Rings in Coding Theory

Steven T. Dougherty

July 3, 2013
Cyclic Codes were first studied by Prange in 1957.

Cyclic codes are an extremely important class of codes – initially because of an efficient decoding algorithm.

A code C is cyclic if
$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C.$$
Cyclic Codes

Cyclic codes are an extremely important class of codes – initially because of an efficient decoding algorithm.

A code C is cyclic if
$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C.$$

Let $\pi((a_0, a_1, \ldots, a_{n-1})) = (a_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2})$. So a cyclic code C has $\pi(C) = C$.
Cyclic Codes

There is a natural connection from vectors in a cyclic code to polynomials:

\[(a_0, a_1, \ldots, a_{n-1}) \leftrightarrow a_0 + a_1x + a_2x^2 \ldots a_{n-1}x^{n-1}\]
Cyclic Codes

There is a natural connection from vectors in a cyclic code to polynomials:

\[(a_0, a_1, \ldots, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 \ldots a_{n-1} x^{n-1}\]

Notice that \(\pi((a_0, a_1, \ldots, a_{n-1}))\) corresponds to
\(x(a_0 + a_1 x + a_2 x^2 \ldots a_{n-1} x^{n-1}) \quad \text{(mod } x^n - 1)\).
Cyclic Codes

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x]/\langle x^n - 1 \rangle$.
Cyclic Codes

If \(C \) is linear over \(F \) and invariant under \(\pi \) then a cyclic code corresponds to an ideal in \(F[x]/\langle x^n - 1 \rangle \).

Cyclic codes are classified by finding all ideals in \(F[x]/\langle x^n - 1 \rangle \).
Cyclic Codes

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x]/\langle x^n - 1 \rangle$.

Cyclic codes are classified by finding all ideals in $F[x]/\langle x^n - 1 \rangle$.

Easily done when the length of the code is relatively prime to the characteristic of the field, that is we factor $x^n - 1$ uniquely in $F[x]$.
Cyclic Codes

Theorem
Let C be a non-zero cyclic code in $F[x]/\langle x^n - 1 \rangle$, then
- There exists a unique monic polynomial $g(x)$ of smallest degree in C;
Cyclic Codes

Theorem
Let C be a non-zero cyclic code in $F[x]/\langle x^n - 1 \rangle$, then

- There exists a unique monic polynomial $g(x)$ of smallest degree in C;
- $C = \langle g(x) \rangle$;
Theorem

Let C be a non-zero cyclic code in $F[x]/\langle x^n - 1 \rangle$, then

- There exists a unique monic polynomial $g(x)$ of smallest degree in C;
- $C = \langle g(x) \rangle$;
- $g(x)$ is a factor of $x^n - 1$.

Cyclic Codes
Cyclic Codes

To find all cyclic codes of a given length one must simply identify all factors of $x^n - 1$.
Cyclic Codes

To find all cyclic codes of a given length one must simply identify all factors of $x^n - 1$.

A degree r generator polynomial generates a code with dimension $n - r$.
Let $x^n - 1 = p_1(x)p_2(x)\ldots p_s(x)$ over F. Then there are 2^s cyclic codes of that length n.

Cyclic Codes
Cyclic Codes

Let \(g(x) = a_0 + a_1 + \cdots + a_r. \)

\[
\begin{pmatrix}
 a_0 & a_1 & a_2 & \cdots & a_r & 0 & 0 & \cdots & 0 \\
 0 & a_0 & a_1 & a_2 & \cdots & a_r & 0 & \cdots & 0 \\
 0 & 0 & a_0 & a_1 & a_2 & \cdots & a_r & \cdots & 0 \\
 \vdots & & & & & & & & \vdots \\
 0 & 0 & \cdots & 0 & a_0 & a_1 & a_2 & \cdots & a_r
\end{pmatrix}
\]
Cyclic Codes

If $g(x)$ is the generator polynomial, let $h(x) = \frac{x^n-1}{g(x)}$.
Cyclic Codes

If $g(x)$ is the generator polynomial, let $h(x) = \frac{x^n - 1}{g(x)}$.

