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Open Questions

The following questions were posed by:

S.T. Dougherty
J.L. Kim
P. Solé

J. Wood



Hilbert Style Problems

Hilbert Style Problems



Fundamental Problem of Coding Theory

Open Question

For a fixed n and d, find largest M such that there exists a code
C ⊂ Fn

q with |C | = M.



Fundamental Problem of Coding Theory (Linear Version)

Open Question

For a fixed n and d, find largest k such that there exists a linear
code C ⊆ Fn

q with dim(C ) = k.



Quote

Filling in a box for the best code with given parameters is just a
game. – Felix Ulmer, Lens 2009.



Fundamental Problem of Coding Theory

In general, we want an algorithm (computable) that will give us
the answer.



Fundamental question in its most general form

Open Question

Given an alphabet A and a metric D, fix n and d. Find the largest
M such that there exists a code C ⊆ An, with minimum distance
d, and M = |C |.



Fundamental question in its most general form

Example 1: What is the best Z4 code with respect to the Lee
weight.

Example 2: What is the best Matn,s(R) code with respect to the
Rosenbloom-Tsfasman metric?

Example 3: What is the best code over a chain ring with respect
to the homogeneous weight?

Example 4: What is the best additive code over F4? These codes
are useful in terms of quantum communication.
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Duality for Abelian groups

Note a character of G is a homomorphism from G to the
multiplicative group of the Complex numbers.

Let G be a finite abelian group and fix a duality of G , i.e. a
character table. We have a bijective correspondence between the
elements of G and those of Ĝ = {π|π a character of G}.

For each α ∈ G denote the corresponding character by χα.
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elements of G and those of Ĝ = {π|π a character of G}.

For each α ∈ G denote the corresponding character by χα.



Duality for Abelian groups

A code C over G is a subset of Gn, the code is said to be linear if
C is an additive subset of Gn.

For C a code in over G , C⊥ = {(g1, g2, . . . , gn)|
∏i=n

i=1 χgi (ci ) = 1
for all (c1, . . . , cn) ∈ C}.

We associate an element of Ĝn with an element of Gn with the
natural correspondence.

The code C⊥ is associated with the set {χ ∈ Ĝn|χ(c) = 1 for all
c ∈ C}.

This gives that |C⊥| = |Ĝ |n
|C | = |G |n

|C | and that C = (C⊥)⊥.
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Duality for Abelian groups

Let G = {αi} with α0 the additive identity of the group.

The complete weight enumerator of a code C over a G is given
by

WC (x0, x1, . . . , xs−1) =
∑
c∈C

wt(c)

where wt(c) =
∏s−1

i=0 xβii where the element αi appears βi times
in the vector c .



Duality for Abelian groups

Let T be defined as follows:

Tαi ,αj = χαi (αj)

Theorem
Let C be a code over G , |G | = s, with weight enumerator
WC (x0, x1, . . . , xs−1) then the complete weight enumerator of the
orthogonal is given by:

WC⊥ =
1

|C |
WC (T (x0, x1, . . . , xs−1))

and

HC⊥ =
1

|C |
HC (x + (s − 1)y , x − y)
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Duality for non-Abelian groups

This approach does not work for non-Abelian groups.

Open Question

Is there a duality and MacWilliams formula for codes over
non-Abelian groups? Is there a subclass of non-Abelian groups for
which a duality and a MacWilliams formula exists?
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Difficulties for non-Abelian groups

Consider the non-Abelian Quaternion group of order 8. This group
has elements {±1,±i ,±j ,±k}.

There are three subgroups of order 4 in this group, that is
{±1,±i}, {±1,±j}{±1,±k}. But there is only one group of order
2, that is {±1}.

If a linear code is defined as a subgroup (or even normal subgroup)
of Gn then these are all linear codes. If we expect that
|C ||C⊥| = |G |n, then each subgroup of order 4 would need a
subgroup of order 2 to be its orthogonal and the subgroup of order
2 would need a subgroup of order 4 to be its orthogonal. This
would not be possible here, in other words we could not have
(C⊥)⊥ = C in this scenario.
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Duality for non-Abelian groups

Open Question

Is there a subclass of non-abelian groups for which a duality and a
MacWilliams relations work?



General Duality Question

Open Question

What is the largest class of algebraic objects for which there exists
a duality and a MacWilliams relation?

