Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens

June 8, 2015

Acknowledgments

- Thanks to André Leroy for organizing the conference, for inviting me to speak, and for his kind hospitality.

0 . Overview of lectures

- Basic terminology
- Duality and weight enumerators
- Extension problem

Basic vocabulary

- Let R be a finite associative ring with 1 .
- Let A be a finite unital left R-module; A will be the alphabet.
- A left R-linear code over A of length n is a left R-submodule $C \subseteq A^{n}$.
- Right linear codes are defined similarly.
- Due to Nechaev and collaborators, 1999.

Weights

- A weight on A is any function $w: A \rightarrow \mathbb{C}$ with $w(0)=0$.
- Extend to $w: A^{n} \rightarrow \mathbb{C}$ by

$$
w\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} w\left(a_{i}\right) .
$$

- Restrict w to linear code $C \subseteq A^{n}$.

Examples

- Hamming weight: for any alphabet A, define the Hamming weight wt by

$$
\mathrm{wt}(a)= \begin{cases}1, & a \neq 0 \\ 0, & a=0\end{cases}
$$

- Lee weight: for $R=A=\mathbb{Z} / N \mathbb{Z}$, restrict $-N / 2<a \leq N / 2$ and set $w_{L}(a)=|a|$ (ordinary absolute value).
- Homogeneous weight (later).

Hamming weight enumerator

- For a linear code $C \subseteq A^{n}$, define the Hamming weight enumerator of C by

$$
\operatorname{hwe}_{C}(X, Y)=\sum_{x \in C} X^{n-w t(x)} Y^{\mathrm{wt}(x)}
$$

- $\operatorname{hwe}_{C}(X, Y)=\sum_{i=0}^{n} A_{i} X^{n-i} Y^{i}$, where A_{i} is the number of codewords in C of Hamming weight i.

Dual codes

- Let $A=R$ itself. Define the dot product on R^{n} by

$$
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

- For a linear code $C \subseteq R^{n}$, define annihilators

$$
\begin{aligned}
& I(C)=\left\{y \in R^{n}: y \cdot C=0\right\} \\
& r(C)=\left\{y \in R^{n}: C \cdot y=0\right\}
\end{aligned}
$$

Questions

- Are the annihilators well-behaved?
- Is there a nice relationship between the Hamming weight enumerators of C and its annihilators?
- Yes: the MacWilliams identities.
- We will discuss these questions later today.

Isometries

- Let $C_{1}, C_{2} \subseteq A^{n}$ be two linear codes. An R-linear isomorphism $f: C_{1} \rightarrow C_{2}$ is a linear isometry with respect to a weight w if $w(x f)=w(x)$ for all $x \in C_{1}$.
- I will usually write homomorphisms of left modules M on the right side, so that $(r x) f=r(x f)$ for $r \in R, x \in M$.

Symmetry groups

- Suppose the alphabet A has weight w. Define symmetry groups by

$$
\begin{aligned}
& G_{\mathrm{lt}}=\{u \in \mathcal{U}(R): w(u a)=w(a), a \in A\}, \\
& G_{\mathrm{rt}}=\left\{\phi \in G L_{R}(A): w(a \phi)=w(a), a \in A\right\} .
\end{aligned}
$$

- Here, $\mathcal{U}(R)$ is the group of units of R, and $G L_{R}(A)$ is the group of invertible R-linear homomorphisms of A to itself.

Monomial transformations

- Let $G \subseteq G L_{R}(A)$ be a subgroup. A G-monomial transformation of A^{n} is an invertible R-linear homomorphism $T: A^{n} \rightarrow A^{n}$ of the form

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) T=\left(a_{\sigma(1)} \phi_{1}, a_{\sigma(2)} \phi_{2}, \ldots, a_{\sigma(n)} \phi_{n}\right),
$$

for $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$.

- Here, σ is a permutation of $\{1,2, \ldots, n\}$ and $\phi_{i} \in G$ for $i=1,2, \ldots, n$.

Monomial transformations are isometries

- Easy: $G_{r t}$-monomial transformations are isometries of A^{n} with respect to the weight w.
- Let $C_{1} \subseteq A^{n}$ be a linear code and let T be a G_{rt}-monomial transformation of A^{n}. Set $C_{2}=C_{1} T$. Then the restriction of T to C_{1} is a linear isometry from C_{1} to C_{2}.
- Is the converse true? That is, does every linear isometry between linear codes extend to a
$G_{r \mathrm{r}}$-monomial transformation? Call this the "Extension Problem."
- More on this in the days ahead.

1. Characters

- Definitions
- Properties
- Fourier transform
- Character modules
- Generating characters

Definitions

- Let A be a finite abelian group (additive notation); A will be a module later.
- A character of A is a group homomorphism

$$
\pi: A \rightarrow \mathbb{C}^{\times}
$$

where \mathbb{C}^{\times}is the multiplicative group of nonzero complex numbers.

- The set \widehat{A} of all characters of A is a multiplicative abelian group under pointwise multiplication.
- Additive version: $\widehat{A} \cong \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$.

