangle$.

Theorem

The number of \mathbb{Z}_4 cyclic codes of length n is 3^r , where r is the number of basic irreducible polynomial factors in $x^n - 1$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem

Let C be a \mathbb{Z}_4 cyclic code of odd length n. Then there are unique, monic polynomials f, g, h such that $C = \langle fh, 2fg \rangle$ where $fgh = x^n - 1$ and $|C| = 4^{deg(g)}2^{deg(h)}$.

Theorem Let $C = \langle fh, 2fg \rangle$ be a quaternay cyclic code of odd length, with $fgh = x^n - 1$. Then $C^{\perp} = \langle \overline{g}\overline{h}, 2\overline{g}\overline{h} \rangle$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Cyclic Codes over \mathbb{Z}_4 of even length

Let *n* be an odd integer and $N = 2^k n$ will denote the length of a cyclic code over \mathbb{Z}_4 .

Cyclic Codes over \mathbb{Z}_4 of even length

Let *n* be an odd integer and $N = 2^k n$ will denote the length of a cyclic code over \mathbb{Z}_4 .

Define the ring $\mathcal{R} = \mathbb{Z}_4[u]/\langle u^{2^k} - 1 \rangle$.

Cyclic Codes over \mathbb{Z}_4 of even length

Let *n* be an odd integer and $N = 2^k n$ will denote the length of a cyclic code over \mathbb{Z}_4 .

Define the ring $\mathcal{R} = \mathbb{Z}_4[u]/\langle u^{2^k} - 1 \rangle$.

We have a module isomorphism $\Psi : \mathcal{R}^n \to (\mathbb{Z}_4)^{2^k n}$ defined by

$$\begin{split} \Psi(a_{0,0}+a_{0,1}u+a_{0,2}u^2+\cdots+a_{0,2^{k}-1}u^{2^{k}-1},\ldots,\\ a_{n-1,0}+a_{n-1,1}u+a_{n-1,2}u^2+\cdots+a_{n-1,2^{k}-1}u^{2^{k}-1})\\ = & (a_{0,0},a_{1,0},a_{2,0},a_{3,0},\ldots,a_{n-1,0},a_{0,1},a_{1,1},a_{2,1},\ldots,a_{0,2^{k}-1},a_{1,2^{k}-1},\ldots,a_{n-1,2^{k}-1}). \end{split}$$

Cyclic Codes over \mathbb{Z}_4 of even length

We have that

$$\Psi\left(u\left(\sum_{j=0}^{2^{k}-1}a_{n-1,j}u^{j}\right),\sum_{j=0}^{2^{k}-1}a_{0,j}u^{j},\sum_{j=0}^{2^{k}-1}a_{1,j}u^{j},\ldots,\sum_{j=0}^{2^{k}-1}a_{n-2,j}u^{j}\right)$$
$$=(a_{n-1,2^{k}-1},a_{0,0},a_{1,0},\ldots,a_{n-2,2^{k}-1}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This gives that a cyclic shift in $(\mathbb{Z}_4)^{2^k n}$ corresponds to a constacyclic shift in \mathcal{R}^n by u.

Cyclic Codes over \mathbb{Z}_4 of even length

Theorem

Cyclic codes over \mathbb{Z}_4 of length $N = 2^k n$ correspond to constacyclic codes over \mathcal{R} modulo $X^n - u$ via the map Ψ .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

S.T. Dougherty, Young Ho Park, On Modular Cyclic Codes , Finite Fields and their Applications Volume 13, Number 1, 31-57, 2007.

Cyclic codes of length N over a ring R are identified with the ideals of $R[X]/\langle X^N - 1 \rangle$ by identifying the vectors with the polynomials of degree less than N.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Every cyclic code C over \mathbb{F}_q is generated by a nonzero monic polynomial of the minimal degree in C, which must be a divisor of $X^N - 1$ by the minimality of degree.

Since $\mathbb{F}_q[X]$ is a UFD, cyclic codes over \mathbb{F}_q are completely determined by the factorization of $X^N - 1$ whether or not N is prime to the characteristic of the field, even though when they are not relatively prime we are in the repeated root case.

For cyclic codes over \mathbb{Z}_{p^e} if the length N is prime to $p, X^N - 1$ factors uniquely over \mathbb{Z}_{p^e} by Hensel's Lemma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

All cyclic codes over \mathbb{Z}_{p^e} of length prime to p have the form

$$\langle f_0, pf_1, p^2f_2, \ldots, p^{e-1}f_{e-1} \rangle$$

where $f_{e-1} | f_{e-2} | \cdots | f_0 | X^N - 1$.

