### A Practical Guide to the MacWilliams Relations

#### Steven T. Dougherty

June, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### MacWilliams Relations

The MacWilliams relations are one of the foundations of coding theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The MacWilliams relations are one of the foundations of coding theory.

They were first proven by Jesse MacWilliams for codes over fields then extended to Frobenius rings by Jay Wood.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Notations

For an *R*-module *M* we denote  $\widehat{M}$  as the homomorphisms from *R* to  $\mathbb{C}^*$ . Notice that in the literature, it is sometimes written that  $\widehat{M} = Hom_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}).$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Frobenius Rings

For a finite ring, the following statements are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ► *R* is Frobenius.
- As a left module  $\widehat{R} \cong_R R$ .
- As a right module  $\widehat{R} \cong R_R$ .



A code of length n over a ring R is a subset of  $R^n$ . If the code is a submodule then we say that the code is linear.

### Codes

A code of length n over a ring R is a subset of  $R^n$ . If the code is a submodule then we say that the code is linear.

$$[\mathbf{v},\mathbf{w}]=\sum v_iw_i$$

$$C^{\perp} = \{ \mathbf{w} \mid [\mathbf{w}, \mathbf{v}] = 0, \ \forall \mathbf{v} \in C \}.$$

### Complete Weight Enumerator

For a code over an alphabet  $A = \{a_0, a_1, \dots, a_{s-1}\}$ , the complete weight enumerator is defined as:

$$cwe_{C}(x_{a_{0}}, x_{a_{1}}, \dots, x_{a_{s-1}}) = \sum_{\mathbf{c} \in C} \prod_{i=0}^{s-1} x_{a_{i}}^{n_{i}(\mathbf{c})}$$
 (1)

where there are  $n_i(\mathbf{c})$  occurrences of  $a_i$  in the vector  $\mathbf{c}$ .

### Symmetric Weight Enumerator

Define  $a \sim b$  if and only if  $a = b\mu$  where  $\mu$  is a unit in R. Let  $[b_0], \ldots, [b_t]$  be the equivalence classes under this relation. Define the symmetrized weight enumerator,  $(swe_C(x_{[b_0]}, x_{[b_1]}, \ldots, x_{[b_t]})$ , as the weight enumerator formed by replacing  $x_{a_i}$  with  $x_{[b_j]}$  where  $a_i \in [b_j]$ .

# Hamming Weight Enumerator

The Hamming weight enumerator of a code C is defined to be

$$W_{\mathcal{C}}(x,y) = \sum_{\mathbf{c}\in\mathcal{C}} x^{n-wt(\mathbf{c})} y^{wt(\mathbf{c})},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where  $wt(\mathbf{c}) = |\{i \mid c_i \neq 0\}|$ . It is immediate that  $W_C(x, y) = cwe(x, y, y, \dots, y)$ .

Jessie MacWilliams (1917-1990)

MacWilliams, Jessie A theorem on the distribution of weights in a systematic code. Bell System Tech. J. 42 1963 79-94.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Jessie MacWilliams (1917-1990)

# Theorem (MacWilliams Relations) Let C be a linear code over $\mathbb{F}_q$ then

$$W_{C^{\perp}}(x,y) = \frac{1}{|C|} W_C(x+(q-1)y,x-y).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The matrix  $T_i$  is a |R| by |R| matrix given by:

$$(T_i)_{a,b} = (\chi(ab)) \tag{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where a and b are in R.

For a code C in  $\mathbb{R}^n$  define

$$\mathcal{L}(\mathcal{C}) = \{ \mathbf{v} \mid [\mathbf{v}, \mathbf{w}] = 0, orall \mathbf{w} \in \mathcal{C} \}$$

For a code C in  $\mathbb{R}^n$  define

$$\mathcal{L}(\mathcal{C}) = \{ \mathbf{v} \mid [\mathbf{v}, \mathbf{w}] = 0, orall \mathbf{w} \in \mathcal{C} \}$$

and

$$\mathcal{R}(C) = \{ \mathbf{v} \mid [\mathbf{w}, \mathbf{v}] = 0, \forall \mathbf{w} \in C \}.$$

#### Theorem

(Generalized MacWilliams Relations – Wood) Let R be a Frobenius ring. If C is a left submodule of  $R^n$ , then

$$cwe_{\mathcal{C}}(x_0, x_1, \ldots, x_k) = \frac{1}{|\mathcal{R}(\mathcal{C})|} cwe_{\mathcal{R}(\mathcal{C})}(\mathcal{T}^t \cdot (x_0, x_1, \ldots, x_k)).$$

If C is a right submodule of  $\mathbb{R}^n$ , then

$$cwe_{\mathcal{C}}(x_0, x_1, \ldots, x_k) = \frac{1}{|\mathcal{L}(\mathcal{C})|} cwe_{\mathcal{L}(\mathcal{C})}(\mathcal{T} \cdot (x_0, x_1, \ldots, x_k)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For commutative rings  $\mathcal{L}(C) = \mathcal{R}(C) = C^{\perp}$ .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For commutative rings  $\mathcal{L}(C) = \mathcal{R}(C) = C^{\perp}$ .

