Rings in Coding Theory

Steven T. Dougherty

July 3, 2013

Cyclic Codes

Cyclic Codes were first studied by Prange in 1957.
Prange, E. Cyclic error-correcting codes in two symbols. Technical Note TN-57-103, Air Force Cambridge Research Labs., Bedfrod, Mass.

Cyclic Codes

Cyclic codes are an extremely important class of codes - initially because of an efficient decoding algorithm.
A code C is cyclic if
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(a_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right) \in C$.

Cyclic Codes

Cyclic codes are an extremely important class of codes - initially because of an efficient decoding algorithm.

A code C is cyclic if
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(a_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right) \in C$.
Let $\pi\left(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)=\left(a_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right)$. So a cyclic code C has $\pi(C)=C$.

Cyclic Codes

There is a natural connection from vectors in a cyclic code to polynomials:

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \leftrightarrow a_{0}+a_{1} x+a_{2} x^{2} \ldots a_{n-1} x^{n-1}
$$

Cyclic Codes

There is a natural connection from vectors in a cyclic code to polynomials:

$$
\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \leftrightarrow a_{0}+a_{1} x+a_{2} x^{2} \ldots a_{n-1} x^{n-1}
$$

Notice that $\pi\left(\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)$ corresponds to $x\left(a_{0}+a_{1} x+a_{2} x^{2} \ldots a_{n-1} x^{n-1}\right)\left(\bmod x^{n}-1\right)$.

Cyclic Codes

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x] /\left\langle x^{n}-1\right\rangle$.

Cyclic Codes

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x] /\left\langle x^{n}-1\right\rangle$.

Cyclic codes are classified by finding all ideals in $F[x] /\left\langle x^{n}-1\right\rangle$.

Cyclic Codes

If C is linear over F and invariant under π then a cyclic code corresponds to an ideal in $F[x] /\left\langle x^{n}-1\right\rangle$.

Cyclic codes are classified by finding all ideals in $F[x] /\left\langle x^{n}-1\right\rangle$.
Easily done when the length of the code is relatively prime to the characteristic of the field, that is we factor $x^{n}-1$ uniquely in $F[x]$.

Cyclic Codes

Theorem
Let C be a non-zero cyclic code in $F[x] /\left\langle x^{n}-1\right\rangle$, then

- There exists a unique monic polynomial $g(x)$ of smallest degree in C;

Cyclic Codes

Theorem
Let C be a non-zero cyclic code in $F[x] /\left\langle x^{n}-1\right\rangle$, then

- There exists a unique monic polynomial $g(x)$ of smallest degree in C;
- $C=\langle g(x)\rangle$;

Cyclic Codes

Theorem
Let C be a non-zero cyclic code in $F[x] /\left\langle x^{n}-1\right\rangle$, then

- There exists a unique monic polynomial $g(x)$ of smallest degree in C;
- $C=\langle g(x)\rangle$;
- $g(x)$ is a factor of $x^{n}-1$.

Cyclic Codes

To find all cyclic codes of a given length one must simply identify all factors of $x^{n}-1$.

Cyclic Codes

To find all cyclic codes of a given length one must simply identify all factors of $x^{n}-1$.

A degree r generator polynomial generates a code with dimension $n-r$.

Cyclic Codes

Let $x^{n}-1=p_{1}(x) p_{2}(x) \ldots p_{s}(x)$ over F. Then there are 2^{s} cyclic codes of that length n.

Cyclic Codes

Let $g(x)=a_{0}+a_{1}+\cdots+a_{r}$.

$$
\left(\begin{array}{ccccccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{r} & 0 & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & a_{2} & \ldots & a_{r} & 0 & \ldots & 0 \\
0 & 0 & a_{0} & a_{1} & a_{2} & \ldots & a_{r} & \ldots & 0 \\
\vdots & & & & & & & & \\
0 & 0 & \ldots & 0 & a_{0} & a_{1} & a_{2} & \ldots & a_{r}
\end{array}\right)
$$

Cyclic Codes

If $g(x)$ is the generator polynomial, let $h(x)=\frac{x^{n}-1}{g(x)}$.