Then $c(x) \in C$ if and only if $c(x)h(x) = 0$.
Cyclic Codes

Let $h(x) = b_0 + b_1 x + \cdots + b_k x^k$.
Cyclic Codes

Let \(h(x) = b_0 + b_1x + \cdots + b_kx^k \). \(C^\perp \) is generated by

\[
\overline{h}(x) = b_k + b_{k-1}x + \cdots + h_0x^k.
\]
Cyclic Codes

Let \(h(x) = b_0 + b_1x + \cdots + b_kx^k \). \(C^\perp \) is generated by

\[
\overline{h}(x) = b_k + b_{k-1}x + \cdots + h_0x^k.
\]

\[
\begin{pmatrix}
 b_k & b_{k-1} & b_{k-2} & \ldots & b_0 & 0 & 0 & \ldots & 0 \\
 0 & b_k & b_{k-1} & b_{k-2} & \ldots & b_r & 0 & \ldots & 0 \\
 0 & 0 & b_k & b_{k-1} & b_{k-2} & \ldots & b_r & \ldots & 0 \\
 \vdots & & & & & & & & \\
 0 & 0 & \ldots & 0 & b_k & b_{k-1} & b_{k-2} & \ldots & b_r
\end{pmatrix}
\]
Golay Code

As an example, if C is the [23, 12, 7] perfect Golay code:

$$g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$$
Golay Code

As an example, if C is the $[23, 12, 7]$ perfect Golay code:

$$g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$$

If C is the $[11, 6, 5]$ ternary Golay code:

$$g(x) = 2 + x^2 + 2x^3 + x^4 + x^5$$
A code C is constacyclic if
\[(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C\]
for some $\lambda \in F$.

If $\lambda = -1$ the codes are said to be negacyclic.

Under the same reasoning, constacyclic codes correspond to ideals in $F[x]/\langle x^n - \lambda \rangle$.

A code \(C \) is constacyclic if
\[
(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C
\]
for some \(\lambda \in F \).

If \(\lambda = -1 \) the codes are said to be negacyclic.
A code C is constacyclic if $(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\lambda_{n-1}, a_0, a_1, a_2, \ldots, a_{n-2}) \in C$ for some $\lambda \in F$.

If $\lambda = -1$ the codes are said to be negacyclic.

Under the same reasoning, constacyclic codes corresponds to ideals in $F[x]/\langle x^n - \lambda \rangle$.
Let n be odd.

Let $\mu : \mathbb{Z}_4[x] \to \mathbb{Z}_2[x]$ that reads the coefficients modulo 2.
Cyclic Codes over \mathbb{Z}_4

Let n be odd.

Let $\mu : \mathbb{Z}_4[x] \rightarrow \mathbb{Z}_2[x]$ that reads the coefficients modulo 2.

A polynomial f in $\mathbb{Z}_4[x]$ is basic irreducible if $\mu(f)$ is irreducible in $\mathbb{Z}_2[x]$; f is primary if $\langle f \rangle$ is a primary ideal.
Cyclic Codes over \mathbb{Z}_4

Lemma

If f is a basic irreducible polynomial, then f is primary.
Cyclic Codes over \mathbb{Z}_4

Lemma
If f is a basic irreducible polynomial, then f is primary.

Lemma
If $x^n - 1 = f_1 f_2 \ldots f_r$, where the f_i are basic irreducible and pairwise coprime, then this factorization is unique.
Cyclic Codes over \mathbb{Z}_4

Lemma
If f is a basic irreducible polynomial, then f is primary.

Lemma
If $x^n - 1 = f_1 f_2 \ldots f_r$, where the f_i are basic irreducible and pairwise coprime, then this factorization is unique.

Lemma
Let $x^n - 1 = f_1 f_2 \ldots f_r$ be a product of basic irreducible and pairwise coprime polynomials for odd n and let \hat{f}_i denote the product of all f_j except f_i. Then any ideal in the ring $\mathbb{Z}_4[x]/\langle x^n - 1 \rangle$ is a sum of some $\langle \hat{f}_i \rangle$ and $\langle 2\hat{f}_i \rangle$.
Cyclic Codes over \mathbb{Z}_4

Theorem

*The number of \mathbb{Z}_4 cyclic codes of length n is 3^r, where r is the number of basic irreducible polynomial factors in $x^n - 1$.***
Cyclic Codes over \(\mathbb{Z}_4 \)

