Groups that cohabit with rings

Steve Buckley

Noncommutative rings and their applications, IV
Lens
8-11 June 2015

(1) Introduction

(2) Alternating minimal triples
(3) From Groups and Rings To Triples
4. From Triples to Groups and Rings
(5) Main Results
6) Applications

Isoclinism

Isoclinism for groups is an equivalence relation introduced by P. Hall (1940). Equivalence classes are called families.

We developed a type of isoclinism in a universal algebra context and applied it to rings (B., 2014). With MacHale and Ní Shé, we applied it to commuting probability for rings.

Here we introduce a new type of isoclinism for so-called triples that allows us to relate groups to rings, and create families that contain both groups and rings!

Commuting Probability

The commuting probability of a finite algebraic system S having a multiplication operation denoted by juxtaposition is

$$
\operatorname{Pr}(S):=\frac{|\{(x, y) \in S \times S: x y=y x\}|}{|S|^{2}}
$$

$\operatorname{Pr}(\cdot)$-values for groups include, in particular:

- $1 / n, n \in \mathbb{N}$;
- $2 / n, n \in \mathbb{N}, n \equiv 5(\bmod 8)$ or $n \equiv 7(\bmod 8)$.
[B-McHale] By contrast, for rings, k / n is not a $\operatorname{Pr}(\cdot)$-value if
- $k, n \in \mathbb{N}, n$ is square-free, $k<n$, and either
- n is even, or
- n has at most 69 prime factors.

Comparing groups and rings: coincidence or not?

- For groups [Rusin, 1979], the possible commuting probability values not less than 11/32 are:

1 ,
$\left(2^{2 k}+1\right) / 2^{2 k+1}, k \in \mathbb{N}$,
$1 / 2, \quad 7 / 16, \quad 11 / 27, \quad 2 / 5,25 / 64, \quad 3 / 8, \quad 5 / 14,11 / 32$.
Blue font values can be obtained with nilpotent groups (of class at most 2).

- For rings [B-MacHale-Ní Shé], we get exactly the blue values above.

In [B-MacHale, 2014], we found all isoclinism families of groups G such that $\operatorname{Pr}(G) \geq 1 / 3$.
For nilpotent groups of class 2, the number of families matches that for rings (at least for probability $\geq 11 / 32$, where the situation for rings was understood).

Name	Stem order	$\operatorname{Pr}(\mathcal{F})$		$f(\mathcal{F})$	
\mathcal{F}_{1}	1	1	$=1.0000$	1	$=1.0000$
$\mathcal{F}_{2, k}, k \in \mathbb{N}$	$2^{2 k+1}$	$2^{2 k}+$	≤ 0.6250	$2^{k}+1$	≤ 0.7500
\mathcal{F}_{3}	6	1/2	$=0.5000$	$2 / 3$	≈ 0.6667
\mathcal{F}_{4}	16	7/16	$=0.4375$	5/8	$=0.6250$
\mathcal{F}_{5}	32	7/16		5/8	
$\mathcal{F}_{6,1}$	27	11/27	≈ 0.4074	5/9	≈ 0.5556
\mathcal{F}_{7}	10	2/5	$=0.4000$	3/5	$=0.6000$
\mathcal{F}_{8}	64	25/64	≈ 0.3906	9/16	$=0.5625$
\mathcal{F}_{9}	24	3/8	$=0.3750$	7/12	≈ 0.5833
\mathcal{F}_{10}	14	5/14	≈ 0.3571	4/7	≈ 0.5714
\mathcal{F}_{11}	32	11/32	≈ 0.3438	1/2	$=0.5000$
\mathcal{F}_{12}	32	11/32		1/2	
\mathcal{F}_{13}	32	11/32		9/16	$=0.5625$
\mathcal{F}_{14}	64	11/32		1/2	$=0.5000$
\mathcal{F}_{15}	64	11/32		1/2	
\mathcal{F}_{16}	64	11/32		1/2	
\mathcal{F}_{17}	64	11/32		9/16	$=0.5625$
\mathcal{F}_{18}	64	11/32		9/16	
\mathcal{F}_{19}	128	11/32		1/2	$=0.5000$
\mathcal{F}_{20}	128	11/32		9/16	$=0.5625$
$\mathcal{F}_{6, k}, k>1$	$3^{2 k+1}$	$\frac{3^{2 k}+2}{3^{2 k+1}}$	≤ 0.3416	$\frac{3^{k}+2}{2^{k+1}}$	≤ 0.4074