Cyclic Codes

If $g(x)$ is the generator polynomial, let $h(x)=\frac{x^{n}-1}{g(x)}$.
Then $c(x) \in C$ if and only if $c(x) h(x)=0$.

Cyclic Codes

Let $h(x)=b_{0}+b_{1} x+\cdots+b_{k} x^{k}$.

Cyclic Codes

Let $h(x)=b_{0}+b_{1} x+\cdots+b_{k} x^{k} . C^{\perp}$ is generated by

$$
\bar{h}(x)=b_{k}+b_{k-1} x+\cdots+h_{0} x^{k}
$$

Cyclic Codes

Let $h(x)=b_{0}+b_{1} x+\cdots+b_{k} x^{k} . C^{\perp}$ is generated by

$$
\bar{h}(x)=b_{k}+b_{k-1} x+\cdots+h_{0} x^{k}
$$

$$
\left(\begin{array}{ccccccccc}
b_{k} & b_{k-1} & b_{k-2} & \ldots & b_{0} & 0 & 0 & \ldots & 0 \\
0 & b_{k} & b_{k-1} & b_{k-2} & \ldots & b_{r} & 0 & \ldots & 0 \\
0 & 0 & b_{k} & b_{k-1} & b_{k-2} & \ldots & b_{r} & \ldots & 0 \\
\vdots & & & & & & & & \\
0 & 0 & \ldots & 0 & b_{k} & b_{k-1} & b_{k-2} & \ldots & b_{r}
\end{array}\right)
$$

Golay Code

As an example, if C is the $[23,12,7]$ perfect Golay code:

$$
g(x)=1+x^{2}+x^{4}+x^{5}+x^{6}+x^{10}+x^{11}
$$

Golay Code

As an example, if C is the $[23,12,7]$ perfect Golay code:

$$
g(x)=1+x^{2}+x^{4}+x^{5}+x^{6}+x^{10}+x^{11}
$$

If C is the $[11,6,5]$ ternary Golay code:

$$
g(x)=2+x^{2}+2 x^{3}+x^{4}+x^{5}
$$

Constacyclic Codes

A code C is constacyclic if
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(\lambda_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right) \in C$ for some $\lambda \in F$.

Constacyclic Codes

A code C is constacyclic if
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(\lambda_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right) \in C$ for some $\lambda \in F$.

If $\lambda=-1$ the codes are said to be negacyclic.

Constacyclic Codes

A code C is constacyclic if
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(\lambda_{n-1}, a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}\right) \in C$ for some $\lambda \in F$.

If $\lambda=-1$ the codes are said to be negacyclic.
Under the same reasoning, constacyclic codes corresponds to ideals in $F[x] /\left\langle x^{n}-\lambda\right\rangle$.

Cyclic Codes over \mathbb{Z}_{4}

Let n be odd.
Let $\mu: \mathbb{Z}_{4}[x] \rightarrow \mathbb{Z}_{2}[x]$ that reads the coefficients modulo 2 .

Cyclic Codes over \mathbb{Z}_{4}

Let n be odd.
Let $\mu: \mathbb{Z}_{4}[x] \rightarrow \mathbb{Z}_{2}[x]$ that reads the coefficients modulo 2 .
A polynomial f in $\mathbb{Z}_{4}[x]$ is basic irreducible if $\mu(f)$ is irreducible in $\mathbb{Z}_{2}[x] ; f$ is primary if $\langle f\rangle$ is a primary ideal.

Cyclic Codes over \mathbb{Z}_{4}

Lemma
If f is a basic irreducible polynomial, then f is primary.

Cyclic Codes over \mathbb{Z}_{4}

Lemma
If f is a basic irreducible polynomial, then f is primary.

Lemma
If $x^{n}-1=f_{1} f_{2} \ldots f_{r}$, where the f_{i} are basic irreducible and pairwise coprime, then this factorization is unique.

Cyclic Codes over \mathbb{Z}_{4}

Lemma

If f is a basic irreducible polynomial, then f is primary.

