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MacWilliams Relations

The MacWilliams relations are one of the foundations of coding
theory.

They were first proven by Jesse MacWilliams for codes over fields
then extended to Frobenius rings by Jay Wood.
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Notations

For an R-module M we denote M̂ as the homomorphisms from R
to C∗. Notice that in the literature, it is sometimes written that
M̂ = HomZ(M,Q/Z).



Frobenius Rings

For a finite ring, the following statements are equivalent:

I R is Frobenius.

I As a left module R̂ ∼=R R.

I As a right module R̂ ∼= RR .



Codes

A code of length n over a ring R is a subset of Rn. If the code is a
submodule then we say that the code is linear.

[v,w] =
∑

viwi

C⊥ = {w | [w, v] = 0, ∀v ∈ C}.
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Complete Weight Enumerator

For a code over an alphabet A = {a0, a1, . . . , as−1}, the complete
weight enumerator is defined as:

cweC (xa0 , xa1 , . . . , xas−1) =
∑
c∈C

s−1∏
i=0

x
ni (c)
ai (1)

where there are ni (c) occurrences of ai in the vector c.



Symmetric Weight Enumerator

Define a ∼ b if and only if a = bµ where µ is a unit in R. Let
[b0], . . . , [bt ] be the equivalence classes under this relation. Define
the symmetrized weight enumerator, (sweC (x[b0], x[b1], . . . , x[bt ]), as
the weight enumerator formed by replacing xai with x[bj ] where
ai ∈ [bj ].



Hamming Weight Enumerator

The Hamming weight enumerator of a code C is defined to be

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c),

where wt(c) = |{i | ci 6= 0}|. It is immediate that
WC (x , y) = cwe(x , y , y , . . . , y).



Jessie MacWilliams (1917-1990)

MacWilliams, Jessie A theorem on the distribution of weights in a
systematic code. Bell System Tech. J. 42 1963 79-94.



Jessie MacWilliams (1917-1990)

Theorem
(MacWilliams Relations) Let C be a linear code over Fq then

WC⊥(x , y) =
1

|C |
WC (x + (q − 1)y , x − y).



MacWilliams relations revisited

The matrix Ti is a |R| by |R| matrix given by:

(Ti )a,b = (χ(ab)) (2)

where a and b are in R.



MacWilliams relations revisited

For a code C in Rn define

L(C ) = {v | [v,w] = 0,∀w ∈ C}

and
R(C ) = {v | [w, v] = 0, ∀w ∈ C}.
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MacWilliams relations revisited

Theorem
(Generalized MacWilliams Relations – Wood) Let R be a
Frobenius ring. If C is a left submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|R(C )|
cweR(C)(T t · (x0, x1, . . . , xk)).

If C is a right submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|L(C )|
cweL(C)(T · (x0, x1, . . . , xk)).



MacWilliams relations revisited

For commutative rings L(C ) = R(C ) = C⊥.

Theorem
Let C be a linear code over a commutaive Frobenius rings R then

WC⊥(x0, x1, . . . , xk) =
1

|C |
WC (T · (x0, x1, . . . , xk)). (3)
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This often fails for codes over non-Frobenius rings.
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MacWilliams Relation

Let S be the matrix, indexed by the equivalence class of the
relation ∼, formed from T by S[α],[β] =

∑
β′∈[β] Tα,β.

If C is a submodule of Rn, then

sweC (y0, y1, . . . , yt) =
1

|C⊥|
sweC⊥(S · (y0, y1, . . . , yk)). (4)

If C is a submodule of Rn, then

WC (x , y) =
1

|C⊥|
WC⊥(x + (|R| − 1)y , x − y)).
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Chinese Remainder Theorem

Let R be a fintie commutative Frobenius ring, then R is
isomorphic, via the Chinese Remainder Theorem to

R1 × R2 × · · · × Rs

where Ri is a local ring and Frobenius.



Chinese Remainder Theorem

Theorem
Let R be a Frobenius ring R = CRT (R1,R2, . . . ,Rs) where each
Ri is a local ring. Let χRi

be the generating character for Ri . Then
the character χ for R defined by

χ(a) =
∏

χRi
(ai ) (5)

where a = CRT (a1, a2, . . . , as), is a generating character for R.



Wood’s Lemma

Lemma
Let χ be a character of a finite ring R. The χ is a right generating
character if and only if ker(χ) contains no nonzero right ideals of
R.