For example, for rings the answer is Frobenius rings.
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Along with this question comes the question of what exactly
should we call a linear code.

Open Question

Define linear codes when the alphabet is neither a ring, module nor
an abelian group.
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Designs and Codes

A block t − (v , k , λ) design is an incidence structure of points and
blocks such that the following hold:
1. There are v points,
2. Each block contains k points,
3. For any t points there are exactly λ blocks that contain all
these points.



The Assmus-Mattson Theorem

Theorem
Assmus-Mattson Theorem Let C be a code over Fq of length n
with minimum weight d, and let d⊥ denote the minimum weight
of C⊥. Let w = n when q = 2 and otherwise the largest integer w
satisfying w − (w+q−2

q−1 ) < d , define w⊥ similarly. Suppose there is
an integer t with 0 < t < d that satisfies the following condition:
for WC⊥(Z ) = BiZ

i at most d − t of B1,B2, . . . ,Bn−t are
non-zero. Then for each i with d ≤ i ≤ w the supports of the
vectors of weight i of C , provided there are any, yield a t-design.
Similarly, for each j with d⊥ ≤ j ≤ min{w⊥, n− t} the supports of
the vectors of weight j in C⊥, provided there are any, form a
t-design.

One of the most fruitful uses of this theorem is to find 5-designs in
the extremal Type II codes of length 24 and 48. There would also
be 5-designs in the putative [24k, 12k , 4k + 4] codes.
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Assmus-Mattson Theorem limit

Open Question

Find a theoretical limit for t such that the exists t-designs via the
Assmus-Mattson theorem applied to a linear code, or prove that no
such limit exists by finding codes with t-designs for arbitrary t.

Toward this very large question it would be interesting to solve the
following.

Open Question

Find 5-designs that are not in [24k , 12k , 4k + 4] codes Type II
codes or any 6-designs in codes.
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Assmus Mattson Theorem limit

In 2000 Janusz showed the following.

Theorem
Let C be a [24m + 8µ, 12m + 4µ, 4m + 4] extremal Type II code
for µ = 0, 1, or 2, where m ≥ 1 if µ = 0, and µ ≥ 0 otherwise.
Then only one of the following holds:

(a) the codewords of any fixed weight i 6= 0 hold t-designs for
t = 7− 2µ, or

(b) the codewords of any fixed weight i 6= 0 hold t-designs for
t = 5− 2µ and there is no i with 0 < i < 24m + 8µ such that
codewords of weight i hold a (6− 2µ)-design.



MDS Codes

The Singleton Bound is as follows.

Theorem
Let C be a code over an alphabet A with length n, minimimum
distance d and size k = log|A|(C ). Then d ≤ n − k + 1.

Codes meeting this bound are called MDS codes. Finding such
codes is largely a combinatorial problem.
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MDS Codes

This combinatorial bound is equivalent to a number of interesting
combinatorial questions involving mutually orthogonal Latin
squares (and hypercubes) and arcs of maximal size in projective
geometry.

Theorem
A set of s mutually orthogonal Latin squares of order q is
equivalent to an MDS [s + 2, q2, s + 1] MDS code.

The search for mutually orthogonal squares has been suggested as
the next Fermat question, owing to its ease of statement and its
intractability over centuries.
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MDS Codes

There is a corresponding bound for codes over a principal ideal
ring.

Theorem
Let C be a linear code over a principal ideal ring, then

d(C ) ≤ n − k + 1

where k is the rank of the code.

Codes meeting this bound are called Maximum Distance with
respect to Rank (MDR).
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Find and classify all MDS and MDR codes.
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Prove or disprove that if C is an [n, k, n − k + 1] MDS code over
Fp then n ≤ p + 1.
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Gleason-Pierce-Ward

Theorem
(Gleason-Pierce-Ward) Let p be a prime, m, n be integers and
q = pm. Suppose C is a linear [n, n2 ] divisible code over Fq with
divisor ∆ > 1. Then one (or more) of the following holds:
I. q = 2 and ∆ = 2,
II. q = 2, ∆ = 4, and C is self-dual,
III. q = 3, ∆ = 3, and C is self-dual,
IV. q = 4, ∆ = 2, and C is Hermitian self-dual,
V. ∆ = 2 and C is equivalent to the code over Fq with generator
matrix [I n

2
I n

2
], where I n

2
is the identity matrix of size n

2 over Fq.