Duality functor

- Pontryagin duality: $A \mapsto \widehat{A}$
- $\widehat{\hat{A}} \cong A$, naturally.
- $\widehat{A} \cong A$, but not naturally.
- $(A \times B)^{\wedge} \cong \widehat{A} \times \widehat{B}$.
- Exact contravariant functor:

$$
0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow 0
$$

induces

$$
0 \rightarrow \widehat{A}_{3} \rightarrow \widehat{A}_{2} \rightarrow \widehat{A}_{1} \rightarrow 0
$$

Summation formulas

- For $a \in A$,

$$
\sum_{\pi \in \widehat{A}} \pi(a)= \begin{cases}|A|, & a=0 \\ 0, & a \neq 0\end{cases}
$$

- For $\pi \in \widehat{A}$,

$$
\sum_{a \in A} \pi(a)= \begin{cases}|A|, & \pi=1 \\ 0, & \pi \neq 1\end{cases}
$$

Linear independence

- Let $F(A, \mathbb{C})=\{f: A \rightarrow \mathbb{C}\}$, a complex vector space of dimension $|A|$.
- The elements of \widehat{A} form a basis for $F(A, \mathbb{C})$.
- In particular, characters are linearly independent over \mathbb{C}.
- Need multiplicative form of characters for linear independence and for the summation formulas.

Annihilators

- Let $B \subseteq A$ be any subgroup.
- Define the annihilator $(\widehat{A}: B)$:

$$
(\widehat{A}: B)=\{\pi \in \widehat{A}: \pi(B)=1\}
$$

- $(\widehat{A}: B) \cong(A / B)$.
- $|B| \cdot|(\widehat{A}: B)|=|A|$.
- Double annihilator: $(A:(\widehat{A}: B))=B$.

Fourier transform

- Given a function $f: A \rightarrow V, V$ a complex vector space. Define its Fourier transform $\hat{f}: \widehat{A} \rightarrow V$ by

$$
\begin{gathered}
\hat{f}(\pi)=\sum_{a \in A} \pi(a) f(a), \quad \pi \in \widehat{A} . \\
\hat{A} F(A, V) \rightarrow F(\widehat{A}, V) .
\end{gathered}
$$

- Invert:

$$
f(a)=\frac{1}{|A|} \sum_{\pi \in \hat{A}} \pi(-a) \hat{f}(\pi), \quad a \in A
$$

Poisson summation formula

Let B be any subgroup of A, and let $f: A \rightarrow V$. Then for any $a \in A$,

$$
\sum_{b \in B} f(a+b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \pi(-a) \hat{f}(\pi) .
$$

If $a=0$, then

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi) .
$$

Character modules

- Now suppose R is a finite ring with 1 and A is a finite unital left R-module.
- Then \widehat{A} becomes a right R-module by

$$
\pi^{r}(a)=\pi(r a), \quad a \in A
$$

$\left({ }^{r} \pi(a)=\pi(a r)\right.$ for right to left case.)

- ${ }^{\wedge}$ is an exact contravariant functor of R-modules.
- For left R-submodule $B \subseteq A,(\widehat{A}: B)$ is a right R-submodule of \widehat{A}.

Top-bottom duality

- An R-module is simple if it has no nontrivial proper submodules.
- The Jacobson radical $\operatorname{Rad}(R)$ is the intersection of all maximal left ideals of R.
- For a left R-module A, the socle $\operatorname{Soc}(A)$ is the left R-submodule generated by all simple left R-submodules of A.
- $(A / \operatorname{Rad}(A) A)^{\wedge} \cong \operatorname{Soc}(\widehat{A})$

Generating characters

- Left R-module A.
- A character $\rho \in \widehat{A}$ is a generating character if ker ρ contains no nonzero left R-submodules.
- Not every module admits a generating character.

Embedding

- Suppose ρ is a generating character for A.
- Define $\alpha: A \rightarrow \widehat{R}$ by $(a \alpha)(r)=\rho(r a), a \in A, r \in R$.
- α is an injective homomorphism of left R-modules.
- Dual map $R \rightarrow \widehat{A}, r \mapsto \rho^{r}$, is surjective homomorphism of right R-modules.
- ρ generates \widehat{A}.
- Conversely: if \widehat{A} is cyclic, or A embeds in \widehat{R}, then A has a generating character.

Frobenius rings

- Recall: $|\widehat{R}|=|R|$.
- Consider R as a module over itself.
- If R has a generating character, then $\widehat{R} \cong R$ as left and as right R-modules.
- $\operatorname{Soc}(R)=\operatorname{Soc}(\widehat{R}) \cong(R / \operatorname{Rad}(R))^{\wedge} \cong R / \operatorname{Rad}(R)$.
- Such a finite ring is a Frobenius ring.

Some examples of generating characters

- $\mathbb{Z} / N \mathbb{Z}$ admits $\theta_{N}(a)=\exp (2 \pi i a / N), a \in \mathbb{Z} / N \mathbb{Z}$.
- exp is the standard complex exponential function.
- \mathbb{F}_{q} admits $\theta_{q}(a)=\theta_{p}\left(\operatorname{Tr}_{q \rightarrow p}(a)\right), a \in \mathbb{F}_{q}$.
- $R=M_{k \times k}\left(\mathbb{F}_{q}\right)$ admits $\rho(P)=\theta_{q}(\operatorname{Tr} P), P \in R$.
- $A=M_{k \times \ell}\left(\mathbb{F}_{q}\right), k>\ell$, admits $\left.\rho\right|_{A}$.
- When $k<\ell, A$ does not admit a generating character. $\pi_{Q}(P)=\theta_{q}(\operatorname{Tr}(P Q))$, for $Q \in M_{\ell \times k}\left(\mathbb{F}_{q}\right)$.
Find nonzero $X \in M_{k \times \ell}\left(\mathbb{F}_{q}\right)$ with $X Q=0$, as $k<\ell$. Then $R X \subseteq \operatorname{ker} \pi_{Q}$.

Cyclic socle

- Suppose A has cyclic socle $\operatorname{Soc}(A)$.
- $\operatorname{Soc}(A)$ is a sum of matrix modules with $k \geq \ell$.
- $\operatorname{Soc}(A)$ admits a generating character: multiply together those from matrix modules.
- Extension exists, by exactness. Any extension is a generating character for A.