Lemma
If $x^{n}-1=f_{1} f_{2} \ldots f_{r}$, where the f_{i} are basic irreducible and pairwise coprime, then this factorization is unique.

Lemma

Let $x^{n}-1=f_{1} f_{2} \ldots f_{r}$ be a product of basic irreducible and pairwise coprime polynomials for odd n and let \widehat{f}_{i} denote the product of all f_{j} except f_{i}. Then any ideal in the ring $\mathbb{Z}_{4}[x] /\left\langle x^{n}-1\right\rangle$ is a sum of some $\left\langle\widehat{f}_{i}\right\rangle$ and $\left\langle 2 \widehat{f}_{i}\right\rangle$.

Cyclic Codes over \mathbb{Z}_{4}

Theorem
The number of \mathbb{Z}_{4} cyclic codes of length n is 3^{r}, where r is the number of basic irreducible polynomial factors in $x^{n}-1$.

Cyclic Codes over \mathbb{Z}_{4}

Theorem
Let C be a \mathbb{Z}_{4} cyclic code of odd length n. Then there are unique, monic polynomials f, g, h such that $C=\langle f h, 2 f g\rangle$ where $f g h=x^{n}-1$ and $|C|=4^{\operatorname{deg}(g)} 2^{\operatorname{deg}(h)}$.

Cyclic Codes over \mathbb{Z}_{4}

Theorem
Let $C=\langle f h, 2 f g\rangle$ be a quatenray cyclic code of odd length, with $f g h=x^{n}-1$. Then $C^{\perp}=\langle\bar{g} \bar{h}, 2 \bar{g} \bar{h}\rangle$.

Cyclic Codes over \mathbb{Z}_{4} of even length

Let n be an odd integer and $N=2^{k} n$ will denote the length of a cyclic code over \mathbb{Z}_{4}.

Cyclic Codes over \mathbb{Z}_{4} of even length

Let n be an odd integer and $N=2^{k} n$ will denote the length of a cyclic code over \mathbb{Z}_{4}.

Define the ring $\mathcal{R}=\mathbb{Z}_{4}[u] /\left\langle u^{2^{k}}-1\right\rangle$.

Cyclic Codes over \mathbb{Z}_{4} of even length

Let n be an odd integer and $N=2^{k} n$ will denote the length of a cyclic code over \mathbb{Z}_{4}.

Define the ring $\mathcal{R}=\mathbb{Z}_{4}[u] /\left\langle u^{2^{k}}-1\right\rangle$.
We have a module isomorphism $\Psi: \mathcal{R}^{n} \rightarrow\left(\mathbb{Z}_{4}\right)^{2^{k} n}$ defined by

$$
\begin{aligned}
& \Psi\left(a_{0,0}+a_{0,1} u+a_{0,2} u^{2}+\cdots+a_{0,2^{k}-1} u^{2^{k}-1}, \ldots\right. \\
& \left.a_{n-1,0}+a_{n-1,1} u+a_{n-1,2} u^{2}+\cdots+a_{n-1,2^{k}-1} u^{2^{k}-1}\right) \\
= & \left(a_{0,0}, a_{1,0}, a_{2,0}, a_{3,0}, \ldots, a_{n-1,0}, a_{0,1}, a_{1,1}, a_{2,1}\right. \\
& \left.\ldots, a_{0,2^{k}-1}, a_{1,2^{k}-1}, \ldots, a_{n-1,2^{k}-1}\right)
\end{aligned}
$$

Cyclic Codes over \mathbb{Z}_{4} of even length

We have that

$$
\begin{aligned}
& \Psi\left(u\left(\sum_{j=0}^{2^{k}-1} a_{n-1, j} u^{j}\right), \sum_{j=0}^{2^{k}-1} a_{0, j} u^{j}, \sum_{j=0}^{2^{k}-1} a_{1, j} u^{j}, \ldots, \sum_{j=0}^{2^{k}-1} a_{n-2, j} u^{j}\right) \\
= & \left(a_{n-1,2^{k}-1}, a_{0,0}, a_{1,0}, \ldots, a_{n-2,2^{k}-1}\right) .
\end{aligned}
$$

This gives that a cyclic shift in $\left(\mathbb{Z}_{4}\right)^{2^{k} n}$ corresponds to a constacyclic shift in \mathcal{R}^{n} by u.