Generalization of Gleason-Pierce-Ward

Theorem
Suppose that C is a self-dual code over Z2k which has the
property that every Euclidean weight is a multiple of a positive
integer. Then the largest positive integer c is either 2k or 4k.



Generalization of Gleason-Pierce-Ward

Open Question

Find the largest class of codes over algebraic structures for which
there exists such a divisibility condition for self-dual code for a
given weight.



Generalization of Gleason, Nebe-Rains-Sloane

Self-Dual Codes and Invariant Theory G. Nebe, E. M. Rains and N.
J. A. Sloane Springer-Verlag, 2006, xxvii+430 pp. ISBN
3-540-30729-x



Generalization of Gleason, Nebe-Rains-Sloane

Open Question

(Suggested By Jay Wood) Find the largest class of codes for which
a generalization of these theorems exist.



Non-existence

Open Question

Develop tools for proving the non-existence of codes for a given set
of parameters.

Numerous constructions exist for codes, but in comparison we have
relatively few techniques for proving that codes do not exist.

Recall that the non-existence of the projective plane of order 10
was proven by showing that a certain code did not exist.
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Self-dual codes

Numerous papers have been written trying to find optimal self-dual
codes for a given length using many different constructions and
techniques.

As of now, we still do not know the complete answer for lengths
under 100.

Open Question

Determine an algorithm (or theorem) for efficiently determining the
parameters of an optimal self-dual code (over a ring or field).
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Cyclic Codes

We know that in general, we associate cyclic codes (which are
useful both in theory and practice) with ideals in R[x ]/〈xn − 1〉.

Open Question

Classify all ideals in R[x ]/〈xn − 1〉, where R is a Frobenius ring
and n is any integer.

Numerous cases are known, however, even for Zm with n not
relatively prime to m, there is a lot to be studied.
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Skew Cyclic Codes

Open Question

Give the most general setting for skew cyclic codes, that is give a
description of an algebraic setting and a determination of the
ideals in that setting where the alphabet and automorphism are as
general as possible.

Of course, there are numerous steps that can be done on the path
of this problem.
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Skew Cyclic Codes

One might even generalize this to where the permutation acting is
not simply the cyclic permutations.

Open Question

Give an algebraic description of all skew codes that are held
invariant by some finite group of permutations G .
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Non-Commutative Rings

While a great deal has been done where the alphabet is a
commutative ring, very little has been done where the alphabet is
a non-commutative ring.

Open Question

Develop the theory for any family of codes where the alphabet is a
non-commutative ring.
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Non-Commutative Rings

Open Question

Find connections for codes over rings (commutative and
non-commutative) to other branches of mathematics
(combinatorics, number theory, design theory).

Open Question

Find connections for codes over rings (commutative and
non-commutative) to engineering applications.



Non-Commutative Rings

Open Question

Find connections for codes over rings (commutative and
non-commutative) to other branches of mathematics
(combinatorics, number theory, design theory).

Open Question

Find connections for codes over rings (commutative and
non-commutative) to engineering applications.



Fermat Style Problems

Fermat Style Problems



My favorite open problem

Open Question

Does there exist a Type II [72, 36, 16] code?



My favorite open problem

Monetary prizes:

I N.J.A. Sloane $10 (1973),

I S.T. Dougherty $100 for the existence (2000),

I M. Harada $200 for the nonexistence (2000).



The putative [72, 36, 16] code

If C is a self-dual code then the weight enumerator is held invariant
by the MacWilliams relations and hence by the following matrix:

M =
1√
2

(
1 1
1 −1

)

If the code is doubly-even, that is the Hamming weights of all
vectors are 0 (mod 8), then it is also held invariant by the
following matrix:

A =

(
1 0
0 i

)
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The putative [72, 36, 16] code
The group G = 〈G ,A〉 has order 192. The series Φ(λ) =

∑
aiλ

i

where there are ai independent polynomials held invariant by the
group G . Next we apply the classic theorem of Molien.

Theorem
(Molien) For any finite group G of complex m by m matrices,
Φ(λ) is given by

Φ(λ) =
1

|G |
∑
A∈G

1

det(I − λA)
(1)

where I is the identity matrix.

For our group G we get

Φ(λ) =
1

(1− λ8)(1− λ24)
= 1 +λ8 +λ16 + 2λ24 + 2λ32 + . . . (2)
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where I is the identity matrix.

