# Linear Codes from the Axiomatic Viewpoint 

Jay A. Wood

Department of Mathematics<br>Western Michigan University<br>http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens

June 9, 2015
3. MacWilliams extension theorem and converse

- Extension property (EP)
- EP for Hamming weight over Frobenius bimodules via linear independence of characters
- Generalization for module alphabets
- Axiomatic viewpoint
- Parametrized codes and multiplicity functions
- Failure of EP for landscape matrix modules
- Converse of extension theorem: EP implies Frobenius


## Notation

- Let $R$ be a finite associative ring with 1 .
- Let $A$ be a finite unital left $R$-module: the alphabet.
- Let $w: A \rightarrow \mathbb{Q}$ be a weight: $w(0)=0$. Extend to $A^{n}$ by

$$
w\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} w\left(a_{i}\right)
$$

## Symmetry groups

- Recall the symmetry groups of $w$ :

$$
\begin{aligned}
& G_{\mathrm{lt}}=\{u \in \mathcal{U}(R): w(u a)=w(a), a \in A\}, \\
& G_{\mathrm{rt}}=\left\{\phi \in G L_{R}(A): w(a \phi)=w(a), a \in A\right\} .
\end{aligned}
$$

- $\mathcal{U}(R)$ is the group of units of $R$, and $G L_{R}(A)$ is the group of invertible $R$-linear homomorphisms $A \rightarrow A$.
- Recall that I will usually write homomorphisms of left modules on the right side.


## Monomial transformations

- Recall: if $G \subseteq G L_{R}(A)$ be a subgroup, then a $G$-monomial transformation of $A^{n}$ is an invertible $R$-linear homomorphism $T: A^{n} \rightarrow A^{n}$ of the form

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) T=\left(a_{\sigma(1)} \phi_{1}, a_{\sigma(2)} \phi_{2}, \ldots, a_{\sigma(n)} \phi_{n}\right),
$$

for $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$.

- Here, $\sigma$ is a permutation of $\{1,2, \ldots, n\}$ and $\phi_{i} \in G$ for $i=1,2, \ldots, n$.


## Isometries

- Let $C_{1}, C_{2} \subseteq A^{n}$ be two linear codes. Recall that an $R$-linear isomorphism $f: C_{1} \rightarrow C_{2}$ is a linear isometry with respect to $w$ if $w(x f)=w(x)$ for all $x \in C_{1}$.
- Every $G_{r t}$-monomial transformation is an isometry from $A^{n}$ to itself.


## Extension property (EP)

- Given ring $R$, alphabet $A$, and weight $w$ on $A$.
- The alphabet has the extension property (EP) with respect to $w$ if the following holds: For any left linear codes $C_{1}, C_{2} \subseteq A^{n}$, if $f: C_{1} \rightarrow C_{2}$ is a linear isometry, then $f$ extends to a $G_{r t}$-monomial transformation $A^{n} \rightarrow A^{n}$.
- That is, there exists a $G_{\mathrm{rt}}$-monomial transformation $T: A^{n} \rightarrow A^{n}$ such that $x T=x f$ for all $x \in C_{1}$.


## Slightly different point of view

- Linear codes are often presented by generator matrices. A generator matrix serves as a linear encoder from an information space to a message space.
- If $f: C_{1} \rightarrow C_{2}$ is a linear isometry, then $C_{1}$ and $C_{2}$ are isomorphic as $R$-modules. Let $M$ be a left $R$-module isomorphic to $C_{1}$ and $C_{2}$. Call $M$ the information module.
- Then $C_{1}$ and $C_{2}$ are the images of $R$-linear homomorphisms $\Lambda: M \rightarrow A^{n}$ and $N: M \rightarrow A^{n}$, respectively. Then, $N=\Lambda f$ : inputs on left!


## Coordinate functionals

- $C_{1}$ was given by $\Lambda: M \rightarrow A^{n}$. Write the individual components as $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with $\lambda_{i} \in \operatorname{Hom}_{R}(M, A)$. Call the $\lambda_{i}$ coordinate functionals.
- Similarly, $N=\left(\nu_{1}, \ldots, \nu_{n}\right), \nu_{i} \in \operatorname{Hom}_{R}(M, A)$.
- The isometry $f$ extends to a monomial transformation if there exists a permutation $\sigma$ and $\phi_{i} \in G_{\mathrm{rt}}$ such that $\nu_{i}=\lambda_{\sigma(i)} \phi_{i}$ for all $i=1, \ldots, n$.