Cyclic Codes over \mathbb{Z}_{4} of even length

Theorem
Cyclic codes over \mathbb{Z}_{4} of length $N=2^{k} n$ correspond to constacyclic codes over \mathcal{R} modulo $X^{n}-u$ via the map Ψ.

Generalizations

S.T. Dougherty, Young Ho Park, On Modular Cyclic Codes, Finite Fields and their Applications Volume 13, Number 1, 31-57, 2007.

Generalizations

Cyclic codes of length N over a ring R are identified with the ideals of $R[X] /\left\langle X^{N}-1\right\rangle$ by identifying the vectors with the polynomials of degree less than N.

Generalizations

Every cyclic code C over \mathbb{F}_{q} is generated by a nonzero monic polynomial of the minimal degree in C, which must be a divisor of $X^{N}-1$ by the minimality of degree.

Generalizations

Since $\mathbb{F}_{q}[X]$ is a UFD, cyclic codes over \mathbb{F}_{q} are completely determined by the factorization of $X^{N}-1$ whether or not N is prime to the characteristic of the field, even though when they are not relatively prime we are in the repeated root case.

Generalizations

For cyclic codes over $\mathbb{Z}_{p^{e}}$ if the length N is prime to $p, X^{N}-1$ factors uniquely over $\mathbb{Z}_{p^{e}}$ by Hensel's Lemma.

Generalizations

All cyclic codes over $\mathbb{Z}_{p^{e}}$ of length prime to p have the form

$$
\left\langle f_{0}, p f_{1}, p^{2} f_{2}, \ldots, p^{e-1} f_{e-1}\right\rangle,
$$

where $f_{e-1}\left|f_{e-2}\right| \cdots\left|f_{0}\right| X^{N}-1$.

Generalizations

All cyclic codes over $\mathbb{Z}_{p^{e}}$ of length prime to p have the form

$$
\left\langle f_{0}, p f_{1}, p^{2} f_{2}, \ldots, p^{e-1} f_{e-1}\right\rangle,
$$

where $f_{e-1}\left|f_{e-2}\right| \cdots\left|f_{0}\right| X^{N}-1$.
These ideals are principal:

$$
\left\langle f_{0}, p f_{1}, p^{2} f_{2}, \ldots, p^{e-1} f_{e-1}\right\rangle=\left\langle f_{0}+p f_{1}+p^{2} f_{2}+\cdots+p^{e-1} f_{e-1}\right\rangle .
$$

Generalizations

Therefore, cyclic codes of length N prime to p are again easily determined by the unique factorization of $X^{N}-1$. The reason that the case when the characteristic of the ring divides the length N is more difficult is that in this case we do not have a unique factorization of $X^{N}-1$.

Generalizations

Let C be a (linear) cyclic code of length N over the ring \mathbb{Z}_{M}, where M and N are arbitrary positive integers.

Generalizations

We use the Chinese Remainder Theorem to decompose the code C, i.e. an ideal of $\mathbb{Z}_{M}[X] /\left\langle X^{N}-1\right\rangle$, into a direct sum of ideals over $\mathbb{Z}_{p_{i}^{e_{i}}}$ according to the prime factorization of $M=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e^{r}}$.

Generalizations

Therefore, it is enough to study cyclic codes over the rings $\mathbb{Z}_{p^{e}}$ for a prime p.

Generalizations

Fix a prime p and write $N=p^{k} n, p$ not dividing n.

Generalizations

Define an isomorphism between $\mathbb{Z}_{p^{e}}[X] /\left\langle X^{N}-1\right\rangle$ and a direct sum, $\oplus_{i \in I} \S_{p^{e}}\left(m_{i}, u\right)$, of certain local rings. This shows that any cyclic code over $\mathbb{Z}_{p^{e}}$ can be described by a direct sum of ideals within this decomposition.

Generalizations

The inverse isomorphism can also be given, so that the corresponding ideal in $\mathbb{Z}_{p^{e}}[X] /\left\langle X^{N}-1\right\rangle$ can be computed explicitly.