Theorem

Let \(C \) be a \(\mathbb{Z}_4 \) cyclic code of odd length \(n \). Then there are unique, monic polynomials \(f, g, h \) such that \(C = \langle fh, 2fg \rangle \) where \(fgh = x^n - 1 \) and \(|C| = 4^{\deg(g)}2^{\deg(h)} \).
Cyclic Codes over \mathbb{Z}_4

Theorem

Let $C = \langle fh, 2fg \rangle$ be a quatenray cyclic code of odd length, with $fgh = x^n - 1$. Then $C^\perp = \langle \overline{g}h, 2\overline{g}h \rangle$.
Cyclic Codes over \mathbb{Z}_4 of even length

Let n be an odd integer and $N = 2^k n$ will denote the length of a cyclic code over \mathbb{Z}_4.
Cyclic Codes over \mathbb{Z}_4 of even length

Let n be an odd integer and $N = 2^k n$ will denote the length of a cyclic code over \mathbb{Z}_4.

Define the ring $\mathcal{R} = \mathbb{Z}_4[u]/\langle u^{2^k} - 1 \rangle$.

Cyclic Codes over \mathbb{Z}_4 of even length

Let n be an odd integer and $N = 2^kn$ will denote the length of a cyclic code over \mathbb{Z}_4.

Define the ring $\mathcal{R} = \mathbb{Z}_4[u]/\langle u^{2^k} - 1 \rangle$.

We have a module isomorphism $\Psi : \mathcal{R}^n \rightarrow (\mathbb{Z}_4)^{2^kn}$ defined by

$$
\Psi(a_{0,0} + a_{0,1}u + a_{0,2}u^2 + \cdots + a_{0,2^k-1}u^{2^k-1}, \ldots, a_{n-1,0} + a_{n-1,1}u + a_{n-1,2}u^2 + \cdots + a_{n-1,2^k-1}u^{2^k-1}) = (a_{0,0}, a_{1,0}, a_{2,0}, a_{3,0}, \ldots, a_{n-1,0}, a_{0,1}, a_{1,1}, a_{2,1} \ldots, a_{0,2^k-1}, a_{1,2^k-1}, \ldots, a_{n-1,2^k-1}).
$$
Cyclic Codes over \mathbb{Z}_4 of even length

We have that

$$
\Psi \left(u \left(\sum_{j=0}^{2^k-1} a_{n-1,j} u^j \right), \sum_{j=0}^{2^k-1} a_{0,j} u^j, \sum_{j=0}^{2^k-1} a_{1,j} u^j, \ldots, \sum_{j=0}^{2^k-1} a_{n-2,j} u^j \right)
= \left(a_{n-1,2^k-1}, a_{0,0}, a_{1,0}, \ldots, a_{n-2,2^k-1} \right).
$$

This gives that a cyclic shift in $(\mathbb{Z}_4)^{2^k n}$ corresponds to a constacyclic shift in R^n by u.
Cyclic Codes over \mathbb{Z}_4 of even length

Theorem

Cyclic codes over \mathbb{Z}_4 of length $N = 2^k n$ correspond to constacyclic codes over \mathbb{R} modulo $X^n - u$ via the map Ψ.
Generalizations

Generalizations

Cyclic codes of length N over a ring R are identified with the ideals of $R[X]/\langle X^N - 1 \rangle$ by identifying the vectors with the polynomials of degree less than N.
Every cyclic code C over \mathbb{F}_q is generated by a nonzero monic polynomial of the minimal degree in C, which must be a divisor of $X^N - 1$ by the minimality of degree.
Generalizations

Since $\mathbb{F}_q[X]$ is a UFD, cyclic codes over \mathbb{F}_q are completely determined by the factorization of $X^N - 1$ whether or not N is prime to the characteristic of the field, even though when they are not relatively prime we are in the repeated root case.
Generalizations

For cyclic codes over \mathbb{Z}_{p^e} if the length N is prime to p, $X^N - 1$ factors uniquely over \mathbb{Z}_{p^e} by Hensel’s Lemma.
Generalizations

All cyclic codes over \(\mathbb{Z}_{p^e} \) of length prime to \(p \) have the form

\[
\langle f_0, pf_1, p^2 f_2, \ldots, p^{e-1} f_{e-1} \rangle,
\]

where \(f_{e-1} \mid f_{e-2} \mid \cdots \mid f_0 \mid X^N - 1 \).
Generalizations

All cyclic codes over \mathbb{Z}_{p^e} of length prime to p have the form

$$\langle f_0, pf_1, p^2 f_2, \ldots, p^{e-1} f_{e-1} \rangle,$$

where $f_{e-1} \mid f_{e-2} \mid \cdots \mid f_0 \mid X^N - 1$.