## Case of $\widehat{R}$

- Our first result will show that, for any finite ring $R$, $A=\widehat{R}$ has EP with respect to the Hamming weight.
- It follows that $A=R$ itself has EP with respect to the Hamming weight when $R$ is Frobenius.
- The Frobenius ring case came first (Wood, 1999).
- The more general $A=\widehat{R}$ case is due to Greferath, Nechaev, and Wisbauer (2004).


## Techniques

- For any alphabet $A$, the summation formulas for characters imply that the Hamming weight wt satisfies

$$
w t(a)=1-\frac{1}{|A|} \sum_{\pi \in \widehat{A}} \pi(a), \quad a \in A .
$$

- Characters are linearly independent over $\mathbb{C}$.


## Symmetry groups for the Hamming weight

- Consider the Hamming weight wt on $A=\widehat{R}$, which is an $(R, R)$-bimodule.
- Both symmetry groups $G_{\mathrm{lt}}$ and $G_{\mathrm{rt}}$ equal $\mathcal{U}(R)$.


## A preorder

- Define a preorder $\preceq$ on $\operatorname{Hom}_{R}(M, \widehat{R})$ by $\lambda \preceq \nu$ if there exists $r \in R$ such that $\lambda=\nu r$.
- It follows from a result of Bass that if $\lambda \preceq \nu$ and $\nu \preceq \lambda$, then $\lambda=\nu u$, where $u \in \mathcal{U}(R)$.


## Proof (a)

- $R, A=\widehat{R}$, with Hamming weight. $C_{1}, C_{2} \subseteq \widehat{R}^{n}$, with $f: C_{1} \rightarrow C_{2}$ linear isometry.
- $\widehat{R}$ has a generating character: $\rho: \widehat{R} \rightarrow \mathbb{C}$, $\rho(\pi)=\pi(1)$ for $\pi \in \widehat{R}$. (Evaluate at $1 \in R$.) Every $\pi \in \widehat{R}$ has the form $\pi={ }^{r} \rho$ for some unique $r \in R$.
- $C_{1}$ is image of $\Lambda: M \rightarrow \widehat{R}^{n} ; C_{2}$ is image of $N: M \rightarrow \widehat{R}^{n} . N=\lambda f$.
- Isometry: $\operatorname{wt}(x \Lambda)=\operatorname{wt}(x N)$, for all $x \in M$.


## Proof (b)

- Hamming weight as character sum:

$$
\sum_{i=1}^{n} \sum_{r \in R}{ }^{r} \rho\left(x \lambda_{i}\right)=\sum_{j=1}^{n} \sum_{s \in R}{ }^{s} \rho\left(x \nu_{j}\right), \quad x \in M
$$

- That is,

$$
\sum_{i=1}^{n} \sum_{r \in R} \rho\left(x \lambda_{i} r\right)=\sum_{j=1}^{n} \sum_{s \in R} \rho\left(x \nu_{j} s\right), \quad x \in M .
$$

- This is an equation of characters on $M$.


## Proof (c)

- Among the $\lambda_{i}, \nu_{j}$, choose one that is maximal for $\preceq$. Say, $\nu_{1}$.
- Let $j=1$ and $s=1$ on the right side of the character equation.
- By linear independence of characters, there exists $i$ and $r \in R$ so that $\rho\left(x \lambda_{i} r\right)=\rho\left(x \nu_{1}\right)$ for all $x \in M$.
- Thus $\rho\left(x\left(\nu_{1}-\lambda_{i} r\right)\right)=1$ for all $x \in M$. I.e., $M\left(\nu_{1}-\lambda_{i} r\right) \subseteq \operatorname{ker} \rho$.


## Proof (d)

- By $\rho$ a generating character, $\nu_{1}=\lambda_{i} r$. Thus, $\nu_{1} \preceq \lambda_{i}$.
- By maximality, $\nu_{1} \preceq \lambda_{i}$ and $\lambda_{i} \preceq \nu_{1}$. Thus, $\nu_{1}=\lambda_{i} u_{1}$, for some $u_{1} \in \mathcal{U}(R)$.
- Then inner sums agree:
$\sum_{r \in R} \rho\left(x \lambda_{i} r\right)=\sum_{s \in R} \rho\left(x \nu_{1} s\right), x \in M$.
- Set $\sigma(1)=i$. Subtract inner sums to reduce the size of the outer sums by 1. Proceed by induction.