All cyclic codes over \mathbb{Z}_{p^e} of length prime to p have the form

$$\langle f_0, pf_1, p^2f_2, \ldots, p^{e-1}f_{e-1} \rangle,$$

where $f_{e-1} | f_{e-2} | \cdots | f_0 | X^N - 1$.

These ideals are principal:

$$\langle f_0, pf_1, p^2f_2, \dots, p^{e-1}f_{e-1} \rangle = \langle f_0 + pf_1 + p^2f_2 + \dots + p^{e-1}f_{e-1} \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Therefore, cyclic codes of length N prime to p are again easily determined by the unique factorization of $X^N - 1$. The reason that the case when the characteristic of the ring divides the length N is more difficult is that in this case we do not have a unique factorization of $X^N - 1$.

Let *C* be a (linear) cyclic code of length *N* over the ring \mathbb{Z}_M , where *M* and *N* are arbitrary positive integers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We use the Chinese Remainder Theorem to decompose the code C, i.e. an ideal of $\mathbb{Z}_M[X]/\langle X^N - 1 \rangle$, into a direct sum of ideals over $\mathbb{Z}_{p_i^{e_i}}$ according to the prime factorization of $M = p_1^{e_1} p_2^{e_2} \dots p_r^{e^r}$.

Therefore, it is enough to study cyclic codes over the rings \mathbb{Z}_{p^e} for a prime p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fix a prime p and write $N = p^k n$, p not dividing n.

Define an isomorphism between $\mathbb{Z}_{p^e}[X]/\langle X^N - 1 \rangle$ and a direct sum, $\bigoplus_{i \in I} \S_{p^e}(m_i, u)$, of certain local rings. This shows that any cyclic code over \mathbb{Z}_{p^e} can be described by a direct sum of ideals within this decomposition.

The inverse isomorphism can also be given, so that the corresponding ideal in $\mathbb{Z}_{p^e}[X]/\langle X^N - 1 \rangle$ can be computed explicitly.

・ロト・日本・モート モー うへぐ

 $R = \mathbb{Z}_{p^e}$ and write

$$R_N = \mathbb{Z}_{p^e}[X]/\langle X^N - 1\rangle,$$

so that $R_N = R^N$ after the identification.

By introducing an auxiliary variable u, we break the equation $X^N - 1 = 0$ into two equations $X^n - u = 0$ and $u^{p^k} - 1 = 0$. Taking the equation $u^{p^k} - 1 = 0$ into account, we first introduce the ring

$$\mathcal{R} = \mathbb{Z}_{p^e}[u]/\langle u^{p^k} - 1 \rangle.$$

There is a natural *R*-module isomorphism $\Psi : \mathcal{R}^n \to \mathcal{R}^N$ defined by $\Psi(a^0, a^1, \dots, a^{n-1}) = (a^0_0, a^1_0, \dots, a^{n-1}_0, a^0_1, a^1_1, \dots, a^{n-1}_1, \dots, a^{n-1}_{p^k-1}, a^0_{p^k-1}, a^1_{p^k-1}, \dots, a^{n-1}_{p^k-1})$ where $a^i = a^i_0 + a^i_1 u + \dots + a^i_{p^k-1} u^{p^k-1} \in \mathcal{R}$ for $0 \le i \le n-1$.

 u is a unit in $\mathcal R$ and

$$\begin{split} \Psi(ua^{n-1}, a^0, \dots, a^{n-2}) &= \Psi(a_{p^{k}-1}^{n-1} + a_0^{n-1}u + \dots \\ &+ a_{p^{k}-2}^{n-1}u^{p^{k}-1}, a^0, \dots, a^{n-2}) \\ &= (a_{p^{k}-1}^{n-1}, a_0^0, \dots, a_0^{n-2}, a_0^{n-1}, a_1^0, \\ &\dots , a_1^{n-2}, \dots, a_{p^{k}-2}^{n-1}, a_{p^{k}-1}^0, \dots, a_{p^{k}-1}^{n-2}). \end{split}$$

The constacyclic shift by u in \mathcal{R}^n corresponds to a cyclic shift in \mathbb{R}^N .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We identify \mathcal{R}^n with $\mathcal{R}[X]/\langle X^n - u \rangle$, which takes the equation $X^n - u = 0$ into account.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