#### Theorem

Let C be a linear code over a commutaive Frobenius rings R then

$$W_{C^{\perp}}(x_0, x_1, \dots, x_k) = \frac{1}{|C|} W_C(T \cdot (x_0, x_1, \dots, x_k)).$$
 (3)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Corollary

Corollary If C is a linear code over a Frobenius ring then  $|C||C^{\perp}| = |R|^n$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Corollary

Corollary If C is a linear code over a Frobenius ring then  $|C||C^{\perp}| = |R|^n$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This often fails for codes over non-Frobenius rings.

### MacWilliams Relation

Let S be the matrix, indexed by the equivalence class of the relation  $\sim$ , formed from T by  $S_{[\alpha],[\beta]} = \sum_{\beta' \in [\beta]} T_{\alpha,\beta}$ . If C is a submodule of  $R^n$ , then

$$swe_{C}(y_{0}, y_{1}, \dots, y_{t}) = \frac{1}{|C^{\perp}|} swe_{C^{\perp}}(S \cdot (y_{0}, y_{1}, \dots, y_{k})).$$
 (4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### MacWilliams Relation

Let S be the matrix, indexed by the equivalence class of the relation  $\sim$ , formed from T by  $S_{[\alpha],[\beta]} = \sum_{\beta' \in [\beta]} T_{\alpha,\beta}$ . If C is a submodule of  $R^n$ , then

$$swe_{C}(y_{0}, y_{1}, \dots, y_{t}) = \frac{1}{|C^{\perp}|} swe_{C^{\perp}}(S \cdot (y_{0}, y_{1}, \dots, y_{k})).$$
 (4)

If C is a submodule of  $R^n$ , then

$$W_{C}(x,y) = \frac{1}{|C^{\perp}|} W_{C^{\perp}}(x + (|R| - 1)y, x - y)).$$

### Chinese Remainder Theorem

Let R be a fintie commutative Frobenius ring, then R is isomorphic, via the Chinese Remainder Theorem to

 $R_1 \times R_2 \times \cdots \times R_s$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where  $R_i$  is a local ring and Frobenius.

### Chinese Remainder Theorem

#### Theorem

Let R be a Frobenius ring  $R = CRT(R_1, R_2, ..., R_s)$  where each  $R_i$  is a local ring. Let  $\chi_{R_i}$  be the generating character for  $R_i$ . Then the character  $\chi$  for R defined by

$$\chi(\mathbf{a}) = \prod \chi_{R_i}(\mathbf{a}_i) \tag{5}$$

where  $a = CRT(a_1, a_2, ..., a_s)$ , is a generating character for R.

### Wood's Lemma

#### Lemma

Let  $\chi$  be a character of a finite ring R. The  $\chi$  is a right generating character if and only if ker( $\chi$ ) contains no nonzero right ideals of R.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let R be a finite local commutative Frobenius ring with maximal ideal  $\mathfrak{m}$ .

・ロト・日本・モト・モート ヨー うへで

Let R be a finite local commutative Frobenius ring with maximal ideal  $\mathfrak{m}$ .

The Jacobson radical of R,  $J(R) = \mathfrak{m}$  and the socle of the ring R is  $Soc(R) = Ann(\mathfrak{m}) = \mathfrak{m}^{\perp}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let R be a finite local commutative Frobenius ring with maximal ideal  $\mathfrak{m}$ .

The Jacobson radical of R,  $J(R) = \mathfrak{m}$  and the socle of the ring R is  $Soc(R) = Ann(\mathfrak{m}) = \mathfrak{m}^{\perp}$ .

Since  $\mathfrak{m}$  is the maximal ideal we have that  $R/\mathfrak{m}$  is isomorphic to a field K. We have that  $dim_{K}(Ann(\mathfrak{m})) = 1$  which gives that Soc(R) is isomorphic to K as R modules.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let R be a finite local commutative Frobenius ring with maximal ideal  $\mathfrak{m}$ .