## Generalize to module alphabets

- For ring $R$, alphabet $A$, and Hamming weight wt, EP holds if $A$ : (1) is pseudo-injective and (2) has a cyclic socle (embeds into $\widehat{R}$ ).
- Pseudo-injective means injective with respect to submodules. That is, if $B$ is a submodule of $A$ and $h: B \rightarrow A$ is any module homomorphism, then $h$ extends to $\tilde{h}: A \rightarrow A$.
- Main idea: use $\widehat{R}$-case to get $G L_{R}(\widehat{R})$-monomial extension. Use pseudo-injectivity to show existence of $G L_{R}(A)$-monomial extension.


## Axiomatic viewpoint

- Assmus and Mattson, "Error-correcting codes: an axiomatic approach," 1963.
- Consider linear codes up to monomial equivalence. What matters?
- Actually, I want to consider parametrized codes up to monomial equivalence.
- Usual set-up: ring $R$, alphabet $A$, weight $w$ on $A$.
- A parametrized code is a finite left $R$-module $M$ and an $R$-linear homomorphism $\Lambda: M \rightarrow A^{n}$.


## Scale classes

- The right symmetry group $G_{\mathrm{rt}}$ acts on $\operatorname{Hom}_{R}(M, A)$ on the right: $\lambda \mapsto \lambda \phi$.
- Call the orbit space $\mathcal{O}^{\sharp}=\operatorname{Hom}_{R}(M, A) / G_{\mathrm{rt}}$. Denote orbit/"scale class" of $\lambda$ by [ $\lambda$ ].
- Up to $G_{r t}$-monomial equivalence, a parametrized code $\Lambda: M \rightarrow A^{n}$ is completely determined by the number of coordinate functionals $\lambda_{i}$ belonging to the various classes $[\lambda] \in \mathcal{O}^{\sharp}$.


## Multiplicity functions

- Let $F\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)$ denote the set of functions $\eta: \mathcal{O}^{\sharp} \rightarrow \mathbb{N}$. Call these multiplicity functions.
- Given a parametrized code $\Lambda: M \rightarrow A^{n}$, define its multiplicity function $\eta_{\wedge}$ by

$$
\eta_{\wedge}([\lambda])=\left|\left\{i: \lambda_{i} \in[\lambda]\right\}\right| .
$$

- Other authors: multisets, value function (Chen, et al.), projective systems, etc.
- No zero columns: $F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)=\{\eta: \eta([0])=0\}$.


## Weights of elements

- Given $\Lambda: M \rightarrow A^{n}$, consider the weights $w(x \Lambda)$ for $x \in M$.
- The weights $w(x \Lambda), x \in M$, depend only on $\eta_{\Lambda}$, not $\Lambda$ itself: $G_{r t}$-monomial transformations are isometries. In fact:

$$
w(x \Lambda)=\sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x \lambda) \eta_{\wedge}([\lambda]), \quad x \in M .
$$

## Invariance under $G_{\mathrm{lt}}$

- If $u \in G_{\mathrm{lt}}$, then $w((u x) \Lambda)=w(u(x \Lambda))=w(x \Lambda)$, for all $x \in M$.
- $G_{\mathrm{lt}}$ acts on $M$ on the left: $x \mapsto u x, x \in M$. Denote orbit space by $\mathcal{O}=G_{\mathrm{t}} \backslash M$.
- $w(0 \Lambda)=w(0)=0$.
- Denote $F_{0}(\mathcal{O}, \mathbb{Q})=\{f: \mathcal{O} \rightarrow \mathbb{Q}, f(0)=0\}$.


## Well-defined $W$ map

- We get a well-defined map

$$
W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})
$$

with

$$
W(\eta)(x)=\sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x \lambda) \eta([\lambda]),
$$

for $x \in \mathcal{O}, \eta \in F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)$.

