On Symmetrized Weight Compositions

Ali Assem Nefertiti Megahed

June 5, 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- An **alphabet** *A* is a finite left module over a finite ring *R* with unity.
- A code of length **n** is just a submodule of **A**^{**n**}. The **Hamming** weight counts the number of non-zero components in a tuple.

Two Notions of Equivalence

Consider two codes C_1 and C_2 of length *n*. We **may think** the two codes refer to **the same thing** in each of the following :

If $C_1 \cong C_2$ as (left) *R*-submodules of A^n through an isomorphism that **preserves** Hamming weight (distance!),

or

if C_1 and C_2 are monomially equivalent.

Is this true?

(ロ) (同) (三) (三) (三) (○) (○)

Harvard, 1962

In her PhD thesis, **MacWilliams** proved the Hamming weight **EP** (later this was called being **MacWilliams**!) for **field alphabets**.

• The **alphabet** *A* has the **Extension Property** (EP) with respect to Hamming weight if every **monomorphism** preserving Hamming weight extends to a **monomial transformation**.

(ロ) (同) (三) (三) (三) (○) (○)

In [7], H.Ward and J.Wood **reproved** this via a **character theoretic** proof.

Key Word: generating characters

Now the question arises: To what extent can this proof be generalized ?! Can it work for arbitrary rings?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Nakayama's Definitions On Frobeniusean Algebras, 1939-1941

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Character Modules

A finite ring *R* is **Frobenius iff** _{*R*} *R* is **cyclic**.
soc(*A*) is **cyclic** if and only if *A* can be **embedded into** _{*R*} *R*.

(ロ) (同) (三) (三) (三) (○) (○)

Yes Frobenius is needed !!

1-(Wood [8] 1999): Every finite **Frobenius** ring has the extension property with respect to the Hamming weight.

Besides, Wood proved a partial converse (for commutative rings) in the same paper.

2-(Greferath, Nechaev, Wisbauer [3] 2004): More generally, if *A* is a Frobenius **bi-module** over the finite ring *R*, then *A* has the extension property with respect to Hamming weight.

3-(Wood [10] 2009): Wood reproved this same result following the style appearing in his 1999's paper.

One more thing was proved...

Necessary and Sufficient

RA is MacWilliams if and only if

- 1. A is **pseudo-injective**, and
- 2. A can be **embedded** in the character group $\widehat{\mathbf{R}}$ of \mathbf{R} (or equivalently, **soc**(\mathbf{A}) is **cyclic**).

What Happens with Non-Cyclic Socles?

One Year Earlier...

Theorem: Let $R = M_m(\mathbb{F}_q)$ be the ring of all $m \times m$ matrices over a finite field \mathbb{F}_q , and let $A = M_{m,k}(\mathbb{F}_q)$ be the left *R*-module of all $m \times k$ matrices over \mathbb{F}_q . If $\mathbf{k} > \mathbf{m}$, there exist linear codes $C_+, C_- \subset A^N, N = \prod_{i=1}^{k-1} (1 + q^i)$, such that they are isomorphic through a weight preserving map **which does not** extend to a monomial transformation.

Just Remember

that all this displayed so far concerns Hamming weight, so,

Once again for swc?!

• For any $G \leq \operatorname{Aut}_R(A)$, define an **equivalence relation** \sim on $A: a \sim b$ if $a = b\tau$ for some $\tau \in G$. Let A/G denote the orbit space of this relation. The *G-symmetrized weight composition* is a function swc : $A^n \times A/G \rightarrow \mathbb{Q}$ defined by,

$$\operatorname{swc}(x, a) = |\{i : x_i \sim a\}|,\$$

where $x = (x_1, ..., x_n) \in A^n$ and $a \in A/G$. Thus, **swc** counts the number of components in each orbit.