The Jacobson radical of R,  $J(R) = \mathfrak{m}$  and the socle of the ring R is  $Soc(R) = Ann(\mathfrak{m}) = \mathfrak{m}^{\perp}$ .

Since  $\mathfrak{m}$  is the maximal ideal we have that  $R/\mathfrak{m}$  is isomorphic to a field K. We have that  $dim_K(Ann(\mathfrak{m})) = 1$  which gives that Soc(R) is isomorphic to K as R modules. The character of finite fields are well known.

Let R be a finite local commutative Frobenius ring with maximal ideal  $\mathfrak{m}$ .

The Jacobson radical of R,  $J(R) = \mathfrak{m}$  and the socle of the ring R is  $Soc(R) = Ann(\mathfrak{m}) = \mathfrak{m}^{\perp}$ .

Since m is the maximal ideal we have that R/m is isomorphic to a field K. We have that  $dim_K(Ann(m)) = 1$  which gives that Soc(R) is isomorphic to K as R modules. The character of finite fields are well known. Then simply extend the character to the ring R and you have a generating character.

### Character

Once you have the generating character  $\chi$  you use:  $\chi_a(b) = \chi(ab)$  and you can easily construct the matrix T in the MacWilliams relations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

There is one commutative local ring of size 16 with characteristic 2 and Jacobson radical of size 4, namely  $R = \mathbb{F}_4[x]/\langle x^2 \rangle$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There is one commutative local ring of size 16 with characteristic 2 and Jacobson radical of size 4, namely  $R = \mathbb{F}_4[x]/\langle x^2 \rangle$ . The maximal ideal is  $\langle x \rangle = \{0, x, \omega x, \omega^2 x\}$  which is isomorphic to  $\mathbb{F}_4$  and is equal to the Socle.

There is one commutative local ring of size 16 with characteristic 2 and Jacobson radical of size 4, namely  $R = \mathbb{F}_4[x]/\langle x^2 \rangle$ . The maximal ideal is  $\langle x \rangle = \{0, x, \omega x, \omega^2 x\}$  which is isomorphic to  $\mathbb{F}_4$  and is equal to the Socle.

Then  $\chi(0) = 1, \chi(x) = -1, \chi(\omega x) = -1, \chi(\omega^2 x) = 1.$ 

There is one commutative local ring of size 16 with characteristic 2 and Jacobson radical of size 4, namely  $R = \mathbb{F}_4[x]/\langle x^2 \rangle$ . The maximal ideal is  $\langle x \rangle = \{0, x, \omega x, \omega^2 x\}$  which is isomorphic to  $\mathbb{F}_4$  and is equal to the Socle. Then  $\chi(0) = 1, \chi(x) = -1, \chi(\omega x) = -1, \chi(\omega^2 x) = 1$ . Then we construct the generating character  $\pi$  as an extension of

this character:



<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Then  $T_{i,j} = \pi(ij)$ .

There are three equivalence classes under the relation  $\sim$ , namely {0}, {1,  $\omega$ ,  $\omega^2$ , 1 + x,  $\omega$  + x,  $\omega^2$  + x, 1 +  $\omega$ x,  $\omega$  +  $\omega$ x,  $\omega^2$  +  $\omega$ x, 1 +  $\omega^2$ x,  $\omega$  +  $\omega^2$ x,  $\omega^2$  +  $\omega^2$ x} and {x,  $\omega$ x,  $\omega^2$ x}.

There are three equivalence classes under the relation  $\sim$ , namely {0}, {1,  $\omega, \omega^2, 1 + x, \omega + x, \omega^2 + x, 1 + \omega x, \omega + \omega x, \omega^2 + \omega x, 1 + \omega^2 x, \omega + \omega^2 x, \omega^2 + \omega^2 x}$  and {x,  $\omega x, \omega^2 x$ }. Then we have that

$$S = \left( egin{array}{ccc} 1 & 12 & 3 \ 1 & 0 & -1 \ 1 & -4 & 3 \end{array} 
ight)$$

Non-chain ring:  $R = \mathbb{F}_2[u, v]/\langle u^2, v^2 \rangle$ .

Non-chain ring:  $R = \mathbb{F}_2[u, v]/\langle u^2, v^2 \rangle$ . The maximal ideal  $\mathfrak{m} = \langle u, v \rangle = \{0, u, v, uv, u + uv, v + uv, u + v, u + v + uv\} = J(R)$ . Then the socle is  $Soc(R) = \{0, uv\}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-chain ring:  $R = \mathbb{F}_2[u, v]/\langle u^2, v^2 \rangle$ . The maximal ideal  $\mathfrak{m} = \langle u, v \rangle = \{0, u, v, uv, u+uv, v+uv, u+v, u+v+uv\} = J(R)$ . Then the socle is  $Soc(R) = \{0, uv\}$ . Then we have  $\chi(0) = 1, \chi(uv) = -1$ .