Generalizations

$R=\mathbb{Z}_{p^{e}}$ and write

$$
R_{N}=\mathbb{Z}_{p^{e}}[X] /\left\langle X^{N}-1\right\rangle
$$

so that $R_{N}=R^{N}$ after the identification.

Generalizations

By introducing an auxiliary variable u, we break the equation $X^{N}-1=0$ into two equations $X^{n}-u=0$ and $u^{p^{k}}-1=0$. Taking the equation $u^{p^{k}}-1=0$ into account, we first introduce the ring

$$
\mathcal{R}=\mathbb{Z}_{p^{e}}[u] /\left\langle u^{p^{k}}-1\right\rangle .
$$

Generalizations

There is a natural R-module isomorphism $\Psi: \mathcal{R}^{n} \rightarrow R^{N}$ defined by

$$
\begin{array}{r}
\Psi\left(a^{0}, a^{1}, \ldots, a^{n-1}\right)=\left(a_{0}^{0}, a_{0}^{1}, \ldots, a_{0}^{n-1}, a_{1}^{0}, a_{1}^{1}, \ldots, a_{1}^{n-1},\right. \\
\left.\ldots, a_{p^{k}-1}^{0}, a_{p^{k}-1}^{1}, \ldots, a_{p^{k}-1}^{n-1}\right)
\end{array}
$$

where $a^{i}=a_{0}^{i}+a_{1}^{i} u+\cdots+a_{p^{k}-1}^{i} u^{p^{k}-1} \in \mathcal{R}$ for $0 \leq i \leq n-1$.

Generalizations

u is a unit in \mathcal{R} and

$$
\begin{aligned}
\Psi\left(u a^{n-1}, a^{0}, \ldots, a^{n-2}\right) & =\Psi\left(a_{p^{k}-1}^{n-1}+a_{0}^{n-1} u+\ldots\right. \\
& \left.+a_{p^{k}-2}^{n-1} u^{p^{k}-1}, a^{0}, \ldots, a^{n-2}\right) \\
& =\left(a_{p^{k}-1}^{n-1}, a_{0}^{0}, \ldots, a_{0}^{n-2}, a_{0}^{n-1}, a_{1}^{0}\right. \\
& \left.\ldots, a_{1}^{n-2}, \ldots, a_{p^{k}-2}^{n-1}, a_{p^{k}-1}^{0}, \ldots, a_{p^{k}-1}^{n-2}\right) .
\end{aligned}
$$

Generalizations

The constacyclic shift by u in \mathcal{R}^{n} corresponds to a cyclic shift in R^{N}.

Generalizations

We identify \mathcal{R}^{n} with $\mathcal{R}[X] /\left\langle X^{n}-u\right\rangle$, which takes the equation $X^{n}-u=0$ into account.

Generalizations

View Ψ as a map from $\mathcal{R}[X] /\left\langle X^{n}-u\right\rangle$ to R_{N}, we have that

$$
\Psi\left(\sum_{i=0}^{n-1}\left(\sum_{j=0}^{p^{k}-1} a_{j}^{i} u^{j}\right) X^{i}\right)=\sum_{i=0}^{n-1} \sum_{j=0}^{p^{k}-1} a_{j}^{i} X^{i+j n} .
$$

Generalizations

Ψ is an R-module isomorphism, we

$$
\Psi\left(u^{j} X^{i}\right)=X^{i+j n}
$$

$$
\text { for } 0 \leq i \leq n-1 \text { and } 0 \leq j \leq p^{k}-1
$$

Generalizations

Let $0 \leq i_{1}, i_{2} \leq n-1$ and $0 \leq j_{1}, j_{2} \leq p^{k}-1$. Write $i_{1}+i_{2}=\delta_{1} n+i$, and $j_{1}+j_{2}=\delta_{2} p^{k}+j$ such that $0 \leq i \leq n-1$ and $0 \leq j \leq p^{k}-1$. Clearly $\delta_{i}=0$ or 1 .