Frobenius Local Rings

Let R be a finite local commutative Frobenius ring with maximal
ideal m.

The Jacobson radical of R, J(R) = m and the socle of the ring R
is Soc(R) = Ann(m) = m⊥.

Since m is the maximal ideal we have that R/m is isomorphic to a
field K . We have that dimK (Ann(m)) = 1 which gives that
Soc(R) is isomorphic to K as R modules.
The character of finite fields are well known.
Then simply extend the character to the ring R and you have a
generating character.
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Character

Once you have the generating character χ you use:
χa(b) = χ(ab) and you can easily construct the matrix T in the
MacWilliams relations.



Example 1

There is one commutative local ring of size 16 with characteristic 2
and Jacobson radical of size 4, namely R = F4[x ]/〈x2〉.

The maximal ideal is 〈x〉 = {0, x , ωx , ω2x} which is isomorphic to
F4 and is equal to the Socle.
Then χ(0) = 1, χ(x) = −1, χ(ωx) = −1, χ(ω2x) = 1.
Then we construct the generating character π as an extension of
this character:

β 0 1 ω ω2 x 1 + x ω + x ω2 + x
π(β) 1 −1 −1 1 −1 1 1 −1

β ωx 1 + ωx ω + ωx ω2 + ωx ω2x 1 + ω2x ω + ω2x+ ω2 + ω2x
π(β) −1 1 1 −1 1 −1 −1 1

Then Ti,j = π(ij).
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Example 1

There are three equivalence classes under the relation ∼, namely
{0}, {1, ω, ω2, 1 + x , ω + x , ω2 + x , 1 + ωx , ω + ωx , ω2 + ωx , 1 +
ω2x , ω + ω2x , ω2 + ω2x} and {x , ωx , ω2x}.

Then we have that

S =

 1 12 3
1 0 −1
1 −4 3

 .
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Example 2

Non-chain ring: R = F2[u, v ]/〈u2, v2〉.

The maximal ideal
m = 〈u, v〉 = {0, u, v , uv , u + uv , v + uv , u + v , u + v + uv} = J(R).
Then the socle is Soc(R) = {0, uv}.
Then we have χ(0) = 1, χ(uv) = −1.
Then we construct π as an extension of this character:

β 0 1 u 1 + u v 1 + v uv 1 + uv
π(β) 1 −1 1 −1 1 −1 −1 1
β u + uv 1 + u + uv v + uv 1 + v + uv u + v 1 + u + v u + v + uv 1 + u + v + uv
π(β) −1 1 −1 1 1 −1 −1 1

Then Ti ,j = π(ij).
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Example 2

The equivalence classes formed by the relation ∼ are:
{0}, {1, 1 + u, 1 + u + uv , 1 + v , 1 + v + uv , 1 + uv , 1 + u + v +
uv , 1 + u + v}, {u, u + uv}, {v , v + uv}, {uv}, {u + v + uv , u + v}.
We index S in the order given for these classes. Then we have that

S =



1 8 2 2 1 2
1 0 0 0 −1 0
1 0 2 −2 1 −2
1 0 −2 2 1 −2
1 −8 2 2 1 2
1 0 −2 −2 1 2

 . (6)



Example 3

Non-chain ring Z4[x ]/〈x2〉.

The maximal ideal
m = 〈2, x〉 = {0, 2, x , 2 + x , 2x , 2 + 2x , 3x , 2 + 3x} = J(R). Then
the socle is Soc(R) = {0, 2x}.
Then we have χ(0) = 1, χ(2x) = −1.
Then we construct π as an extension of this character:

β 0 1 2 3 x 1 + x 2 + x 3 + x
π(4, 8)(β) 1 i −1 −i i −1 −i 1

β 2x 1 + 2x 2 + 2x 3 + 2x 3x 1 + 3x 2 + 3x 3 + 3x
π(4, 8)(β) −1 −i 1 i −i 1 i −1

Then Ti,j = π(ij).
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Example 3

The equivalence classes formed by the relation ∼ are:
{0}, {1, 3, 1 + x , 3 + x , 1 + 2x , 3 + 2x , 1 + 3x , 3 + 3x}, {2, 2 +
2x}, {2 + x , 2 + 3x}, {x , 3x}, {2x}.

S =



1 8 2 2 1 2
1 0 0 0 −1 0
1 0 2 −2 1 −2
1 0 −2 2 1 −2
1 −8 2 2 1 2
1 0 −2 −2 1 2

 . (7)