## Completion over $\mathbb{Q}$

- $F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)$ is an additive semi-group, and $F_{0}(\mathcal{O}, \mathbb{Q})$ is a $\mathbb{Q}$-vector space. The map $W$ is additive.
- The addition in $F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{N}\right)$ corresponds to concatenation of generator matrices.
- By tensoring over $\mathbb{Q}$, we get a $\mathbb{Q}$-linear transformation of $\mathbb{Q}$-vector spaces:

$$
W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})
$$

## Re-interpretation of EP

- An alphabet $A$ has EP with respect to a $\mathbb{Q}$-valued weight $w$ if and only if the linear map

$$
W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})
$$

is injective for all information modules $M$.

- Bogart, et al., 1978.
- Greferath, 2002.


## Matrix modules and Hamming weight

- What does $W$ look like for matrix module alphabets?
- Let $R=M_{k \times k}\left(\mathbb{F}_{q}\right), A=M_{k \times \ell}\left(\mathbb{F}_{q}\right)$, with Hamming weight wt.
- Symmetry groups: $G_{\mathrm{lt}}=\mathcal{U}(R)=G L\left(k, \mathbb{F}_{q}\right)$; $G_{\mathrm{rt}}=G L_{R}(A)=G L\left(\ell, \mathbb{F}_{q}\right)$.


## Orbit spaces

- For $M=M_{k \times m}\left(\mathbb{F}_{q}\right), \operatorname{Hom}_{R}(M, A)=M_{m \times \ell}\left(\mathbb{F}_{q}\right)$.
- Then $\mathcal{O}=G_{l t} \backslash M=G L\left(k, \mathbb{F}_{q}\right) \backslash M_{k \times m}\left(\mathbb{F}_{q}\right)$, which is the set of row reduced echelon (RRE) matrices of size $k \times m$.
- And $\mathcal{O}^{\sharp}=\operatorname{Hom}_{R}(M, A) / G_{r t}=M_{m \times \ell}\left(\mathbb{F}_{q}\right) / G L\left(\ell, \mathbb{F}_{q}\right)$, which is the set of column reduced echelon (CRE) matrices of size $m \times \ell$.


## Dimension counting

- First note that $\operatorname{dim}_{\mathbb{Q}} F_{0}(\mathcal{O}, \mathbb{Q})=|\mathcal{O}|-1$ and $\operatorname{dim}_{\mathbb{Q}} F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right)=\left|\mathcal{O}^{\sharp}\right|-1$.
- So, $\operatorname{dim}_{\mathbb{Q}} F_{0}(\mathcal{O}, \mathbb{Q})$ is the number of nonzero RRE matrices of size $k \times m$.
- And $\operatorname{dim}_{\mathbb{Q}} F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right)$ is the number of nonzero CRE matrices of size $m \times \ell$.
- If $k<\ell$ and $k<m$, there are more of the CRE matrices than the RRE matrices; i.e.,

$$
\operatorname{dim}_{\mathbb{Q}} F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right)>\operatorname{dim}_{\mathbb{Q}} F_{0}(\mathcal{O}, \mathbb{Q}) .
$$

- This says that EP fails when $k<\ell$. ("Landscape")


## Converse of EP for Hamming weight

- We claim: if an alphabet $A$ has EP for the Hamming weight, then $A(1)$ is pseudo-injective and (2) has a cyclic socle.
- Likewise: if a ring $R$ has EP for the Hamming weight, then $R$ is Frobenius (which means $\operatorname{Soc}(R)$ is cyclic).
- We follow a strategy of Dinh and López-Permouth, 2004.


## Proof

- If $\operatorname{Soc}(A)$ is not cyclic (same idea for $R$ ), then $\operatorname{Soc}(A)$ contains a matrix module of the form $A^{\prime}=M_{k \times \ell}\left(\mathbb{F}_{q}\right)$ with $k<\ell$.
- There exist counter-examples to EP over $A^{\prime}$.
- Regard these codes as codes over $A$ :
$A^{\prime} \subseteq \operatorname{Soc}(A) \subseteq A$.
- They are also counter-examples over $A$.
- Pseudo-injectivity is equivalent to the length 1 case of EP (Dinh, López-Permouth).


## Other uses of $W$ map

- We will see the $W$ map again.
- Other weight functions.
- Linear one-weight codes.
- Isometries of additive codes.