Non-chain ring:  $R = \mathbb{F}_2[u, v]/\langle u^2, v^2 \rangle$ . The maximal ideal  $\mathfrak{m} = \langle u, v \rangle = \{0, u, v, uv, u + uv, v + uv, u + v, u + v + uv\} = J(R)$ . Then the socle is  $Soc(R) = \{0, uv\}$ . Then we have  $\chi(0) = 1, \chi(uv) = -1$ . Then we construct  $\pi$  as an extension of this character:

| $\beta$      | 0       | 1          | и       | 1 + u      | V     | 1 + v     | uv         | 1 + uv         |
|--------------|---------|------------|---------|------------|-------|-----------|------------|----------------|
| $\pi(\beta)$ | 1       | $^{-1}$    | 1       | $^{-1}$    | 1     | $^{-1}$   | $^{-1}$    | 1              |
| $\beta$      | u + uv  | 1 + u + uv | v + uv  | 1 + v + uv | u + v | 1 + u + v | u + v + uv | 1 + u + v + uv |
| $\pi(\beta)$ | $^{-1}$ | 1          | $^{-1}$ | 1          | 1     | $^{-1}$   | $^{-1}$    | 1              |

Then  $T_{i,j} = \pi(ij)$ .

The equivalence classes formed by the relation  $\sim$  are: {0}, {1, 1 + u, 1 + u + uv, 1 + v, 1 + v + uv, 1 + uv, 1 + u + v + uv, 1 + u + v}, {u, u + uv}, {v, u + uv}, {uv}, {uv}, {u + v + uv, u + v}. We index S in the order given for these classes. Then we have that

$$S = \begin{pmatrix} 1 & 8 & 2 & 2 & 1 & 2 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 2 & -2 & 1 & -2 \\ 1 & 0 & -2 & 2 & 1 & -2 \\ 1 & -8 & 2 & 2 & 1 & 2 \\ 1 & 0 & -2 & -2 & 1 & 2 \end{pmatrix}.$$
 (6)

### Non-chain ring $\mathbb{Z}_4[x]/\langle x^2\rangle$ .

Non-chain ring  $\mathbb{Z}_4[x]/\langle x^2 \rangle$ . The maximal ideal  $\mathfrak{m} = \langle 2, x \rangle = \{0, 2, x, 2 + x, 2x, 2 + 2x, 3x, 2 + 3x\} = J(R)$ . Then the socle is  $Soc(R) = \{0, 2x\}$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-chain ring  $\mathbb{Z}_4[x]/\langle x^2 \rangle$ . The maximal ideal  $\mathfrak{m} = \langle 2, x \rangle = \{0, 2, x, 2 + x, 2x, 2 + 2x, 3x, 2 + 3x\} = J(R)$ . Then the socle is  $Soc(R) = \{0, 2x\}$ . Then we have  $\chi(0) = 1, \chi(2x) = -1$ . Then we construct  $\pi$  as an extension of this character:

| $\beta$            | 0       | 1      | 2       | 3          | x          | 1 + x   | 2 + x      | 3 + x   |
|--------------------|---------|--------|---------|------------|------------|---------|------------|---------|
| $\pi(4, 8)(\beta)$ | 1       | i      | $^{-1}$ | — <i>i</i> | i          | $^{-1}$ | — <i>i</i> | 1       |
| $\beta$            | 2x      | 1 + 2x | 2 + 2x  | 3 + 2x     | 3 <i>x</i> | 1 + 3x  | 2 + 3x     | 3 + 3x  |
| $\pi(4,8)(\beta)$  | $^{-1}$ | -i     | 1       | i          | — i        | 1       | i          | $^{-1}$ |

Then  $T_{i,j} = \pi(ij)$ .

The equivalence classes formed by the relation  $\sim$  are: {0}, {1,3,1+x,3+x,1+2x,3+2x,1+3x,3+3x}, {2,2+2x}, {2+x,2+3x}, {x,3x}, {2x}.

$$S = \begin{pmatrix} 1 & 8 & 2 & 2 & 1 & 2 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 2 & -2 & 1 & -2 \\ 1 & 0 & -2 & 2 & 1 & -2 \\ 1 & -8 & 2 & 2 & 1 & 2 \\ 1 & 0 & -2 & -2 & 1 & 2 \end{pmatrix}.$$
 (7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