Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV
University of Artois, Lens
June 10, 2015
6. One-weight and relative one-weight codes

- Definitions
- Using EP: uniqueness theorem
- Guess and check
- Homogeneous weight
- Key lemma: sum over submodules of Hom$_R(M, A)$
- Converse: only way to get relative one-weight codes
- Concatenate to get certain two-weight codes
- Examples
Setting for this lecture

- Finite ring R, alphabet $A = \hat{R}$, weight w on A, information module M.
- When R is Frobenius, $A = R$.
- W-map: $W : F_0(O^\# , \mathbb{Q}) \rightarrow F_0(O , \mathbb{Q})$.
- EP holds for w if and only if W is injective.
Definitions

- An \(R \)-linear code \(C \subseteq \hat{R}^n \) is a **one-weight code** if there exists a constant \(w_0 \) such that \(w(c) = w_0 \) for all nonzero \(c \in C \).

- Fix an \(R \)-linear code \(C \subseteq \hat{R}^n \) and a linear subcode \(C_1 \). (Liu-Chen) \(C \) is a **relative one-weight code** with respect to \(C_1 \) if there exists a constant \(w_0 \) such that \(w(c) = w_0 \) for all \(c \in C \) with \(c \not\in C_1 \).
Using multiplicity functions

- Suppose EP holds for weight \(w \) on \(A = \hat{R} \).
- Examples: an egalitarian weight or the Hamming weight.
- Any \(R \)-linear code \(C \) over \(A \) is modeled by \(\Lambda : M \to A^n \), with multiplicity function \(\eta \).
- \(C \) is a one-weight code if and only if \(W(\eta) \in F_0(\mathcal{O}, \mathbb{Q}) \) is a constant function.
One-weight and relative one-weight codes

Using EP: uniqueness theorem

- The constant functions form a one-dimensional subspace S of $F_0(\mathcal{O}, \mathbb{Q})$.
- If EP holds for w, $W : F_0(\mathcal{O}^\#, \mathbb{Q}) \rightarrow F_0(\mathcal{O}, \mathbb{Q})$ is injective. Then $W^{-1}(S)$ has dimension 0 or 1.
- For a fixed M: if one-weight codes exist at all, they are unique up to replication (concatenation, repeating columns).
- Weiss, Bonisoli: binary one-weight codes are replications of simplex codes.
Guess and check

- Fix M. If one can guess a formula for η and check that all weights agree, then every one-weight code modeled on M must be a multiple of η.
- Caveat! A priori, η could have rational values. Clear denominators to get integer values.
- If all the \pm-signs are the same, then $\pm \eta$ solves the problem.
- However, if the signs are mixed (some positive, some negative), this proves that one-weight codes modeled on M do not exist.
Example

- Let $R = A = \mathbb{Z}/9\mathbb{Z}$ with Hamming weight, $M = R^2$.
- Generator matrix: columns with multiplicities above.

\[
\begin{array}{cccccccccccc}
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 3 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 \\
\end{array}
\begin{array}{cccc}
-2 & -2 & -2 & -2 \\
0 & 3 & 3 & 3 \\
3 & 0 & 3 & 6 \\
\end{array}
\]

- All nonzero codewords have Hamming weight 27.
- “Classical” linear one-weight code for $M = R^2$ does not exist.
Egalitarian weight

- Recall that an egalitarian weight \(w \) has the property that there exists a constant \(\gamma \) such that

\[
\sum_{b \in B} w(a_0 + b) = \gamma |B|,
\]

for any nonzero submodule \(B \) of \(A = \hat{R} \) and \(a_0 \in A \).

- For any \(M \), set \(\eta(\lambda) = 1 \) for all nonzero \(\lambda \in \text{Hom}_R(M, A) \). (Use every column-type once.)

- Then \(\eta \) defines a one-weight code with weight \(\gamma |\text{Hom}_R(M, A)| \).
Proof

- Take any nonzero $x \in M$. Define

$$\tilde{x} : \text{Hom}_R(M, A) \to A, \quad \lambda \mapsto x\lambda.$$

\tilde{x} is a homomorphism of right R-modules.

- Image $\text{im} \tilde{x}$ is a nonzero submodule of A.

$$W(\eta)(x) = \sum_{\lambda} w(x\lambda) = |\ker \tilde{x}| \sum_{b \in \text{im} \tilde{x}} w(b)$$

$$= \gamma |\text{im} \tilde{x}| |\ker \tilde{x}| = \gamma |\text{Hom}_R(M, A)|$$
Key lemma: sum over cosets in $\text{Hom}_R(M, A)$

- Generalize this idea: let $E \subseteq \text{Hom}_R(M, A)$ be a right R-submodule.
- Define $E^\circ = \{ x \in M : x\lambda = 0, \lambda \in E \}$, left submodule of M.
- Let λ_0 be any element of $\text{Hom}_R(M, A)$. Then

$$\sum_{\lambda \in \lambda_0 + E} w(x\lambda) = \begin{cases} w(x\lambda_0)|E|, & x \in E^\circ, \\ \gamma |E|, & x \notin E^\circ. \end{cases}$$
Producing relative one-weight codes

- Set $E = M_1^\circ = \{\lambda \in \text{Hom}_R(M, A) : M_1\lambda = 0\}$, for submodule $M_1 \subset M$. Then $E^\circ = M_1$.

Theorem

Suppose η is constant along the cosets of E in $\text{Hom}_R(M, A)$. Then η defines a relative one-weight code relative to M_1.

- Apply key lemma on each coset. $W(\eta)(x)$ does not depend on x provided $x \notin M_1$.

- Converse is true, but harder.
Concatenate to get certain two-weight codes

- Addition of multiplicity functions corresponds to concatenation of generator matrices. Weights of codewords add.
- Key lemma with $\lambda_0 = 0$:
 \[
 \sum_{\lambda \in E} w(x \lambda) = \begin{cases}
 0, & x \in E^\circ, \\
 \gamma |E|, & x \notin E^\circ.
 \end{cases}
 \]
- Put these together for different choices of E.

Axiomatic Viewpoint

June 10, 2015 13/15
Example (a)

- Let $M_1 \subset M$. Set $E_1 = M_1^\circ$.
- Define $\eta_1(\lambda) = s_1$ for $\lambda \in E_1$ and 0 elsewhere. Define $\eta_2(\lambda) = s_2$ for all $\lambda \in \text{Hom}_R(M, A)$.
- For $\eta = \eta_1 + \eta_2$ and $x \neq 0$:

$$W(\eta)(x) = \begin{cases}
 s_2 \gamma |\text{Hom}_R(M, A)|, & x \in M_1, \\
 s_1 \gamma |E| + s_2 \gamma |\text{Hom}_R(M, A)|, & x \notin M_1.
\end{cases}$$
Example (b)

- More specifically, let $R = A = \mathbb{F}_q$, $M = \mathbb{F}_q^m$, $M_1 = \{(\ast, 0, \ldots, 0)\} \cong \mathbb{F}_q$.
- Then $|\text{Hom}_R(M, A)| = q^m$ and $|E| = q^{m-1}$.
- Set $s_2 = 1$, $s_1 = -1$, $\gamma = (q - 1)/q$ (Hamming). Then, $n = (q - 1)q^{m-1}$ and, for $x \neq 0$:

\[
W(\eta)(x) = \begin{cases}
(q - 1)q^{m-1}, & x \in M_1, \\
(q - 1)^2q^{m-2}, & x \notin M_1.
\end{cases}
\]

- A $(q - 1)$-fold replicate of a generalized Reed-Muller code $\text{GRM}(m - 1, 1, q)$.