Mystery solved: categorical equivalence

(S) \mathcal{G} is a category of finite nilpotent groups of class (at most) 2
\mathcal{R} is a category of finite rings.
\mathcal{A} is a category of finite alternating minimal triples (to be defined!).
The morphisms in \mathcal{G} and \mathcal{R} are homoclinisms, not homomorphisms.

Key fact These categorical equivalences preserve the associated probabilities of objects (i.e. commuting probability in \mathcal{G} and \mathcal{R}, and null probability in \mathcal{A}).
(2) Alternating minimal triples
(3) From Groups and Rings To Triples

44 From Triples to Groups and Rings
(5) Main Results
6) Applications

Alternating minimal triples: definitions

Consider a triple (A, B, k), where

- A, B are abelian groups and
- $k: A \times A \rightarrow B$ is bilinear, i.e.

$$
\begin{aligned}
& \lambda_{x, k}, \rho_{y, k}: A \rightarrow B \text { are homomorphisms, } x, y \in A \text {, where } \\
& \quad \lambda_{x, k}(y)=\rho_{y, k}(x)=k(x, y) .
\end{aligned}
$$

- k is alternating if $k(x, x)=0, x \in A$. (This implies $k(x, y)=-k(y, x)$.)
- k is non-degenerate: $\quad \lambda_{x, k}$ and $\rho_{x, k}$ are nontrivial for all $x \in A \backslash\{0\}$. k is weakly non-degenerate: $\lambda_{x, k}$ or $\rho_{x, k}$ are nontrivial for all $x \in A \backslash\{0\}$.
- k is \mathbf{t}-surjective if the induced tensor map $\kappa: A^{\otimes 2} \rightarrow B$ is surjective. (Equivalently, $\{k(x, y) \mid x, y \in A\}$ generates B.)
- k is minimal if it is t-surjective and weakly non-degenerate.

Examples of triples: class 2 groups, and rings

Below, G is a class 2 group and R is a ring.
The (group) commuting triple $\mathrm{CT}^{\mathcal{G}}(G)$ is (A, B, k) where

$$
A=G / Z(G), \quad B=G^{\prime},
$$

and $k: A \times A \rightarrow B$ is induced by

$$
[\cdot, \cdot]: G \times G \rightarrow G^{\prime}, \quad[x, y]=x^{-1} y^{-1} x y .
$$

The (ring) commuting triple $\mathrm{CT}^{\mathcal{R}}(R)$ is (A, B, k) where

$$
A=R / Z(R), \quad B=[R, R],
$$

and $k: A \times A \rightarrow B$ is induced by

$$
[\cdot, \cdot]: R \times R \rightarrow[R, R], \quad[x, y]=x y-y x .
$$

$\mathrm{CT}^{\mathcal{G}}(G)$ and $\mathrm{CT}^{\mathcal{R}}(R)$ are alternating minimal triples.

Triple morphisms

Let $T_{i}=\left(A_{i}, B_{i}, k_{i}\right)$ be minimal triples, $k=1,2$.
A morphism $\mu: T_{1} \rightarrow T_{2}$ consists of two group homomorphisms, $\phi: A_{1} \rightarrow A_{2}$ and $\psi: B_{1} \rightarrow B_{2}$, such that

$$
\psi\left(k_{1}(x, y)\right)=k_{2}(\phi(x), \phi(y)), \quad x, y \in A_{1},
$$

i.e. the following diagram commutes.

