On Symmetrized Weight Compositions

Ali Assem Nefertiti Megahed

June 5, 2015
First of All

• An alphabet A is a finite left module over a finite ring R with unity.

• A code of length n is just a submodule of A^n. The Hamming weight counts the number of non-zero components in a tuple.
Two Notions of Equivalence

Consider two codes C_1 and C_2 of length n. We may think the two codes refer to the same thing in each of the following:

If $C_1 \cong C_2$ as (left) R-submodules of A^n through an isomorphism that preserves Hamming weight (distance!),

or

if C_1 and C_2 are monomially equivalent.

Is this true?
In her PhD thesis, MacWilliams proved the Hamming weight EP (later this was called being MacWilliams!) for field alphabets.

- The alphabet A has the Extension Property (EP) with respect to Hamming weight if every monomorphism preserving Hamming weight extends to a monomial transformation.
In [7], H. Ward and J. Wood reproved this via a character theoretic proof.

Key Word:
generating characters

Now the question arises:
To what extent can this proof be generalized?!
Can it work for arbitrary rings?
Nakayama’s Definitions
On Frobeniusean Algebras,
1939-1941
(1) A finite ring R is Frobenius iff $R \hat{R}$ is cyclic.
(2) $\text{soc}(A)$ is cyclic if and only if A can be embedded into $R \hat{R}$.
Yes Frobenius is needed !!

1- (Wood [8] 1999): Every finite Frobenius ring has the extension property with respect to the Hamming weight.

Besides, Wood proved a partial converse (for commutative rings) in the same paper.

2- (Greferath, Nechaev, Wisbauer [3] 2004): More generally, if \(A \) is a Frobenius bi-module over the finite ring \(R \), then \(A \) has the extension property with respect to Hamming weight.

3- (Wood [10] 2009): Wood reproved this same result following the style appearing in his 1999’s paper.

One more thing was proved...
$\mathbb{R}A$ is MacWilliams if and only if

1. A is pseudo-injective, and
2. A can be embedded in the character group $\hat{\mathbb{R}}$ of \mathbb{R} (or equivalently, $\text{soc}(A)$ is cyclic).

What Happens with Non-Cyclic Socles?
Theorem: Let $R = M_m(F_q)$ be the ring of all $m \times m$ matrices over a finite field F_q, and let $A = M_{m,k}(F_q)$ be the left R-module of all $m \times k$ matrices over F_q. If $k > m$, there exist linear codes $C_+, C_- \subset A^N$, $N = \prod_{i=1}^{k-1} (1 + q^i)$, such that they are isomorphic through a weight preserving map which does not extend to a monomial transformation.
that all this displayed so far concerns Hamming weight, so,

Once again for swc?!

- For any $G \subseteq \text{Aut}_R(A)$, define an **equivalence relation** \sim on A: $a \sim b$ if $a = b\tau$ for some $\tau \in G$. Let A/G denote the orbit space of this relation. The **G-symmetrized weight composition** is a function $\text{swc} : A^n \times A/G \to \mathbb{Q}$ defined by,

$$\text{swc}(x, a) = |\{ i : x_i \sim a \}|,$$

where $x = (x_1, \ldots, x_n) \in A^n$ and $a \in A/G$. Thus, swc counts the number of components in each orbit.
Analogies Deduced

- In 2013, in [2], N. Elgarem, N. Megahed and J. Wood proved that the embeddability in \hat{R} (cyclic socle) is sufficient for satisfying the extension property with respect to the G-symmetrized weight composition for any subgroup G of $\text{Aut}_R(A)$,

but the necessity remained a question.

A seemingly doomed trial suggests bridging to Hamming weight ...
Define an equivalence relation \approx on A:

$$a \approx b \text{ if } \text{Ann}_a = \text{Ann}_b.$$

The **Annihilator weight**, denoted aw, is then defined so that it counts the number of components in each orbit (i.e. having the same annihilator).

Lemma

In a **pseudo-injective** module, \approx and $\sim_{\text{Aut}_R(A)}$ make the **same** partition.
Theorem
Let R be a principal ideal ring, \mathbb{R}_A a pseudo-injective module, and let C be a submodule of A^n for some n. Then a monomorphism $f : C \rightarrow A^n$ ($C \subseteq A^n$) preserves Hamming weight if and only if it preserves $\text{Aut}_R(A)$-swc.
Theorem

If $R\mathcal{A}$ is pseudo-injective, then \mathcal{A} has the extension property with respect to $\text{Aut}_R(\mathcal{A})$-swc if and only if $\text{soc}(\mathcal{A})$ is cyclic.
Example:
If L is any finite field, and $K \subseteq L$ is a subfield. The K-module KL is pseudo-injective (by an extended basis argument). Thus the alphabet KL has the extension property with respect to $\text{Aut}_K(L)$-swc if and only if $K = L$.
References:

References:

References:

Thank You