Some properties of n-Armendariz rings

Ardeline Mary Buhphang
North-Eastern Hill University, Shillong - 793022, INDIA.

Abstract. In this presentation, for a positive integer n, we construct examples of rings which are n-Armendariz but which are not ($n+1$)-Armendariz. While ps-Armendariz rings are semi-
commutative as well as n-Armendariz for any n, the reverse implications are not true in general. We give an example of a ring which is n-Armendariz for any n, but which is not ps-Armendariz and we find conditions for which these classes of rings coincide. Further, we discuss a few more properties of n-Armendariz rings.

Background. Armendariz rings are interested objects of study during the last one and a half decade. Its origin is traced back to the year 1974 when E.P. Armendariz [2] proved that reduced rings satisfy this property.

A ring R is Armendariz if given polynomials $f(x)=$ $\sum_{i=0}^{m} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{n} b_{j} x^{j}$ with coefficients in R, the condition $f(x) g(x)=0$ implies $a_{i} b_{j}=0$ for every i and for every j.

The term 'Armendariz rings' was coined by Rege and Chhawchharia in 1997.

The concept of Armendariz rings generates many new classes of related objects, for example, Kim, et al ([6]) generalised the concept Armendariz ring to power series which we call psArmendariz rings; Buhphang and Rege [3] studied the class of Armendariz modules; Lee and Wong in [7] introduced weak Armendariz rings as those rings such that whenever the product of
two linear polynomials is zero, then the products of their coefficients are zero.

In [8], the following observation was recorded regarding the nArmendariz property and the integrally closed property:

- Let R be a subring of a ring A. Then R is integrally closed in A iff A / R is an n-Armendariz R-module for every positive integer n.
However, the following question still remains unsettled:
If R is integrally closed, does it imply that A / R is an Armendariz R - module?

Equivalently,

Does there exist a subring R of a ring A such that A / R is an n Armendariz R-module, for all n, but it is not an Armendariz R module?

* It is also not known whether polynomial rings of n Armendariz rings are n-Armendariz.

Definition. ([8]) For a fixed positive integer n, a left R module M is n-Armendariz if whenever polynomials $f(x)=a_{0}+$ $a_{1} x$ in $R[x]$ and $g(x)=b_{0}+b_{1} x+\cdots b_{n} x^{n}$ in $M[x]$ satisfy $f(x) g(x)=0$, we have $a_{i} b_{j}=0$, for all i and for all j. A ring is n-Armendariz if it is n-Armendariz as a module over itself.

We confine our attention in this presentation to n-Armendariz rings.

It can be noted that following Lee-Wong's definition, a ring R is weak Armendariz iff it is 1 -Armendariz.

Basic properties.

If a ring R is n-Armendariz for a positive integer n, then it is m-Armendariz for all positive integers $m \geq n$.

Reduced rings, more generally, Armendariz rings are n-Armendariz for every n.

Direct products and subrings of n-Armendariz rings are n Armendariz.

Examples.

- The ring $\mathbb{Z}_{3}[x, y] /\left(x^{3}, x^{2} y^{2}, y^{3}\right)$ (due to [7]) is not 2 -Armendariz, as

$$
(x+y t)\left(x^{2}+2 x y t+y^{2} t^{2}\right)=(x+y t)^{3}=0
$$

But $x y^{2} \neq 0$. However, it is 1 -Armendariz.
E Using the same idea as above, we get that the ring $\mathbb{Z}_{5}[x, y] /\left(x^{5}, x^{4} y^{2}, x^{3} y^{3}, x^{2} y^{4}, y^{3}\right)$ is not 4-Armendariz but it is 3-Armendariz.
E. The ring $\mathbb{Z}_{8}(+) \mathbb{Z}_{8}$ is not weak Armendariz and therefore it is not n-Armendariz for any n.

- The ring $M_{r}(K)$ of all $r \times r$ matrices over a field K is not n Armendariz for any n. So n-Armendariz is not a Morita invariant property.

More properties.

