Some properties of n-Armendariz rings

Ardeline Mary Buhphang
North-Eastern Hill University, Shillong – 793022, INDIA.

Abstract. In this presentation, for a positive integer n, we construct examples of rings which are n-Armendariz but which are not $(n+1)$-Armendariz. While ps-Armendariz rings are semi-
commutative as well as \(n \)-Armendariz for any \(n \), the reverse implications are not true in general. We give an example of a ring which is \(n \)-Armendariz for any \(n \), but which is not ps-Armendariz and we find conditions for which these classes of rings coincide. Further, we discuss a few more properties of \(n \)-Armendariz rings.

Background. Armendariz rings are interested objects of study during the last one and a half decade. Its origin is traced back to the year 1974 when E.P. Armendariz [2] proved that reduced rings satisfy this property.
A ring R is *Armendariz* if given polynomials $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$ with coefficients in R, the condition $f(x)g(x) = 0$ implies $a_i b_j = 0$ for every i and for every j.

The term ‘*Armendariz rings*’ was coined by Rege and Chhawchharia in 1997.

The concept of Armendariz rings generates many new classes of related objects, for example, Kim, et al ([6]) generalised the concept Armendariz ring to power series which we call ps-Armendariz rings; Buhphang and Rege [3] studied the class of Armendariz modules; Lee and Wong in [7] introduced weak Armendariz rings as those rings such that whenever the product of
two linear polynomials is zero, then the products of their coefficients are zero.

In [8], the following observation was recorded regarding the n-Armendariz property and the integrally closed property:

Let R be a subring of a ring A. Then R is integrally closed in A iff A/R is an n-Armendariz R-module for every positive integer n.

However, the following question still remains unsettled:

If R is integrally closed, does it imply that A/R is an Armendariz R-module?

Equivalently,
Does there exist a subring R of a ring A such that A/R is an n-Armendariz R-module, for all n, but it is not an Armendariz R-module?

It is also not known whether polynomial rings of n-Armendariz rings are n-Armendariz.

Definition. ([8]) For a fixed positive integer n, a left R-module M is n-Armendariz if whenever polynomials $f(x) = a_0 + a_1 x$ in $R[x]$ and $g(x) = b_0 + b_1 x + \cdots + b_n x^n$ in $M[x]$ satisfy $f(x)g(x) = 0$, we have $a_i b_j = 0$, for all i and for all j. A ring is n-Armendariz if it is n-Armendariz as a module over itself.
We confine our attention in this presentation to n-Armendariz rings.

It can be noted that following Lee-Wong’s definition, a ring R is weak Armendariz iff it is 1-Armendariz.

Basic properties.

- If a ring R is n-Armendariz for a positive integer n, then it is m-Armendariz for all positive integers $m \geq n$.
- Reduced rings, more generally, Armendariz rings are n-Armendariz for every n.
- Direct products and subrings of n-Armendariz rings are n-Armendariz.
Examples.

The ring $\mathbb{Z}_3[x, y]/(x^3, x^2 y^2, y^3)$ (due to [7]) is not 2-Armendariz, as

$$(x + yt)(x^2 + 2xyt + y^2 t^2) = (x + yt)^3 = 0$$

But $xy^2 \neq 0$. However, it is 1-Armendariz.

Using the same idea as above, we get that the ring $\mathbb{Z}_5[x, y]/(x^5, x^4 y^2, x^3 y^3, x^2 y^4, y^3)$ is not 4-Armendariz but it is 3-Armendariz.

The ring $\mathbb{Z}_8(+)^n \mathbb{Z}_8$ is not weak Armendariz and therefore it is not n-Armendariz for any n.
The ring $M_r(K)$ of all $r \times r$ matrices over a field K is not n-Armendariz for any n. So n-Armendariz is not a Morita invariant property.

More properties.

- With notations as in [1], if D is a commutative domain and M is a D-module, then for any $n > 0$, the ring $D(+)^{n}M$ is n-Armendariz $\iff M$ is n-Armendariz over D.
- R is n-Armendariz \iff for any idempotent element e of R, the left ideals Re and $R(1-e)$ are n-Armendariz.
Let \(n > 0 \) and suppose that \(R \) is a ring having a classical right ring of quotients \(Q(R) \). Then \(R \) is \(n \)-Armendariz \(\iff \) \(Q(R) \) is \(n \)-Armendariz. (Follows from [4]).

Definitions.

- A ring \(R \) is **linear-ps-Armendariz** if whenever a linear polynomial \(f(x) = a_0 + a_1x \) and a power series \(g(x) = \sum b_i x^i \) satisfy \(f(x)g(x) = 0 \), we have \(a_i b_j = 0 \), for all \(i \) and for all \(j \).
- \(R \) is **semi-commutative** if whenever \(a, b \in R \) satisfy \(ab = 0 \), we have \(arb = 0 \), for all \(r \in R \).
Remarks.

- Linear-ps-Armendariz rings are n-Armendariz for each positive integer n. $\mathbb{Z}(+)\mathbb{Q}/\mathbb{Z}$ is n-Armendariz for each n but it is not linear-ps-Armendariz.
- Left (right) duo rings are semi-commutative.

Proposition.

If R is linear-ps-Armendariz, then R is semi-commutative.

Proof: If $ab = 0$, then for any $c \in R$,

$$ (a - acx)(b + cbx + c^2bx^2 + \ldots) = 0 $$

which implies $acb = 0$.

Corollary [6, Lemma 2.3]
If R is ps-Armendariz, then R is semi-commutative.

We recall that a ring is *abelian* if every idempotent element is central. Armendariz rings as well as semi-commutative rings are abelian. But we have a more general result:

Proposition. n-Armendariz rings are abelian.

Proof: By [7, Lemma 3.4] and using the fact that every n-Armendariz ring is 1-Armendariz.

The following figure illustrates the relations between the classes of rings discussed:
A ring R is *von Neumann regular* if for all $a \in R$, $\exists b \in R$, such that $a = aba$. [1] and [4] proved that for a von Neumann regular ring the conditions Armendariz and semi-commutative are equivalent. Indeed, we have,

Theorem. If R is von Neumann regular then the following are equivalent:
1. R is ps-Armendariz
2. R is linear ps-Armendariz
3. R is semi-commutative
4. R is Armendariz
5. R is n-Armendariz, for all positive integer n
(6) R is abelian.

If we replace von Neumann regular ring by a weaker class, viz., semiprime ring, then we obtain:

Theorem. If R is semiprime ring, then the following are equivalent:

1. R is semi-commutative
2. R is linear-ps-Armendariz
3. R is ps-Armendariz
References.

Poster presentation at NCRA IV,
Université d’Artois,
Lens, France.