Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens

June 10, 2015

6. One-weight and relative one-weight

 codes- Definitions
- Using EP: uniqueness theorem
- Guess and check
- Homogeneous weight
- Key lemma: sum over submodules of $\operatorname{Hom}_{R}(M, A)$
- Converse: only way to get relative one-weight codes
- Concatenate to get certain two-weight codes
- Examples

Setting for this lecture

- Finite ring R, alphabet $A=\widehat{R}$, weight w on A, information module M.
- When R is Frobenius, $A=R$.
- W-map: $W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})$.
- EP holds for w if and only if W is injective.

Definitions

- An R-linear code $C \subseteq \widehat{R}^{n}$ is a one-weight code if there exists a constant w_{0} such that $w(c)=w_{0}$ for all nonzero $c \in C$.
- Fix an R-linear code $C \subseteq \widehat{R}^{n}$ and a linear subcode C_{1}. (Liu-Chen) C is a relative one-weight code with respect to C_{1} if there exists a constant w_{0} such that $w(c)=w_{0}$ for all $c \in C$ with $c \notin C_{1}$.

Using multiplicity functions

- Suppose EP holds for weight w on $A=\widehat{R}$.
- Examples: an egalitarian weight or the Hamming weight.
- Any R-linear code C over A is modeled by $\Lambda: M \rightarrow A^{n}$, with multiplicity function η.
- C is a one-weight code if and only if $W(\eta) \in F_{0}(\mathcal{O}, \mathbb{Q})$ is a constant function.

Using EP: uniqueness theorem

- The constant functions form a one-dimensional subspace S of $F_{0}(\mathcal{O}, \mathbb{Q})$.
- If EP holds for $w, W: F_{0}\left(\mathcal{O}^{\sharp}, \mathbb{Q}\right) \rightarrow F_{0}(\mathcal{O}, \mathbb{Q})$ is injective. Then $W^{-1}(S)$ has dimension 0 or 1 .
- For a fixed M : if one-weight codes exist at all, they are unique up to replication (concatenation, repeating columns).
- Weiss, Bonisoli: binary one-weight codes are replications of simplex codes.

Guess and check

- Fix M. If one can guess a formula for η and check that all weights agree, then every one-weight code modeled on M must be a multiple of η.
- Caveat! A priori, η could have rational values. Clear denominators to get integer values.
- If all the \pm-signs are the same, then $\pm \eta$ solves the problem.
- However, if the signs are mixed (some positive, some negative), this proves that one-weight codes modeled on M do not exist.

Example

- Let $R=A=\mathbb{Z} / 9 \mathbb{Z}$ with Hamming weight, $M=R^{2}$.
- Generator matrix: columns with multiplicities above.
$\left|\begin{array}{rrrrrrrrrrrr|rrrr}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & -2 & -2 & -2 & -2 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 0 & 3 & 3 & 3 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 & 3 & 0 & 3 & 6\end{array}\right|$
- All nonzero codewords have Hamming weight 27.
- "Classical" linear one-weight code for $M=R^{2}$ does not exist.

Egalitarian weight

- Recall that an egalitarian weight w has the property that there exists a constant γ such that

$$
\sum_{b \in B} w\left(a_{0}+b\right)=\gamma|B|
$$

for any nonzero submodule B of $A=\widehat{R}$ and $a_{0} \in A$.

- For any M, set $\eta(\lambda)=1$ for all nonzero $\lambda \in \operatorname{Hom}_{R}(M, A)$. (Use every column-type once.)
- Then η defines a one-weight code with weight $\gamma\left|\operatorname{Hom}_{R}(M, A)\right|$.

Proof

- Take any nonzero $x \in M$. Define

$$
\check{x}: \operatorname{Hom}_{R}(M, A) \rightarrow A, \quad \lambda \mapsto x \lambda .
$$

\check{x} is a homomorphism of right R-modules.

- Image im \check{x} is a nonzero submodule of A.

$$
\begin{aligned}
W(\eta)(x) & =\sum_{\lambda} w(x \lambda)=|\operatorname{ker} \check{x}| \sum_{b \in \operatorname{iim} \check{x}} w(b) \\
& =\gamma|\operatorname{im} \check{x}||\operatorname{ker} \check{x}|=\gamma\left|\operatorname{Hom}_{R}(M, A)\right|
\end{aligned}
$$

Key lemma: sum over cosets in

 $\operatorname{Hom}_{R}(M, A)$- Generalize this idea: let $E \subseteq \operatorname{Hom}_{R}(M, A)$ be a right R-submodule.
- Define $E^{\circ}=\{x \in M: x \lambda=0, \lambda \in E\}$, left submodule of M.
- Let λ_{0} be any element of $\operatorname{Hom}_{R}(M, A)$. Then

$$
\sum_{\lambda \in \lambda_{0}+E} w(x \lambda)= \begin{cases}w\left(x \lambda_{0}\right)|E|, & x \in E^{\circ} \\ \gamma|E|, & x \notin E^{\circ}\end{cases}
$$

Producing relative one-weight codes

- Set $E=M_{1}^{\circ}=\left\{\lambda \in \operatorname{Hom}_{R}(M, A): M_{1} \lambda=0\right\}$, for submodule $M_{1} \subset M$. Then $E^{\circ}=M_{1}$.
Theorem
Suppose η is constant along the cosets of E in $\operatorname{Hom}_{R}(M, A)$. Then η defines a relative one-weight code relative to M_{1}.
- Apply key lemma on each coset. $W(\eta)(x)$ does not depend on x provided $x \notin M_{1}$.
- Converse is true, but harder.

Concatenate to get certain two-weight codes

- Addition of multiplicity functions corresponds to concatenation of generator matrices. Weights of codewords add.
- Key lemma with $\lambda_{0}=0$:

$$
\sum_{\lambda \in E} w(x \lambda)= \begin{cases}0, & x \in E^{\circ} \\ \gamma|E|, & x \notin E^{\circ}\end{cases}
$$

- Put these together for different choices of E.

Example (a)

- Let $M_{1} \subset M$. Set $E_{1}=M_{1}^{\circ}$.
- Define $\eta_{1}(\lambda)=s_{1}$ for $\lambda \in E_{1}$ and 0 elsewhere. Define $\eta_{2}(\lambda)=s_{2}$ for all $\lambda \in \operatorname{Hom}_{R}(M, A)$.
- For $\eta=\eta_{1}+\eta_{2}$ and $x \neq 0$:

$$
W(\eta)(x)= \begin{cases}s_{2} \gamma\left|\operatorname{Hom}_{R}(M, A)\right|, & x \in M_{1} \\ s_{1} \gamma|E|+s_{2} \gamma\left|\operatorname{Hom}_{R}(M, A)\right|, & x \notin M_{1}\end{cases}
$$

Example (b)

- More specifically, let $R=A=\mathbb{F}_{q}, M=\mathbb{F}_{q}^{m}$, $M_{1}=\{(*, 0, \ldots, 0)\} \cong \mathbb{F}_{q}$.
- Then $\left|\operatorname{Hom}_{R}(M, A)\right|=q^{m}$ and $|E|=q^{m-1}$.
- Set $s_{2}=1, s_{1}=-1, \gamma=(q-1) / q$ (Hamming). Then, $n=(q-1) q^{m-1}$ and, for $x \neq 0$:

$$
W(\eta)(x)= \begin{cases}(q-1) q^{m-1}, & x \in M_{1} \\ (q-1)^{2} q^{m-2}, & x \notin M_{1}\end{cases}
$$

- A $(q-1)$-fold replicate of a generalized Reed-Muller code $G R M(m-1,1, q)$.