For our group G we get

Φ(λ) =
1

(1− λ8)(1− λ24)
= 1 +λ8 +λ16 + 2λ24 + 2λ32 + . . . (2)



The putative [72, 36, 16] code

W1(x , y) = x8 + 14x4y 4 + y 8 (3)

and
W2(x , y) = x4y 4(x4 − y 4)4 (4)

Theorem
(Gleason) The weight enumerator of an Type II self-dual code is a
polynomial in W1(x , y) and W2(x , y), i.e. if C is a Type II code
then WC (x , y) ∈ C[W1(x , y),W2(x , y)].
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Bound

It follows that if C is a Type II [n, k , d ] code then

d ≤ 4b n

24
c+ 4 (5)

Codes meeting this bound are called extremal. We investigate
those with parameters [24k , 12k , 4k + 4]. It is not known whether
these codes exist until 24k ≥ 3720 at which a coefficient becomes
negative.
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General Form of the Question

Open Question

For which k does there exists a doubly-even self-dual binary
[24k , 12k , 4k + 4] code?



Length 24 and 48

For length 24, there is a [24, 12, 8] code, namely the well known
Golay code.

For length 48, there is also a code namely the Pless code.

Hence the first unknown case is whether there exists a [72, 36, 16]
code.
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Golay code.
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code.



Weight Enumerator

Ci i
1 0, 72

249849 16, 56
18106704 20, 52

462962955 24, 48
4397342400 28, 44

16602715899 32, 40
25756721120 36



Shadows

Lemma
Let C be a self-dual code with C0 the subcode of doubly-even
vectors. The subcode C0 is linear and of codimension 1.

Proof.
If v and w are doubly-even vectors then

wt(v + w) = wt(v) + wt(w)− 2|v ∧ w | ≡ 0 (mod 4), (6)

since both wt(v) and wt(w) are 0 (mod 4) and |v ∧w| is even
since the vectors are orthogonal. Then the map ψ : C → F2 with
ψ(c) = 0 if it is doubly-even and 1 if it is singly even, is linear and
C0 is the kernel, which gives that 2|C0| = |C | and so the code is of
codimension 1.
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Shadows

Then C⊥0 = C0 ∪ C1 ∪ C2 ∪ C3 with C = C0 ∪ C2. Let S = C1 ∪ C3

be the shadow of C with respect to the subcode C0. Note that the
shadow is a non-linear code.



Shadows

WC0(x , y) = (
1

2
)(WC (x , y) + WC (x , iy)) (7)

where i is the complex number with i2 = −1.



Shadows

Lemma
Let C be a Type I self-dual code with S its shadow then

WS(x , y) = WC (
x + y√

2
,

i(x − y)√
2

). (8)



Shadows

Proof.
Let T be the action of the MacWilliams transform.

WS(x , y) = WC⊥
0

(x , y)−WC (x , y)

=
1

|C0|
T ·WC0(x , y)−WC (x , y)

=
1

2|C0|
T · (WC (x , y) + WC (x , iy))−WC (x , y)

=
1

|C |
T ·WC (x , y) +

1

|C |
T ·WC (x , iy)−WC (x , y)

=
1

|C |
T ·WC (x , iy)



Shadows

Theorem (Brualdi and Pless)

Let C be a self-dual code of length n, C0 be any subcode of
codimension 1, and S be the shadow with respect to that subcode,
with C⊥0 = C0 ∪ C1 ∪ C2 ∪ C3 as described above. Then if j /∈ C0,
where j is the all-one vector, the code
C ′ = (0, 0,C0) ∪ (1, 1,C2) ∪ (1, 0,C1) ∪ (0, 1,C3) is a self-dual
code of length n + 2 with weight enumerator:
WC ′ = x2WC0(x , y) + y 2WC2(x , y) + xyWS(x , y) If j ∈ C0 then
the code
C ′ = (0, 0, 0, 0,C0) ∪ (1, 1, 0, 0,C2) ∪ (1, 0, 1, 0,C1) ∪ (0, 1, 1, 0,C3)
is self-orthogonal and the code C ∗ = 〈v ,C ′〉, where
v = (1, 1, 1, 1, 0, . . . , 0), is a self-dual code of length n + 4 with
weight enumerator:
(x4 + y 4)WC0(x , y) + (2x2y 2)(WC1(x , y) + WC2(x , y) + WC3(x , y))

In either case we refer to the larger code as the parent code and
the smaller code as the child.
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Building Up
Let C be a self-dual code of length n + 2. We can take as a
generator matrix, a matrix of the following form:

( I , G )

where I is the identity matrix. It follows that we can then take a
generator matrix to be 

0 0 H1

0 0 H2

0 0 H3

.

