Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens

June 8, 2015

2. MacWilliams identities

- Additive codes
- Good duality properties
- Poisson summation formula
- MacWilliams identities
- Making identifications over Frobenius rings

Additive codes

- Let A be a finite abelian group. (Later, a module.)
- An additive code over A is an additive subgroup
$C \subseteq A^{n}$.
- Think of $\widehat{A}=\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z})$ in additive form.
- The dual code of $C \subseteq A^{n}$ is the annihilator $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$.

Good duality properties

- Assume an additive code $C \subseteq A^{n}$.
- Dual $\left(\widehat{A}^{n}: C\right) \subseteq \widehat{A}^{n}$ is an additive code over \widehat{A}.
- Double annihilator: $\left(A^{n}:\left(\widehat{A}^{n}: C\right)\right)=C$.
- Size: $|C| \cdot\left|\left(\widehat{A}^{n}: C\right)\right|=\left|A^{n}\right|$.
- The MacWilliams identities. (Coming next.)

Recall Poisson summation formula

Let B be any subgroup of A, V a complex vector space, and $f: A \rightarrow V$. Then

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi)
$$

A Fourier transform example

- Suppose V is a complex algebra.
- Suppose $f: A^{n} \rightarrow V$ has the form

$$
f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} f_{i}\left(a_{i}\right)
$$

where $f_{i}: A \rightarrow V$.

- Then

$$
\hat{f}\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n} \hat{f}_{i}\left(\pi_{i}\right)
$$

Complete weight enumerator

- $V=\mathbb{C}\left[Z_{a}: a \in A\right]$, a complex algebra.
- $f: A^{n} \rightarrow V$,

$$
f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} Z_{a_{i}} .
$$

- Then

$$
\hat{f}\left(\pi_{1}, \ldots, \pi_{n}\right)=\prod_{i=1}^{n}\left(\sum_{a_{i} \in A} \pi_{i}\left(a_{i}\right) Z_{a_{i}}\right)
$$

MacWilliams identities from Poisson summation formula

- Poisson:

$$
\sum_{b \in B} f(b)=\frac{1}{|(\widehat{A}: B)|} \sum_{\pi \in(\widehat{A}: B)} \hat{f}(\pi)
$$

- Replace A by A^{n}, B by additive code $C,(\widehat{A}: B)$ by dual code ($\widehat{A}^{n}: C$).

MacWilliams identities: complete weight

 enumerator- $Z=\left(Z_{a}\right)_{a \in A} ; f\left(a_{1}, \ldots, a_{n}\right)=\prod_{i=1}^{n} Z_{a_{i}}$.
- Complete weight enumerator:

$$
\operatorname{cwe}_{C}(Z)=\sum_{x \in C} f(x)=\sum_{a \in C} \prod_{i=1}^{n} Z_{a_{i}}
$$

- MacWilliams identities:

$$
\operatorname{cwe}_{C}(Z)=\frac{1}{\left|\left(\widehat{A}^{n}: C\right)\right|} \operatorname{cwe}_{\left(\widehat{A}^{n}: C\right)}\left(\sum_{a \in A} \pi(a) Z_{a}\right)
$$

Specialize to Hamming weight enumerator

- Recall hwe ${ }_{C}(X, Y)=\sum_{x \in C} X^{n-w t(x)} Y^{w t(x)}$.
- Specialize $\mathbb{C}\left[Z_{a}: a \in A\right] \rightarrow \mathbb{C}[X, Y], Z_{0} \mapsto X$, $Z_{a} \mapsto Y$ for $a \neq 0$. Then cwe $_{C}$ becomes hwe C_{C}.
- Using summation formulas for characters:
$\operatorname{hwe}_{C}(X, Y)=\frac{1}{\left|C^{\perp}\right|} \operatorname{hwe}_{C^{\perp}}(X+(|A|-1) Y, X-Y)$,
where $C^{\perp}=\left(\widehat{A}^{n}: C\right)$.

Linear codes over modules

- When A is a left R-module and $C \subseteq A^{n}$ is a left R-submodule (a left linear code over A), then $\left(\widehat{A}^{n}: C\right)$ is a right linear code over \widehat{A}.
- The duality properties and the MacWilliams identities have exactly the same form.

Frobenius rings: making identifications

- Let R be a finite Frobenius ring with generating character ρ.
- Define $\psi: R^{n} \rightarrow \widehat{R}^{n}, x \mapsto \psi_{x}$:

$$
\psi_{x}(y)=\rho(y \cdot x), \quad y \in R^{n}
$$

- Then ψ is an isomorphism of left R-modules.

Character annihilator vs. dot product

- Recall:

$$
\psi_{x}(y)=\rho(y \cdot x), \quad y \in R^{n} .
$$

- Additive subgroup $C \subseteq R^{n}$. Under $\psi,\left(\widehat{R}^{n}: C\right)$ corresponds to

$$
r_{\rho}(C)=\left\{x \in R^{n}: \rho(C \cdot x)=1\right\} .
$$

- $r(C) \subseteq r_{\rho}(C)$ in general
- $r(C)=r(R C)=r_{\rho}(R C) \subseteq r_{\rho}(C)$ in general.
- $r(C)=r_{\rho}(C)$ when C is a left submodule.

MacWilliams identities: complete weight enumerator

For a left linear code $C \subseteq R^{n}, R$ Frobenius:

$$
\begin{aligned}
\operatorname{cwe}_{C}(Z) & =\frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}\left(\sum_{b \in A} \psi_{a}(b) Z_{b}\right) \\
& =\frac{1}{|r(C)|} \operatorname{cwe}_{r(C)}\left(\sum_{b \in A} \rho(b a) Z_{b}\right)
\end{aligned}
$$

MacWilliams identities: Hamming weight enumerator

For a left linear code $C \subseteq R^{n}, R$ Frobenius:
$\operatorname{hwe}_{C}(X, Y)=\frac{1}{|r(C)|}$ hwe $_{r(C)}(X+(|R|-1) Y, X-Y)$.

