Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens

June 11, 2015

"And now for something completely different." —John Cleese (1969)

8. Simplicial complexes coming from linear codes

- Paper by T. Johnsen and H. Verdure (2014).
- Simplicial complexes, Stanley-Reisner rings.
- Alexander dual.
- Parity check matrix or generator matrix?
- Poset of subspaces of M^{\sharp}.
- Possible resolution of Stanley-Reisner ring.
- Good case: one-weight code.
- Examples.
- Effect of puncturing.
- Effect of higher multiplicities.

Setting for this lecture

- Linear codes over a finite field, \mathbb{F}_{2} in examples.
- Motivated by "Stanley-Reisner resolution of constant weight linear codes," by T. Johnsen and H. Verdure, Des. Codes Cryptogr. (2014), 72: 471-481.
- This is work in progress.

Simplicial complexes

- Let E be a finite set, say $E=\{1,2, \ldots, n\}$.
- An abstract simplicial complex Δ is a collection of subsets of E that is closed under taking subsets.
I.e., if $\sigma \in \Delta$ and $\tau \subseteq \sigma$, then $\tau \in \Delta$.
- Elements of Δ are called faces, and maximal faces (under inclusion) are called facets.

Polynomial ring

- Let k be any field, $E=\{1,2, \ldots, n\}$.
- Polynomial ring $S=k\left[x_{1}, \ldots, x_{n}\right]$.
- Notation: for $\sigma \subseteq E$, write $x^{\sigma}=\prod_{i \in \sigma} x_{i} .\left(x^{\emptyset}=1\right.$.)
- Fine grading: S is \mathbb{N}^{n}-graded by exponents.
- Coarse grading: S is \mathbb{N}-graded by total degree.
- Can then have finely-graded or coarsely-graded modules over S.

Stanley-Reisner ring

- Given a simplicial complex Δ, the Stanley-Reisner ideal $I_{\Delta} \subseteq S$ is generated by $\left\{x^{\sigma}: \sigma \notin \Delta\right\}$.
- The Stanley-Reisner ring is $R_{\Delta}=S / I_{\Delta}$.
- One goal: determine minimal free resolution of R_{Δ} as a finely- or coarsely-graded S-module.
- Field of "combinatorial commutative algebra."

Alexander dual

- Complement: if $\sigma \subseteq E$, define $\bar{\sigma}=E \backslash \sigma$.
- Given a simplicial complex Δ, define its Alexander dual:

$$
\Delta^{\vee}=\{\bar{\sigma}: \sigma \notin \Delta\} .
$$

- If $D_{\Delta}=\{\bar{\sigma}: \sigma \in \Delta\}$, then $\Delta^{\vee}=\left\{\tau: \tau \notin D_{\Delta}\right\}$.
- Also, $D_{\Delta^{\vee}}=\left\{\bar{\tau}: \tau \in \Delta^{\vee}\right\}=\{\sigma: \sigma \notin \Delta\}$, which provides the exponents for generators of I_{Δ}.

Simplicial complex from parity check matrix

- Suppose a linear code $C \subseteq \mathbb{F}_{q}^{n}$ is given by a parity check matrix H. If $\operatorname{dim} C=m$, then H is an $(n-m) \times n$ matrix, and $c \in C$ if and only if $H c^{T}=0$.
- Let $E=\{1,2, \ldots, n\}$, thought of as the position numbers of the columns of H.
- Define $\Delta_{H}=\{\sigma \subseteq E$: σ-columns of H are linearly independent $\}$.
- In fact, Δ_{H} is a matroid.

Using generator matrix instead

- If C has generator matrix G, then G has size $m \times n$. The columns of G represent coordinate functionals $\lambda_{i} \in M^{\sharp}=\operatorname{Hom}_{\mathbb{F}_{q}}\left(M, \mathbb{F}_{q}\right)$. Think C as image of $\Lambda: M \rightarrow \mathbb{F}_{q}^{n}$.
- Define $\Delta_{G}=\left\{\bar{\tau}: \tau\right.$-columns of G span $\left.M^{\sharp}\right\}$.
- Then observe, for later use, that $\Delta_{G}^{\vee}=\left\{\tau: \tau\right.$-columns of G do not span $\left.M^{\sharp}\right\}$.

