Matrix coefficient realization theory of noncommutative rational functions

Jurij Volčič
(Joint work with Igor Klep)

The University of Auckland

Lens 2015

Associated areas

- Theory of skew fields: universal construction
- Theoretical computer science: weighted finite automata
- Free real algebraic geometry: linear matrix inequalities
- Systems/control theory: linear systems evolving on a free group
- Noncommutative symmetric functions: quasi-determinants

Nc rational expressions

\mathbb{F} a field of characteristic $0, Z=\left\{z_{1}, \ldots, z_{g}\right\}, \mathbb{F}<Z>$ nc polynomials.

Nc rational expressions

\mathbb{F} a field of characteristic $0, Z=\left\{z_{1}, \ldots, z_{g}\right\}, \mathbb{F}<Z>$ nc polynomials. $\mathcal{R}_{\mathbb{F}}(Z)$ nc rational expressions built from $\mathbb{F}<Z>$ using,,$+^{-1}$, (,), e.g. $z_{2}\left(1+z_{2}^{-1}\left(z_{1}-3\right)^{-1}\right)^{-1},\left(z_{2}-z_{2}\right)^{-1}$.

Nc rational expressions

\mathbb{F} a field of characteristic $0, Z=\left\{z_{1}, \ldots, z_{g}\right\}, \mathbb{F}<Z>$ nc polynomials.
$\mathcal{R}_{\mathbb{F}}(Z)$ nc rational expressions built from $\mathbb{F}<Z>$ using $+,,^{-1},($,$) ,$ e.g. $z_{2}\left(1+z_{2}^{-1}\left(z_{1}-3\right)^{-1}\right)^{-1},\left(z_{2}-z_{2}\right)^{-1}$.

Evaluations on matrices:

- $\mathcal{M}=\bigcup_{m \in \mathbb{N}} M_{m}(\mathbb{F})^{g}$.
- dom r is the subset of \mathcal{M} where $r \in \mathcal{R}_{\mathbb{F}}(Z)$ is defined; $\operatorname{dom}_{m} r=\operatorname{dom} r \cap M_{m}(\mathbb{F})^{g}$.
- r is degenerate if dom $r=\emptyset$ and nondegenerate otherwise.
- For nondegenerate r_{1} and $r_{2}: r_{1} \sim r_{2}$ iff $r_{1}(a)=r_{2}(a)$ for all $a \in \operatorname{dom} r_{1} \cap \operatorname{dom} r_{2}$.

Nc rational functions

Nc rational functions are equivalence classes of nondegenerate expressions, $\mathbb{F} \nless Z \ngtr$. This is a skew field (with obvious operations). The class of r is \mathbb{r}, $\operatorname{dom} \mathbb{r}=\bigcup_{r \in r}$ dom r.

Nc rational functions

Nc rational functions are equivalence classes of nondegenerate expressions, $\mathbb{F} \nless Z \ngtr$. This is a skew field (with obvious operations). The class of r is \mathbb{r}, dom $\mathbb{r}=\bigcup_{r \in r}$ dom r.

This construction is due to Helton, McCullough, Vinnikov.

Nc rational functions

Nc rational functions are equivalence classes of nondegenerate expressions, $\mathbb{F} \nless Z \rtimes$. This is a skew field (with obvious operations). The class of r is \mathbb{r}, dom $\mathbb{r}=\bigcup_{r \in r}$ dom r.

This construction is due to Helton, McCullough, Vinnikov.
We can also describe $\mathbb{F}(Z \ngtr$ using

- rational expressions over an ∞-dim skew field (Amitsur, Bergman),
- full matrices over $\mathbb{F}<Z>$ (Cohn),
- Malcev-Neumann construction on a free group (Lewin),
- skew field associated to a free Lie algebra (Lichtman).

Universal property

$\mathbb{F} \nless Z \ngtr$ is the universal skew field of fractions of $\mathbb{F}<Z>$, i.e., for every skew field $D \supseteq \mathbb{F}$ and epimorphism $\mathbb{F}<Z>\rightarrow D$ we have a commutative diagram

where K is a local ring and $\phi: K \rightarrow D$ satisfies $\phi(x) \neq 0 \Rightarrow x^{-1} \in K$.

Universal property

$\mathbb{F} \nless Z \ngtr$ is the universal skew field of fractions of $\mathbb{F}<Z>$, i.e., for every skew field $D \supseteq \mathbb{F}$ and epimorphism $\mathbb{F}<Z>\rightarrow D$ we have a commutative diagram

where K is a local ring and $\phi: K \rightarrow D$ satisfies $\phi(x) \neq 0 \Rightarrow x^{-1} \in K$.
Informally: if a nc rational expression vanishes on all tuples of matrices over \mathbb{F}, then it vanishes on all tuples of elements in D, where D is an arbitrary skew field containing \mathbb{F}.
Such expressions are called rational identities.

Functions analytic at the origin

It can be hard to distinguish nc rational functions; e.g.

$$
\left(z_{1}-\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)\right)\left(\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)-z_{2}^{-1} z_{1} z_{2}^{-1}\right)^{-1}-z_{2}
$$

represents 0 , i.e., is a rational identity. Alternative description?

Functions analytic at the origin

It can be hard to distinguish nc rational functions; e.g.

$$
\left(z_{1}-\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)\right)\left(\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)-z_{2}^{-1} z_{1} z_{2}^{-1}\right)^{-1}-z_{2}
$$

represents 0 , i.e., is a rational identity. Alternative description?
Let $r \in \mathcal{R}_{\mathbb{F}}(Z)$. If $(0, \ldots, 0) \in \operatorname{dom} r$, then we can expand r into a noncommutative power series $S \in \mathbb{F} \ll Z \gg$. Such a series is rational, i.e., it belongs to the rational closure of $\mathbb{F}<Z>$ in $\mathbb{F} \ll Z \gg$.