.

.
0 0 H n

2
−1

1 1 v
0 1 u


where the matrix H with rows H1, ...,H n

2
−1 generates a

self-orthogonal code D0.



Building Up

Theorem
If C is a self-dual code of length n + 2 with minimum weight
greater than 2, then for some self-dual code D of length n, we
have that C is the parent of D.



Child

The existence of a [72, 36, 16] Type I code is equivalent to the
existence of a Type I [70, 35, 14] code.



Child

Table: The Weight Distribution of a [70,35,14] Code

Weight Frequency
0, 70 1

14, 56 11730
16, 54 150535
18, 52 1345960
20, 50 9393384
22, 48 49991305
24, 46 204312290
26, 44 650311200
28, 42 1627498400
30, 40 3221810284
32, 38 5066556495
34, 36 6348487600



Child

Table: The Weight Distribution of the Shadow of a [70,35,14] Code

Weight Frequency
15, 55 87584
19, 51 7367360
23, 47 208659360
27, 43 2119532800
31, 39 8314349120

35 13059745920



Child

Lemma
A doubly-even self-dual [24k , 12k, 4k + 4] code is an extremal code
and has a unique weight enumerator. Every singly-even
[24k − 2, 12k − 1] code is a child of a doubly-even [24k , 12k] code.

Lemma
The weight enumerator of a [24k − 2, 12k − 1, 4k + 2] child of a
doubly-even [24k , 12k, 4k + 4] is uniquely determined. The shadow
of the child has minimum weight 4k + 3.
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of the child has minimum weight 4k + 3.



Child

Theorem
For fixed k, the existence of a singly-even [24k − 2, 12k − 1, 4k + 2]
code whose shadow has minimum weight 4k + 3 is equivalent to
the existence of an extremal doubly-even code of length 24k.



Equivalence

Theorem
The existence of an extremal doubly-even self-dual code of length
24k is equivalent to the existence of a singly-even self-dual
[24k − 2, 12k − 1, 4k + 2] code.



Neighbors

Let v be any weight 4 vector of length 24k. Consider the neighbor
C ′ = N(C , v). That is, if C0 is the subcode of C with vectors
orthogonal to v then C ′ = 〈C0, v〉.

Theorem
If C is a doubly-even [24k , 12k , 4k + 4] code, then the neighbor
C ′ = N(C , v) where v is any weight 4 vector, has a uniquely
determined weight enumerator.
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Neighbor

Let E be a [24k − 4, 12k − 2, 4k] child of the code C ′. That is, if

C ∗ = (0, 0, 0, 0,C0)∪ (1, 1, 0, 0,C2)∪ (1, 0, 1, 0,C1)∪ (0, 1, 1, 0,C3)

then C ′ = 〈v ,C ∗〉.

Theorem
If C ′ is the weight 4 neighbor of a doubly-even [24k , 12k , 4k + 4]
code then the child E of C ′ is a [24k − 4, 12k − 2, 4k] code and
has a uniquely determined weight enumerator.

To show for a particular k that there is no doubly-even
[24k , 12k , 4k + 4] code it is enough to show that the code C ′ or E
as described above does not exist.
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To show for a particular k that there is no doubly-even
[24k , 12k , 4k + 4] code it is enough to show that the code C ′ or E
as described above does not exist.



Neighbor

Table: The Weight Distribution of the Weight 4 Neighbor and its
Subcode

C0 C ′

Weight Frequency Frequency
0, 72 1 1
4, 68 0 1

12, 60 0 442
16, 56 134521 264673
20, 52 9284176 18589296
24, 48 232444043 464824659
28, 44 2196187840 4392509606
32, 40 8298695163 16597183691

36 12886246880 25772731998



Neighbor

Table: The Weight Distribution of the Child of the Weight 4 Neighbor

Weight Frequency
0, 68 1

12, 56 442
14, 54 14960
16, 52 174471
18, 50 1478048
20, 48 9546537
22, 46 46699952
24, 44 175078410
26, 42 509477760
28, 40 1160564636
30, 38 2081169376
32, 36 2949602799

34 3312254400



Designs

An incidence structure D = (P,B, I ) is a t − (v , k , λ) design,
where t, v , k , λ are non-negative integers, if

I |P| = v ;

I every block b ∈ B is incident with precisely k points;

I every t distinct points are together incident with precisely λ
blocks.