- With notations as in [1], if D is a commutative domain and M is a D-module, then for any $n>0$, the ring $D(+) M$ is n Armendariz $\Leftrightarrow M$ is n-Armendariz over D.
- $\quad R$ is n-Armendariz \Leftrightarrow for any idempotent element e of R, the left ideals $R e$ and $R(1-e)$ are n-Armendariz.
- Let $n>0$ and suppose that R is a ring having a classical right ring of quotients $Q(R)$. Then R is n-Armendariz $\Leftrightarrow Q(R)$ is n-Armendariz. (Follows from [4]).

Definitions.

- A ring R is linear-ps-Armendariz if whenever a linear polynomial $f(x)=a_{0}+a_{1} x$ and a power series $g(x)=\sum b_{i} x^{i}$ satisfy $f(x) g(x)=0$, we have $a_{i} b_{j}=0$, for all i and for all j.
- R is semi-commutative if whenever $a, b \in R$ satisfy $a b=$ 0 , we have $a r b=0$, for all $r \in R$.

Remarks.

4 Linear-ps-Armendariz rings are n-Armendariz for each positive integer $n . \mathbb{Z}(+) \mathbb{Q} / \mathbb{Z}$ is n-Armendariz for each n but it is not linear-ps-Armendariz.
4 Left (right) duo rings are semi-commutative.

Proposition.

If R is linear-ps-Armendariz, then R is semi-commutative.
Proof: If $a b=0$, then for any $c \in R$,

$$
(a-a c x)\left(b+c b x+c^{2} b x^{2}+\ldots\right)=0
$$

which implies $\quad a c b=0$.
Corollary [6, Lemma 2.3]

If R is ps -Armendariz, then R is semi-commutative.

We recall that a ring is abelian if every idempotent element is central. Armendariz rings as well as semi-commutative rings are abelian. But we have a more general result:

Proposition. n-Armendariz rings are abelian.
Proof: By [7, Lemma 3.4] and using the fact that every n Armendariz ring is 1-Armendariz.

The following figure illustrates the relations between the classes of rings discussed:

A ring R is von Neumann regular if for all $a \in R, \ni b \in R$, such that $a=a b a$. [1] and [4] proved that for a von Neumann regular ring the conditions Armendariz and semicommutative are equivalent. Indeed, we have,

Theorem. If R is von Neumann regular then the

following are equivalent:
(1) R is ps-Armendariz
(2) R is linear ps-Armendariz
(3) R is semi-commutative
(4) R is Armendariz
(5) R is n-Armendariz, for all positive integer n
(6) R is abelian.

If we replace von Neumann regular ring by a weaker class, viz., semiprime ring, then we obtain:

Theorem. If R is semiprime ring, then the following are equivalent:
(1) R is semi-commutative
(2) R is linear-ps-Armendariz
(3) R is ps-Armendariz

References.

[1] D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, Vol. 26(1998), No. 7, 22652272.
[2] E.P. Armendariz, A note on extensions of Baer and p.p.rings, J. Austral. Math. Soc., 18 (1974), 470-473.
[3] A.M. Buhphang and M.B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sc., Vol. 8, No. 1, (2002), 53-65.
[4] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semi-commutative rings, Comm. Algebra, 30(2) (2002), 751-761.
[5] Y.C. Jeon, H.K. Kim, Y. Lee and J.S. Yoon, On weak Armendariz rings, Bull. Korean Math.Soc. 46(2009), No. 1, 135146.
[6] N.K. Kim, K.H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra, 34(2006),2205-2218.
[7] T-K. Lee and T-L. Wong, On Armendariz rings, Houston Journal of Mathematics, Vol. 29(2003), No. 3, 583-593.
[8] M.B. Rege and A.M. Buhphang, Integrally closed rings and the Armendariz property, Intl. Elec. J. Algebra, 1(2007), 11-17
[9] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A. Math. Sci. Vol. 73(1997), No. 1, 14-17.

Poster presentation at NCRA IV,
Universite d' Artois,
Lens, France.