These ideals are principal:

$$\langle f_0, pf_1, p^2 f_2, \ldots, p^{e-1} f_{e-1} \rangle = \langle f_0 + pf_1 + p^2 f_2 + \cdots + p^{e-1} f_{e-1} \rangle.$$
Generalizations

Therefore, cyclic codes of length N prime to p are again easily determined by the unique factorization of $X^N - 1$. The reason that the case when the characteristic of the ring divides the length N is more difficult is that in this case we do not have a unique factorization of $X^N - 1$.
Generalizations

Let C be a (linear) cyclic code of length N over the ring \mathbb{Z}_M, where M and N are arbitrary positive integers.
Generalizations

We use the Chinese Remainder Theorem to decompose the code C, i.e. an ideal of $\mathbb{Z}_M[X]/\langle X^N - 1 \rangle$, into a direct sum of ideals over $\mathbb{Z}_{p_i^{e_i}}$ according to the prime factorization of $M = p_1^{e_1} p_2^{e_2} \ldots p_r^{e_r}$.
Therefore, it is enough to study cyclic codes over the rings \mathbb{Z}_{p^e} for a prime p.
Fix a prime p and write $N = p^k n$, p not dividing n.
Define an isomorphism between $\mathbb{Z}_p[X]/\langle X^N - 1 \rangle$ and a direct sum, $\bigoplus_{i \in I} \mathbb{Z}_p(m_i, u)$, of certain local rings. This shows that any cyclic code over \mathbb{Z}_p can be described by a direct sum of ideals within this decomposition.
Generalizations

The inverse isomorphism can also be given, so that the corresponding ideal in $\mathbb{Z}_p^e[X]/\langle X^N - 1 \rangle$ can be computed explicitly.
Generalizations

\[R = \mathbb{Z}_{p^e} \text{ and write } \]

\[R_N = \mathbb{Z}_{p^e}[X]/\langle X^N - 1 \rangle, \]

so that \(R_N = R^N \) after the identification.
Generalizations

By introducing an auxiliary variable u, we break the equation $X^N - 1 = 0$ into two equations $X^n - u = 0$ and $u^{p^k} - 1 = 0$. Taking the equation $u^{p^k} - 1 = 0$ into account, we first introduce the ring

$$\mathcal{R} = \mathbb{Z}_{p^e}[u]/\langle u^{p^k} - 1 \rangle.$$
Generalizations

There is a natural R-module isomorphism $\Psi : R^n \rightarrow R^N$ defined by

$$\Psi(a^0, a^1, \ldots, a^{n-1}) = (a^0_0, a^1_0, \ldots, a^{n-1}_0, a^0_1, a^1_1, \ldots, a^{n-1}_1, \ldots, a^0_{p^k-1}, a^1_{p^k-1}, \ldots, a^{n-1}_{p^k-1})$$

where $a^i = a^i_0 + a^i_1 u + \cdots + a^i_{p^k-1} u^{p^k-1} \in R$ for $0 \leq i \leq n - 1$.

Generalizations

u is a unit in \mathcal{R} and

$$\psi(ua^{n-1}, a^0, \ldots, a^{n-2}) = \psi(a^{n-1}_{p^{k-1}}, a^{n-1}_0 + \ldots + a^{n-1}_{p^{k-2}}, a^{n-1}_{p^{k-1}}, a^0, \ldots, a^{n-2})$$

$$= (a^{n-1}_{p^{k-1}}, a^0, \ldots, a^{n-2}, a^{n-1}_0, a^0, 0, 0, 0, \ldots, a^{n-2})$$
Generalizations

The constacyclic shift by u in \mathcal{R}^n corresponds to a cyclic shift in \mathbb{R}^N.
Generalizations

We identify \mathcal{R}^n with $\mathcal{R}[X]/\langle X^n - u \rangle$, which takes the equation $X^n - u = 0$ into account.
Generalizations