Δ_{G} equals Δ_{H}

The following statements are equivalent:

- $\sigma \in \Delta_{H}$.
- σ-columns of H are linearly independent.
- If $c \in \mathbb{F}_{q}^{n}$ has support in σ and $H c^{T}=0$, then $c=0$.
- If $c \in C$ has support in σ, then $c=0$.
- If $x \in M$ has $x \lambda_{i}=0$ for $i \in \bar{\sigma}$, then $x=0$.
- $\left(\operatorname{Span}\left\{\lambda_{i}: i \in \bar{\sigma}\right\}\right)^{\circ}=0$; i.e., $\bar{\sigma}$-columns span M^{\sharp}.
- $\sigma \in \Delta_{G}$.

Poset of subspaces of M^{\sharp}

- Recall that the Alexander dual of Δ_{G} was
$\Delta_{G}^{\vee}=\left\{\tau: \tau\right.$-columns of G do not span $\left.M^{\sharp}\right\}$.
- If $\tau \in \Delta_{G}^{\vee}$, then what space do the τ-columns span?
- For every proper subspace $L \subseteq M^{\sharp}$, define

$$
\tau_{L}=\left\{i: \lambda_{i} \in L\right\}
$$

- As L varies over the maximal proper subspaces of M^{\sharp}, the τ_{L} include all the facets of Δ_{G}^{\vee}.
- Then the $\bar{\tau}_{L}, L$ maximal, provide the exponents for the generators of I_{Δ}.

Example 1

- One weight code of dimension 3 over \mathbb{F}_{2} has generator matrix

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- There are seven 2-dimensional subspaces $L \subseteq M^{\sharp}$, and seven 1 -dimensional subspaces. The τ_{L} are: $246,145,347,123,257,167,356 ; 1,2,3,4,5,6,7$; and \emptyset.

Possible resolution of Stanley-Reisner ring

- Notation: for $\sigma \subseteq E$, write $S(-\sigma)$ for a free finely-graded S-module isomorphic to $S x^{\sigma}$.
- It seems to be the case that the following is a (non-minimal) free resolution of $R_{\Delta_{G}}$:

$$
0 \leftarrow R_{\Delta_{G}} \leftarrow S \leftarrow \bigoplus_{L \operatorname{codim} 1} S\left(-\bar{\tau}_{L}\right) \leftarrow
$$

$\cdots \leftarrow \bigoplus S\left(-\bar{\tau}_{L}\right)^{q^{\left(\frac{d}{2}\right)}} \leftarrow$
Lcodim d
$\cdots \leftarrow \bigoplus S\left(-\bar{\tau}_{L}\right)^{q^{\left(\frac{m}{2}\right)}} \leftarrow 0$.
Lcodim m

Good case: one-weight code

- Johnsen and Verdure show that the complex above is a minimal free resolution of $R_{\Delta_{G}}$ when C is a linear one-weight code.
- This involves a careful analysis of the subcodes of a one-weight code and the use of Hochster's formula for the Betti numbers of a minimal resolution in terms of the reduced homology of certain subcomplexes.

Example 1 again (a)

- One weight code of dimension 3 over \mathbb{F}_{2} has generator matrix

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- There are seven 2-dimensional subspaces $L \subseteq M^{\sharp}$, and seven 1-dimensional subspaces. The τ_{L} are: $246,145,347,123,257,167,356 ; 1,2,3,4,5,6,7$; and \emptyset.

Example 1 (b)

- The respective $\bar{\tau}_{L}$ have cardinalities $4,6,7$, respectively.
- The data suggest, and Macaulay 2 confirms, a minimal coarse resolution:

$$
0 \leftarrow R_{\Delta} \leftarrow S \leftarrow S(-4)^{7} \leftarrow S(-6)^{14} \leftarrow S(-7)^{8} \leftarrow 0
$$

Example 2 (a)

- Now consider the code of dimension 3 obtained by puncturing column 7:

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

- The τ_{L} are: $246,145,34,123,25,16,356$; $1,2,3,4,5,6, \emptyset ; \emptyset$. (Delete any 7 from previous listing.)