Designs

The Assmus-Mattson theorem gives 5-designs in the length 72
code.



Designs

Let D be a [70, 35, 14] Type I code, and let D0 be the subcode of
doubly-even vectors. The weight enumerators for D0 and D⊥0 can
be easily calculated using Tables 2 and 3. It follows from the
Assmus-Mattson Theorem that the vectors of any weight in D0

and D⊥0 hold 3-designs. This gives divisibility conditions on the
coefficients of the shadow if a code exists, namely the λj for
j = 1, 2, 3 for each weight must be integers.



Designs

Table: Design Parameters

i λ1 λ2 λ3

15 18768 3808 728
19 1999712 521664 130416
23 68559504 21859552 6750744
27 817534080 308056320 113256000
31 3682068896 1600899520 682736560
35 6529872960 3217618560 1561491360
39 4632280224 2551110848 1388104432
43 1301998720 792520960 477843520
47 140099856 93399904 61808760
51 5367648 3889600 2802800
55 68816 53856 41976



Higher Weights
Let D ⊆ Fn

2 be a linear subspace, then

||D|| = |Supp(D)|, (9)

where
Supp(D) = {i | ∃v ∈ D, vi 6= 0}. (10)

For a linear code C define

dr (C ) = min{||D|| | D ⊆ C , dim(D) = r}. (11)

The higher weight spectrum is defined as

Ar
i = |{D ⊆ C | dim(D) = r , ||D|| = i}|. (12)

and then we define the higher weight enumerator by

W r (C ; y) = W r (C ) =
∑

Ar
i y i . (13)
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Higher Weight Enumerator

Table: The Second Higher Weight Enumerator

coefficient of y i weight i
96191865 24

4309395552 26
119312891460 28

2379079500864 30
37327599503964 32

466987648992480 34
4687779244903412 36

37810235197002240 38
244777798274765679 40

1269000323938260672 42
5251816390965277320 44

17262594429823645056 46
44763003632389491540 48



Higher Weight Enumerator

Table: The Second Higher Weight Enumerator

coefficient of y i weight i
90768836016453484224 50

142313871132195291144 52
170060449665123790080 54
152060783100409784007 56

99349931253373567200 58
45970401654169517364 60
14440224673488398400 62

2900924791551272475 64
340809968304405600 66

20197782231604740 68
451381581930240 70

1617151596337 72



Automorphism Group

The automorphism group of the putative [72, 36, 16] has order less
than or equal to 5.

Is there a contradiction that can be found in terms of the
automorphism group?
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Open Problems

I Prove that the [70, 35, 14] Type I code with weight
enumerator given above does not exist or construct it and
then the length 72 code from it.

I Prove that the [68, 34, 12] Type I code with weight
enumerator given above does not exist or construct it and
then the length 72 code from it.

I Show that one of the designs given in the paper does not exist
showing that the code does not exist.

I Find one of the designs given in the paper and examine the
code generated by the incidence vectors of the blocks and
determine if they construct one of the codes.
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Codes and Lattices

The Euclidean weight wtE (x) of a vector (x1, x2, . . . , xn) is∑n
i=1 min{x2

i , (2k − xi )
2}.

Theorem
Suppose that C is a self-dual code over Z2k which has the
property that every Euclidean weight is a multiple of a positive
integer. Then the largest positive integer c is either 2k or 4k.

A self-dual code over Z2k where every vector has weight a multiple
of 4k is said to be Type II, otherwise it is said to be Type I.
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Lattices

Let Rn be an n-dimensional Euclidean space with the standard
inner product. An n-dimensional lattice Λ in Rn is a free Z-module
spanned by n linearly independent vectors v1, v2, . . . , vn.

A matrix whose rows are the vectors v1, . . . , vn is called a
generator matrix G of the lattice Λ. The fundamental volume
V (Λ) of Λ is | det G |.