View Ψ as a map from $\mathcal{R}[X]/\langle X^n-u
angle$ to R_N , we have that

$$\Psi\left(\sum_{i=0}^{n-1} \left(\sum_{j=0}^{p^{k}-1} a_{j}^{i} u^{j}\right) X^{i}\right) = \sum_{i=0}^{n-1} \sum_{j=0}^{p^{k}-1} a_{j}^{i} X^{i+jn}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Ψ is an R-module isomorphism, we

$$\Psi(u^j X^i) = X^{i+jn}$$

for
$$0 \le i \le n-1$$
 and $0 \le j \le p^k - 1$.

Let
$$0 \le i_1, i_2 \le n-1$$
 and $0 \le j_1, j_2 \le p^k - 1$. Write
 $i_1 + i_2 = \delta_1 n + i$, and $j_1 + j_2 = \delta_2 p^k + j$ such that $0 \le i \le n-1$
and $0 \le j \le p^k - 1$. Clearly $\delta_i = 0$ or 1.

<□ > < @ > < E > < E > E のQ @

Since
$$u^{p^k} = 1$$
, $X^n = u$ in $\mathcal{R}[X]/\langle X^n - u \rangle$ and $X^{p^k n} = 1$ in
 $R[X]/\langle X^N - 1 \rangle$ we have that
 $\Psi(u^{j_1}X^{i_1}u^{j_2}X^{i_2}) = \Psi(u^{j_1+j_2}X^{i_1+i_2}) = \Psi(u^{j+\delta_1}X^i) = X^{i+(j+\delta_1)n}$
 $= X^{i+\delta_1n}X^{j_n} = X^{i_1+i_2}X^{(j_1+j_2)n} = \Psi(u^{j_1}X^{i_1})\Psi(u^{j_2}X^{i_2}).$

By the *R*-linearity property of Ψ , it follows that Ψ is a ring homomorphism.

Lemma

 Ψ is an R-algebra isomorphism between $\mathcal{R}[X]/\langle X^n - u \rangle$ and $R[X]/\langle X^N - 1 \rangle$. Furthermore, the cyclic codes over R of length N correspond to constacyclic codes of length n over \mathcal{R} via the map Ψ .

The ring \mathcal{R} is a finite local ring, and hence the regular polynomial $X^n - u$ has a unique factorization in $\mathcal{R}[X]$

$$X^n-u=g_1g_2\ldots g_l$$

into monic, irreducible and pairwise relatively prime polynomials $g_i \in \mathcal{R}[X]$, and by the Chinese Remainder Theorem

$$\mathcal{R}[X]/\langle X^n-u
angle\simeq \mathcal{R}[X]/\langle g_1
angle\oplus\cdots\oplus \mathcal{R}[X]/\langle g_l
angle.$$

This isomorphism will give us a decomposition of R_N via the map Ψ .

Cyclic codes can also be studied over the infinite *p*-adic integers. A. R. Calderbank and N. J. A. Sloane, Modular and p-Adic Cyclic Codes, Designs, Codes and Cryptography, 6 (1995), pp. 21-35.

Let *F* be a field and θ an automorphism of the field.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let F be a field and θ an automorphism of the field.

A θ -cyclic code is a linear code *C* with the property that

 $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\theta(a_{n-1}), \theta(a_0), \theta(a_1), \ldots, \theta(a_{n-2}) \in C.$

$$F[X, \theta] = \{a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \mid a_i \in F\}$$

$$F[X, \theta] = \{a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \mid a_i \in F\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Addition is the usual addition and $Xa = \theta(a)X$, then extend by associativity and distributivity.

Let $\psi: F[X, \theta] \to F[X, \theta]/\langle X^n - 1 \rangle.$

Let
$$\psi: F[X,\theta] \to F[X,\theta]/\langle X^n - 1 \rangle$$
.

Theorem

Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ . The ring $F[X, \theta]/\langle X^n - 1 \rangle$ is a principal left ideal domain in which left ideals are generated by $\psi(G)$ where G is a ring divisor of $X^n - 1$ in $F[X, \theta]$.

Theorem

Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ . Let C be a linear code of length n. The code C is a θ -cyclic code if and only if the skew polynomial representation of C is a left idea in $F[X, \theta]/\langle X^n - 1 \rangle$.