$\mu: T_{1} \rightarrow T_{2}$ is an isomorphism if ϕ, ψ are group isomorphisms.

Target and null probabilities

The target probability of a finite minimal triple $T:=(A, B, k)$ with respect to $u \in B$ is

$$
\operatorname{Pr}_{u}(T)=\frac{|\{(x, y) \in A \times A: k(x, y)=u\}|}{|A|^{2}}
$$

In particular, the null probability of T is $\operatorname{Pr}_{0}(T)$.

Below, $T_{i}=\left(A_{i}, B_{i}, k_{i}\right)$ is a finite minimal triple, $i=1,2$.

Lemma

If $\mu \in \operatorname{iso}\left(T_{1}, T_{2}\right)$ and $u \in A_{1}$, then $\operatorname{Pr}_{\mu}\left(T_{1}\right)=\operatorname{Pr}_{\psi_{\mu}(u)}\left(T_{2}\right)$.
In particular, $\operatorname{Pr}_{0}\left(T_{1}\right)=\operatorname{Pr}_{0}\left(T_{2}\right)$.

(1) Introduction

(2) Alternating minimal triples
(3) From Groups and Rings To Triples

44 From Triples to Groups and Rings
(5) Main Results
(6) Applications

Group homoclinism

A homoclinism from a group G to a group H is a pair (ϕ, ψ) of homomorphisms $\phi: G / Z(G) \rightarrow H / Z(H)$ and $\psi: G^{\prime} \rightarrow H^{\prime}$ such that $\psi([u, v])=\left[u^{\prime}, v^{\prime}\right]$ whenever $\phi(u Z(G))=u^{\prime} Z(H)$ and $\phi(v Z(G))=v^{\prime} Z(H)$.

(ϕ, ψ) is an isoclinism if ϕ, ψ are isomorphisms [P . Hall, 1940].

- A family $\mathcal{F}:=[G]$ is an equivalence class under isoclinism.
- $G / Z(G)$ and G^{\prime} are family invariants.
- A family \mathcal{F} contains at least one stem group, i.e. $G \in \mathcal{F}$ with $Z(G) \leq G^{\prime}$.
- If $|G / Z(G)|<\infty$, then
$H \in[G]$ is a stem group $\Longleftrightarrow|H|<\infty$ has minimal order in [G].

Ring homoclinism

A homoclinism from a ring R to a ring S is a pair (ϕ, ψ) of additive group homomorphisms $\phi: R / Z(R) \rightarrow S / Z(S)$ and $\psi:[R, R] \rightarrow[S, S]$ such that $\psi([u, v])=\left[u^{\prime}, v^{\prime}\right]$ whenever $\phi(u Z(R))=u^{\prime} Z(S)$ and $\phi(v Z(R))=v^{\prime} Z(S)$.

(ϕ, ψ) is an isoclinism if ϕ, ψ are isomorphisms.

- A family $\mathcal{F}:=[R]$ is an equivalence class under isoclinism.
- $R / Z(R)$ and $[R, R]$ are family invariants.

Canonical form rings

If $S / Z(S)$ is a direct sum of cyclic groups, then $[S]$ contains at least one canonical form ring $R=\operatorname{Can}(S)$ such that

- $(R,+)$ is the internal direct sum of subgroups A_{1} and A_{2}.
- $x y \in A_{2}$ for all $x, y \in R$, and $x y=0$ if either x or y lies in A_{2}.
- $[R, R]=Z(R)=A_{2}$.
$R=\operatorname{Can}(S)$ might not have minimal order in $\mathcal{F}:=[S]$, but...

$$
|S|<\infty \Longrightarrow|R|=|S / Z(S)| \cdot|[S, S]|<\infty .
$$

Functors $F_{1}^{\mathcal{G}}: \mathcal{G} \rightarrow \mathcal{A}$ and $F_{1}^{\mathcal{R}}: \mathcal{R} \rightarrow \mathcal{A}$