The dual lattice Λ∗ is given by
Λ∗ = {v ∈ Rn | v ·w ∈ Z for all w ∈ Λ}.
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Lattices

We say that a lattice Λ is integral if Λ ⊆ Λ∗ and that an integral
lattice with det Λ = 1 (or Λ = Λ∗) is unimodular.

If the norm v · v is an even integer for all v ∈ Λ, then Λ is said to
even. Unimodular lattices which are not even are called odd. The
minimum norm of Λ is the smallest norm among all nonzero
vectors of Λ.

It is well known that except for n = 23, the minimum norm of a
unimodular lattice of length n is bounded above by 2b n

24c+ 2.
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Codes and Lattices

Theorem
(Bannai, Dougherty, Harada, Oura) Let ρ be a map from Z2k

to Z sending 0, 1, . . . , k to 0, 1, . . . , k and k + 1, . . . , 2k − 1 to
1− k , . . . ,−1, respectively. If C is a self-dual code of length n
over Z2k , then the lattice

Λ(C ) =
1√
2k
{ρ(C ) + 2kZn},

is an n-dimensional unimodular lattice, where
ρ(C ) = {(ρ(c1), . . . , ρ(cn)) | (c1, . . . , cn) ∈ C}. The minimum
norm is min{2k , dE/2k} where dE is the minimum Euclidean
weight of C . Moreover, if C is Type II then the lattice Λ(C ) is an
even unimodular lattice.



Z8 code

Eight is not four Patrick. – Vera Pless to Patrick Solé.

G. Nebe finds a Type II code over Z8 of length 72 with minimum
Euclidean weight 64. The existence of this code implies the
existence of an extremal Type II lattice of dimension 72.
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G. Nebe finds a Type II code over Z8 of length 72 with minimum
Euclidean weight 64. The existence of this code implies the
existence of an extremal Type II lattice of dimension 72.



Codes and Lattices

Open Question

Find a Type II self-dual code over Z2k , 2k ≥ 2s + 2 such that
dE
2k = 2s + 2. Such an extremal code will give an extremal lattice
using Theorem 5.

The next case would be to find a Z16 code with dE = 160. This
would given an extremal lattice at length 96.



Codes and Lattices

Open Question

Find a Type II self-dual code over Z2k , 2k ≥ 2s + 2 such that
dE
2k = 2s + 2. Such an extremal code will give an extremal lattice
using Theorem 5.

The next case would be to find a Z16 code with dE = 160. This
would given an extremal lattice at length 96.



Decoding Algorithms

Decoding Algorithms



Decoding Algorithms

A decoding algorithm is an algorithm that takes received vectors
and (efficiently) computes the error vector.

Cyclic codes have an efficient decoding algorithm.



Decoding Algorithms

A decoding algorithm is an algorithm that takes received vectors
and (efficiently) computes the error vector.
Cyclic codes have an efficient decoding algorithm.



Decoding algorithms

There exist efficient decoding algorithms for various classes of
codes. However, for some well known families there do not exist
such algorithms.

The decoding algorithm for Reed Solomon codes was given as an
example of an application of algebraic number theory in
contradiction to Hardy’s famous statement in the Mathematician’s
Apology.

N. Levison: Coding Theory – a Counterexample to G.H. Hardy’s
Conception of Applied Mathematics, Amer. Math. Monthly 77,
249-258.
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Open Question

Find an efficient decoding algorithm for a family of self-dual codes
or for all self-dual codes.

It is rather mysterious that self-dual codes don’t have a general
decoding algorithm. Efficient decoding algorithms exist for the
binary Golay [24, 12, 8] code, four of the five Type II [32, 16, 8]
codes, and the Type II [48, 24, 12] code q48.
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Give a universal decoding algorithm for quasi-cyclic codes.

Given the fact cyclic codes have an efficient decoding algorithm, it
seems that quasi-cyclic codes should as well. In this direction, find
an algebraic description of these codes. Note that the image of
quaternary cyclic codes are binary quasi-cyclic codes.
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Gilbert-Varshamov bound

Let Aq(n, d) be the maximum size of a q-ary code C of length n
and minimum distance n. Then

Aq(n, d)(
d−1∑
j=0

(
n
j

)
)(q − 1)j) ≥ qn.

The linear programming bound puts restrictions on the maximum
dimension of a code given the length and minimum distance using
the MacWilliams relations.
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2. Is the GV bound tight for q = 2? It is not for q > 49.
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