Generalizations

Since $u^{p^{k}}=1, X^{n}=u$ in $\mathcal{R}[X] /\left\langle X^{n}-u\right\rangle$ and $X^{p^{k} n}=1$ in $R[X] /\left\langle X^{N}-1\right\rangle$ we have that

$$
\begin{aligned}
\Psi\left(w^{j_{1}} X^{i_{1}} u^{j_{2}} X^{i_{2}}\right) & =\Psi\left(\psi^{j_{1}+j_{2}} X^{i_{1}+i_{2}}\right)=\Psi\left(\psi^{j+\delta_{1}} X^{i}\right)=X^{i+\left(j+\delta_{1}\right) n} \\
& =X^{i+\delta_{1} n} X^{j_{n}}=X^{i_{1}+i_{2}} X^{\left.j_{1}+j_{2}\right) n}=\Psi\left(\psi^{j_{1}} X^{i_{1}}\right) \Psi\left(u^{j_{2}} X^{i_{2}}\right) .
\end{aligned}
$$

Generalizations

By the R-linearity property of Ψ, it follows that Ψ is a ring homomorphism.

Lemma
Ψ is an R-algebra isomorphism between $\mathcal{R}[X] /\left\langle X^{n}-u\right\rangle$ and $R[X] /\left\langle X^{N}-1\right\rangle$. Furthermore, the cyclic codes over R of length N correspond to constacyclic codes of length n over \mathcal{R} via the map Ψ.

Generalizations

The ring \mathcal{R} is a finite local ring, and hence the regular polynomial $X^{n}-u$ has a unique factorization in $\mathcal{R}[X]$

$$
X^{n}-u=g_{1} g_{2} \ldots g_{I}
$$

into monic, irreducible and pairwise relatively prime polynomials $g_{i} \in \mathcal{R}[X]$, and by the Chinese Remainder Theorem

$$
\mathcal{R}[X] /\left\langle X^{n}-u\right\rangle \simeq \mathcal{R}[X] /\left\langle g_{1}\right\rangle \oplus \cdots \oplus \mathcal{R}[X] /\left\langle g_{I}\right\rangle
$$

This isomorphism will give us a decomposition of R_{N} via the map Ψ.

Generalizations

Cyclic codes can also be studied over the infinite p-adic integers. A. R. Calderbank and N. J. A. Sloane, Modular and p-Adic Cyclic Codes, Designs, Codes and Cryptography, 6 (1995), pp. 21-35.

Skew Cyclic Codes

Let F be a field and θ an automorphism of the field.

Skew Cyclic Codes

Let F be a field and θ an automorphism of the field.
A θ-cyclic code is a linear code C with the property that
$\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C \Longrightarrow\left(\theta\left(a_{n-1}\right), \theta\left(a_{0}\right), \theta\left(a_{1}\right), \ldots, \theta\left(a_{n-2}\right) \in C\right.$.

Skew Cyclic Codes

$F[X, \theta]=\left\{a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \mid a_{i} \in F\right\}$

Skew Cyclic Codes

$$
F[X, \theta]=\left\{a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \mid a_{i} \in F\right\}
$$

Addition is the usual addition and $X a=\theta(a) X$, then extend by associativity and distributivity.

Skew Cyclic Codes

Let $\psi: F[X, \theta] \rightarrow F[X, \theta] /\left\langle X^{n}-1\right\rangle$.

Skew Cyclic Codes

$$
\text { Let } \psi: F[X, \theta] \rightarrow F[X, \theta] /\left\langle X^{n}-1\right\rangle
$$

Theorem

Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ. The ring $F[X, \theta] /\left\langle X^{n}-1\right\rangle$ is a principal left ideal domain in which left ideals are generated by $\psi(G)$ where G is a ring divisor of $X^{n}-1$ in $F[X, \theta]$.

Skew Cyclic Codes

Theorem
Let F be a finite field, θ an automorphism of F and n an integer divisible by the order of θ. Let C be a linear code of length n. The code C is a θ-cyclic code if and only if the skew polynomial representation of C is a left idea in $F[X, \theta] /\left\langle X^{n}-1\right\rangle$.