- $\mathcal{G}:=$ category of finite class 2 groups, with homoclinisms as morphisms.
- $\mathcal{R}:=$ category of finite rings, with homoclinisms as morphisms.
- $\mathcal{A}:=$ category of finite alternating minimal triples.
- The map $G \mapsto \mathrm{CT}^{\mathcal{G}}(G)$ induces a fully faithful functor $F_{1}^{\mathcal{G}}: \mathcal{G} \rightarrow \mathcal{A}$.
- The map $R \mapsto \mathrm{CT}^{\mathcal{R}}(R)$ induces a fully faithful functor $F_{1}^{\mathcal{R}}: \mathcal{R} \rightarrow \mathcal{A}$.
- $\operatorname{Pr}_{0}\left(F_{1}^{\mathcal{G}}(G)\right)=\operatorname{Pr}(G)$ for all finite groups G.
- $\operatorname{Pr}_{0}\left(F_{1}^{\mathcal{R}}(R)\right)=\operatorname{Pr}(R)$ for all finite rings R.

A ring R is isoclinic to a (class 2) group G if $F_{1}^{\mathcal{R}}(R)=F_{1}^{\mathcal{G}}(G)$.
Commuting probability is invariant under such isoclinisms.

(1) Introduction

(2) Alternating minimal triples
(3) From Groups and Rings To Triples
(4) From Triples to Groups and Rings
(5) Main Results
6) Applications

Functor $F_{2}^{\mathcal{R}}: \mathcal{A} \rightarrow \mathcal{R}$

Suppose $T=(A, B, k) \in \operatorname{Ob}(\mathcal{A})$.
Let $(R,+):=A \oplus B$.
Select a basis $\left\{a_{i}\right\}_{i \in I}$ of A, with a_{i} of order $1<m_{i} \leq \infty, i \in I$. Associate some linear order $<$ to I. Let

$$
a_{i} * a_{j}= \begin{cases}0 \oplus k\left(a_{i}, a_{j}\right), & i<j \\ 0, & \text { otherwise }\end{cases}
$$

and $x * b=b * x:=0$ for all $x \in R, b \in B$.
There exists a unique binary operation $*$ on R that is distributive over addition and satisfies the above equations.

- The above construction induces a fully faithful functor $F_{2}^{\mathcal{R}}: \mathcal{A} \rightarrow \mathcal{R}$.
- $\operatorname{Pr}\left(F_{2}^{\mathcal{R}}(T)\right)=\operatorname{Pr}_{0}(T)$ for all $T \in \operatorname{Ob}(\mathcal{A})$.

Functor $F_{2}^{\mathcal{G}}: \mathcal{A} \rightarrow \mathcal{G}$

Suppose $T=(A, B, k) \in \operatorname{Ob}(\mathcal{A})$.
Select bases $\left\{a_{i}\right\}_{i \in I}$ of A, and $\left\{b_{i}\right\}_{i \in J}$ of B, such that a_{i} is of order $1<c_{i} \leq \infty$, and b_{i} is of order $1<d_{i} \leq \infty$. We associate linear orders with both A and B, both denoted $<$.
Let G have power-commutator (pc) presentation of the form

$$
\begin{array}{ll}
\left\langle a_{i}^{\prime}, b_{j}^{\prime}, \text { for } i \in I, j \in J\right| \\
\left(a_{i}^{\prime} c_{i}=1 \text { and } a_{j}^{\prime} b_{i}^{\prime}=b_{i}^{\prime} a_{j}^{\prime},\right. & \text { for } i \in I, j \in J, \\
\left(b_{i}^{\prime} d_{i}=1 \text { and } b_{j}^{\prime} b_{i}^{\prime}=b_{i}^{\prime} b_{j}^{\prime},\right. & \text { for } i, j \in J, \\
a_{j}^{\prime} a_{i}^{\prime}=a_{i}^{\prime} a_{j}^{\prime} b_{i, j}^{\prime}, & \\
& \text { for } i, j \in I, i<j\rangle
\end{array}
$$