Example 2 (b)

- These data would suggest a (non-minimal) coarse resolution:

$$
\begin{aligned}
0 \leftarrow R_{\Delta} & \leftarrow S \leftarrow S(-3)^{4} \oplus S(-4)^{3} \\
& \leftarrow S(-5)^{12} \oplus S(-6)^{2} \leftarrow S(-6)^{8} \leftarrow 0
\end{aligned}
$$

- The minimal coarse resolution from Macaulay 2:

$$
\begin{aligned}
0 \leftarrow R_{\Delta} & \leftarrow S \leftarrow S(-3)^{4} \oplus S(-4)^{3} \\
& \leftarrow S(-5)^{12} \leftarrow S(-6)^{6} \leftarrow 0 .
\end{aligned}
$$

Example 3 (a)

- This time, duplicate the last column in the one-weight code:

$$
\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- Now the τ_{L} are: $246,145,3478,123,2578,1678,356$; $1,2,3,4,5,6,78$; and \emptyset. (Anytime there is a 7 , also include an 8.)

Example 3 (c)

- These data would suggest a coarse resolution:

$$
\begin{aligned}
0 \leftarrow R_{\Delta} & \leftarrow S \leftarrow S(-4)^{3} \oplus S(-5)^{4} \\
& \leftarrow S(-6)^{2} \oplus S(-7)^{12} \leftarrow S(-8)^{8} \leftarrow 0 .
\end{aligned}
$$

- This agrees with what one gets from Macaulay 2.

Effect of puncturing

- If a column is removed (punctured), say column j, then the number of columns is smaller. Call the original code C and the punctured code C^{\prime}.
- Set $E^{\prime}=E \backslash\{j\}$. Then $\tau_{L}^{\prime}=\tau_{L} \cap E^{\prime}$.
- Note that $\bar{\tau}_{L}^{\prime}=E^{\prime} \backslash \tau_{L}^{\prime}=\bar{\tau}_{L} \cap E^{\prime}$.
- Thus $\left|\bar{\tau}_{L}^{\prime}\right|=\left|\bar{\tau}_{L}\right|$ when $j \in \tau_{L}$, and $\left|\bar{\tau}_{L}^{\prime}\right|=\left|\bar{\tau}_{L}\right|-1$ when $j \notin \tau_{L}$.
- This explains the shifts in degrees in Example 2.

Effect of higher multiplicities

- Now duplicate column j. Set $E^{\prime}=E \cup\left\{j^{*}\right\}$.
- If $j \in \tau_{L}$, then $\tau_{L}^{\prime}=\tau_{L} \cup\left\{j^{*}\right\}$. If $j \notin \tau_{L}$, then $\tau_{L}^{\prime}=\tau_{L}$.
- Thus $\left|\bar{\tau}_{L}^{\prime}\right|=\left|\bar{\tau}_{L}\right|$ when $j \in \tau_{L}$, and $\left|\bar{\tau}_{L}^{\prime}\right|=\left|\bar{\tau}_{L}\right|+1$ when $j \notin \tau_{L}$.
- This explains the shifts in degrees in Example 3.

Interpretation of coarse grading degrees

- At homological degree i, the smallest coarse grading degree is the generalized Hamming weight for C in dimension i. (Chen) That is, among the subcodes of C of dimension i, the smallest support length.
- A subcode $D \subseteq C$ is determined by its annihilator $L \subseteq M^{\sharp}$: codewords vanishing on τ_{L} belong to D. Such codewords have support contained in $\bar{\tau}_{L}$.

Codes over rings

- Most of the ideas presented should make sense for linear codes over rings or even over modules.
- One twist: in the proposed free resolution, the modules in homological degree i corresponded to subspaces $L \subseteq M^{\sharp}$ of codimension i. For codes over rings or modules, there may not be a way to assign degrees or dimensions to $L \subseteq \operatorname{Hom}_{R}(M, A)$.
- Perhaps there is a more general limit coming from viewing the terms in the complex as a functor on the poset of submodules of $\operatorname{Hom}_{R}(M, A)$.

Category of linear codes

- In 1998, Ed Assmus proposed a category of linear codes. Morphisms are defined as homomorphisms that do not increase the Hamming distance.
- Is $C \mapsto \Delta_{C}$ a functor from the category of linear codes to the category of simplicial complexes? If not, is there a way to fix it?

Thank you

- Thanks again to André Leroy for organizing the conference and his hospitality.
- Thank you, conference participants, for your kind attention, your questions, and your (gentle) harassment.

Thank you

- Thanks again to André Leroy for organizing the conference and his hospitality.
- Thank you, conference participants, for your kind attention, your questions, and your (gentle) harassment.
- Repeat after me: Frobenius, character, portrait, landscape, isometry.