Analogies Deduced

• In 2013, in [2], N. Elgarem, N. Megahed and J.Wood proved that the embeddability in $\widehat{\mathbf{R}}$ (cyclic socle) is sufficient for satisfying the extension property with respect to the **G-symmetrized weight composition** for any subgroup *G* of $\operatorname{Aut}_R(A)$,

but the **necessity** remained a **question**.

A seemingly doomed trial suggests bridging to Hamming weight ...

・ロト・ 日本・ 日本・ 日本・ 日本・ うらく

Midway (Annihilator Weight)

Define an **equivalence relation** \approx on *A*:

 $a \approx b$ if $Ann_a = Ann_b$.

The *Annihilator weight*, denoted *aw*, is then defined so that it counts the number of components in each orbit (i.e. having the same annihilator).

Lemma

In a **pseudo-injective** module, \approx and $\sim_{\operatorname{Aut}_R(A)}$ make the **same** partition.

Theorem

Let **R** be a principal ideal ring, ${}_{R}A$ a pseudo-injective module, and let **C** be a submodule of A^{n} for some *n*. Then a monomorphism $f : C \to A^{n}$ ($C \subseteq A^{n}$) preserves Hamming weight if and only if it preserves Aut_R(A)-swc.

Theorem

If $_{\mathbf{R}}\mathbf{A}$ is pseudo-injective, then \mathbf{A} has the extension property with respect to $\operatorname{Aut}_{R}(A)$ -swc if and only if $\operatorname{soc}(\mathbf{A})$ is cyclic.

Example:

If *L* is any finite field, and $K \subseteq L$ is a subfield. The *K*-module $_{K}L$ is pseudo-injective (by an extended basis argument). Thus the alphabet $_{K}L$ has the extension property with respect to $\operatorname{Aut}_{K}(L)$ -**swc** if and only if K = L.

(ロ) (同) (三) (三) (三) (三) (○) (○)

References:

[1]H. Q. Dinh, and S. R. Lopez-Permouth, On the Equivalence of Codes over Rings and Modules, Finite Fields Appl., Vol. 10, no.4, 2004, p. 615-625.

[2]N .ElGarem, N. Megahed, and J.A. Wood, The extension Theorem with respect to Symmetrized Weight Compositions, 4th international castle meeting on coding theory, 2014

[3]M. Greferath, A. Nechaev, and R. Wisbauer, Finite Quasi-Frobenius Modules and Linear Codes, J. Algebra Appl. Vol. 3, no. 3, 2004, p. 247-272.

[4]T. Honold, Characterization of Finite Frobenius Rings, Archiv der Mathematik, Basel, Vol. 76, no. 6, 2001, p. 406-415.

References:

[5]T. K. Lee and Y. Zhou, *Modules which are invariant under automorphisms of their injective hulls*, J. Alg. and App. 12, 2 (2013).

[6]Noyan Er, S. Singh, Ashish K. Srivastava, *Rings and modules whichare stable under automorphisms of their injective hulls*, arXiv: 1301.5841v1 [math.RA] 24 Jan 2013.

[7]H. N. Ward, and J. A. Wood, Characters and the Equivalence of Codes, J. Combin. Theory Ser. A, Vol. 73, 1996, p. 348-352.

[8]J. A. Wood, Duality for Modules over Finite Rings and Applications to Coding Theory, Amer. J. of Math., Vol. 121, 1999, p. 555-575.

References:

[9]J. A. Wood, Code Equivalence Characterizes Finite Frobenius Rings, Proc. Amer. Math. Soc., Vol. 136, 2008, p. 699-706.

[10]J. A. Wood, Foundations of Linear Codes Defined over Finite Modules: The Extension Theorem and MacWilliams Identities, Codes over Rings, Proceedings of the CIMPA Summer School, Ankara, Turkey, 18-29 August 2008, (Patrick Solé) Series on Coding Theory and Cryptology, Vol. 6, World Scientific, Singapore, 2009, p. 124-190.

Thank You