where $b_{i, j}^{\prime}=\left(b_{j_{1}}^{\prime}\right)^{\prime(i, j, 1)}\left(b_{j_{2}}^{\prime}\right)^{\prime(i, j, 2) \cdots\left(b_{j_{m}}^{\prime}\right)^{\prime(i, j, m)} \text {, and these exponents are chosen }}$ so that $k\left(a_{i}, a_{j}\right)=\sum_{q=1}^{m} l(i, j, q) b_{j_{q}}$. (using additive notation for B) (m and the indices $j_{1}, \ldots, j_{m} \in J$ depend on both i and j, but we suppress this dependence for simplicity.)

- The above construction induces a fully faithful functor $F_{2}^{\mathcal{G}}: \mathcal{A} \rightarrow \mathcal{G}$.
- $\operatorname{Pr}\left(F_{2}^{\mathcal{G}}(T)\right)=\operatorname{Pr}_{0}(T)$ for all $T \in \operatorname{Ob}(\mathcal{A})$.
(1) Introduction
(2) Alternating minimal triples
(3) From Groups and Rings To Triples

44 From Triples to Groups and Rings
(5) Main Results
6) Applications

Main results

Theorem

- \mathcal{A}, \mathcal{R}, and \mathcal{G} are mutually equivalent categories.
- The equivalence preserves the associated probabilities.
- The sets of commuting probabilities of rings and of class 2 groups coincide.

Theorem

Suppose $T=(A, B, k) \in \operatorname{Ob}(\mathcal{A})$.

- $G:=F_{2}^{\mathcal{G}}(T)$ is a stem group and $|G|=|A| \cdot|B|$.
- $R:=F_{2}^{\mathcal{R}}(T)$ is a canonical form ring and $|R|=|A| \cdot|B|$.
- A stem group and a canonical form ring that are isoclinic have the same order.
(1) Introduction
(2) Alternating minimal triples
(3) From Groups and Rings To Triples

4. From Triples to Groups and Rings
(5) Main Results
6) Applications

Application 1: Burnside-Hirsch theorem

Theorem [Follows from Burnside (1911) and Hirsch (1950)]
Suppose $\operatorname{Pr}(G)=m / n$, where G is a finite group and $m, n \in \mathbb{N}$.
|G| odd
$\Longrightarrow n-m$ is divisible by 16 .
$|G|$ odd and not divisible by $3 \Longrightarrow n-m$ is divisible by 48 .

Theorem
 Suppose $\operatorname{Pr}(R)=m / n$, where R is a finite ring and $m, n \in \mathbb{N}$ are coprime, where n has k distinct prime divisors.
 $|R|$ odd $\quad \Longrightarrow n-m$ is divisible by $3^{k-1} \cdot 16^{k}$.
 $|R|$ odd and not divisible by $3 \Longrightarrow n-m$ is divisible by 48^{k}.

Application 2: Special and extraspecial groups

A special p-triple is an alternating minimal triple (A, B, k), where A is a finite elementary abelian p-group for some prime p.
A symplectic p-triple is a triple $T=(V, F, k)$, where V is a finite-dimensional vector space over a field F of order a power of p, and $k: V \times V \rightarrow F$ is a symplectic form.

Proposition

Suppose p is a prime. Under our categorical equivalences:

- special p-triples correspond to (canonical form) finite \mathbb{Z}_{p}-algebras, and to finite special p-groups.
- symplectic p-triples $T=\left(V, \mathbb{F}_{p}, k\right) \in \mathrm{Ob}(\mathcal{A})$ correspond to finite \mathbb{Z}_{p}-algebras R with $|[R, R]|=p$, and to extraspecial p-groups.

Open Problem

Is every commuting probability of a finite p-ring also the commuting probability of a finite \mathbb{Z}_{p}-algebra?