View Ψ as a map from $\mathcal{R}[X]/\langle X^n - u \rangle$ to R_N, we have that

$$
\Psi \left(\sum_{i=0}^{n-1} \left(\sum_{j=0}^{p^k-1} a_{ij}^i u^j \right) X^i \right) = \sum_{i=0}^{n-1} \sum_{j=0}^{p^k-1} a_{ij}^i X^{i+jn}.
$$
Generalizations

\(\Psi \) is an \(R \)-module isomorphism, we

\[
\psi(u^j X^i) = X^{i+jn}
\]

for \(0 \leq i \leq n - 1 \) and \(0 \leq j \leq p^k - 1 \).
Let $0 \leq i_1, i_2 \leq n - 1$ and $0 \leq j_1, j_2 \leq p^k - 1$. Write $i_1 + i_2 = \delta_1 n + i$, and $j_1 + j_2 = \delta_2 p^k + j$ such that $0 \leq i \leq n - 1$ and $0 \leq j \leq p^k - 1$. Clearly $\delta_i = 0$ or 1.
Generalizations

Since $u^p = 1$, $X^n = u$ in $\mathcal{R}[X]/\langle X^n - u \rangle$ and $X^{pk} = 1$ in $\mathcal{R}[X]/\langle X^N - 1 \rangle$ we have that

$$\Psi(u^{j_1} X^{i_1} u^{j_2} X^{i_2}) = \Psi(u^{j_1 + j_2} X^{i_1 + i_2}) = \Psi(u^{j_1 + \delta_1} X^i) = X^{i + (j + \delta_1)n}$$

$$= X^{i + \delta_1 n} X^j = X^{i_1 + i_2} (j_1 + j_2)^n = \Psi(u^{j_1} X^{i_1}) \Psi(u^{j_2} X^{i_2}).$$
Generalizations

By the R-linearity property of Ψ, it follows that Ψ is a ring homomorphism.

Lemma

Ψ is an R-algebra isomorphism between $R[X]/\langle X^n - u \rangle$ and $R[X]/\langle X^N - 1 \rangle$. Furthermore, the cyclic codes over R of length N correspond to constacyclic codes of length n over R via the map Ψ.
Generalizations

The ring \mathcal{R} is a finite local ring, and hence the regular polynomial $X^n - u$ has a unique factorization in $\mathcal{R}[X]$

$$X^n - u = g_1g_2 \ldots g_l$$

into monic, irreducible and pairwise relatively prime polynomials $g_i \in \mathcal{R}[X]$, and by the Chinese Remainder Theorem

$$\mathcal{R}[X]/\langle X^n - u \rangle \cong \mathcal{R}[X]/\langle g_1 \rangle \oplus \cdots \oplus \mathcal{R}[X]/\langle g_l \rangle.$$

This isomorphism will give us a decomposition of R_N via the map $\Psi.$
Cyclic codes can also be studied over the infinite p-adic integers. A. R. Calderbank and N. J. A. Sloane, Modular and p-Adic Cyclic Codes, Designs, Codes and Cryptography, 6 (1995), pp. 21-35.
Let F be a field and θ an automorphism of the field.
Let F be a field and θ an automorphism of the field.

A θ-cyclic code is a linear code C with the property that

$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (\theta(a_{n-1}), \theta(a_0), \theta(a_1), \ldots, \theta(a_{n-2}) \in C.$$
Skew Cyclic Codes

\[F[X, \theta] = \{ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \mid a_i \in F \} \]
Skew Cyclic Codes

\[F[X, \theta] = \{ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \mid a_i \in F \} \]

Addition is the usual addition and \(Xa = \theta(a)X \), then extend by associativity and distributivity.
Skew Cyclic Codes

Let $\psi : F[X, \theta] \rightarrow F[X, \theta]/\langle X^n - 1 \rangle$.
Skew Cyclic Codes

Let $\psi : F[X, \theta] \to F[X, \theta]/\langle X^n - 1 \rangle$.

Theorem

Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ. The ring $F[X, \theta]/\langle X^n - 1 \rangle$ is a principal left ideal domain in which left ideals are generated by $\psi(G)$ where G is a ring divisor of $X^n - 1$ in $F[X, \theta]$.
Skew Cyclic Codes

Theorem

Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ. Let C be a linear code of length n. The code C is a θ-cyclic code if and only if the skew polynomial representation of C is a left idea in $F[X, \theta]/\langle X^n - 1 \rangle$.