Functions analytic at the origin

It can be hard to distinguish nc rational functions; e.g.

$$
\left(z_{1}-\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)\right)\left(\left(1+z_{2}\right)^{-1} z_{1}\left(1+z_{2}\right)-z_{2}^{-1} z_{1} z_{2}^{-1}\right)^{-1}-z_{2}
$$

represents 0 , i.e., is a rational identity. Alternative description?
Let $r \in \mathcal{R}_{\mathbb{F}}(Z)$. If $(0, \ldots, 0) \in \operatorname{dom} r$, then we can expand r into a noncommutative power series $S \in \mathbb{F} \ll Z \gg$. Such a series is rational, i.e., it belongs to the rational closure of $\mathbb{F}<Z>$ in $\mathbb{F} \ll Z \gg$.

Theorem (Schützenberger, '61)

Every rational series S has a linear representation, i.e., there exists $n \in \mathbb{N}$ and $\mathbf{c} \in \mathbb{F}^{1 \times n}, \mathbf{b} \in \mathbb{F}^{n \times 1}$ and $A_{j} \in \mathbb{F}^{n \times n}$ for $1 \leq j \leq g$, such that

$$
S=\mathbf{c}\left(I_{n}-\sum_{j=1}^{g} A_{j} z_{j}\right)^{-1} \mathbf{b}
$$

General case

Previous result can be applied to rational expressions defined at some point in \mathbb{F}^{g}. What about other rational expressions, e.g. $\left(z_{1} z_{2}-z_{2} z_{1}\right)^{-1}$?

General case

Previous result can be applied to rational expressions defined at some point in \mathbb{F}^{g}. What about other rational expressions, e.g. $\left(z_{1} z_{2}-z_{2} z_{1}\right)^{-1}$?

Let $m \in \mathbb{N}$. The algebra of generalized polynomials over $M_{m}(\mathbb{F})$ is defined as

$$
M_{m}(\mathbb{F})<Z>:=M_{m}(\mathbb{F}) * \mathbb{F} \mathbb{F}<Z>
$$

Its (Z)-completion is called the algebra of generalized series over $M_{m}(\mathbb{F})$ and denoted $M_{m}(\mathbb{F}) \ll Z \gg$.

General case

Previous result can be applied to rational expressions defined at some point in \mathbb{F}^{g}. What about other rational expressions, e.g. $\left(z_{1} z_{2}-z_{2} z_{1}\right)^{-1}$?

Let $m \in \mathbb{N}$. The algebra of generalized polynomials over $M_{m}(\mathbb{F})$ is defined as

$$
M_{m}(\mathbb{F})<Z>:=M_{m}(\mathbb{F}) * \mathbb{F} \mathbb{F}<Z>
$$

Its (Z)-completion is called the algebra of generalized series over $M_{m}(\mathbb{F})$ and denoted $M_{m}(\mathbb{F}) \ll Z \gg$.

Assume r is defined at $p \in M_{m}(\mathbb{F})^{g}$. Then we can expand r into a generalized series S about the point p. Again, this series belongs to the rational closure of $M_{m}(\mathbb{F})<Z>$ in $M_{m}(\mathbb{F}) \ll Z \gg$.

Realizations

If $S \in M_{m}(\mathbb{F}) \ll Z \gg$ is a rational series, then there exists $n \in \mathbb{N}$ and

$$
\mathbf{c} \in M_{m}(\mathbb{F})^{1 \times n}, \quad \mathbf{b} \in M_{m}(\mathbb{F})^{n \times 1}, \quad A_{j} \in \sum M_{m}(\mathbb{F})^{n \times n} z_{j} M_{m}(\mathbb{F})^{n \times n}
$$

for $1 \leq j \leq g$, such that

$$
S=\mathbf{c}\left(I_{n}-\sum_{j=1}^{g} A_{j}\right)^{-1} \mathbf{b}
$$

$(\mathbf{b}, A, \mathbf{c})$ is called a (linear) representation of S of dimension n.

Realizations

If $S \in M_{m}(\mathbb{F}) \ll Z \gg$ is a rational series, then there exists $n \in \mathbb{N}$ and

$$
\mathbf{c} \in M_{m}(\mathbb{F})^{1 \times n}, \quad \mathbf{b} \in M_{m}(\mathbb{F})^{n \times 1}, \quad A_{j} \in \sum M_{m}(\mathbb{F})^{n \times n} z_{j} M_{m}(\mathbb{F})^{n \times n}
$$

for $1 \leq j \leq g$, such that

$$
S=\mathbf{c}\left(I_{n}-\sum_{j=1}^{g} A_{j}\right)^{-1} \mathbf{b}
$$

($\mathbf{b}, A, \mathbf{c}$) is called a (linear) representation of S of dimension n.
If $r \in \mathcal{R}_{\mathbb{F}}(Z)$ is defined at $p \in M_{m}(\mathbb{F})^{g}$ and S is its expansion about p, then $(\mathbf{b}, A, \mathbf{c})$ is called a realization of r about p of dimension n.

Interpretation

Let $(\mathbf{b}, A, \mathbf{c})$ be a realization of r about p and let $s \in \mathbb{N}$.
With some abuse of the notation we can write

$$
\mathbf{c}\left(I_{n m s}-\sum_{j=1}^{g} A_{j}\left(q_{j}-p_{j}\right)\right)^{-1} \mathbf{b}=r(q) \in M_{m s}(\mathbb{F})
$$

for $q \in M_{m s}(\mathbb{F})^{g}$, where the entries of \mathbf{c}, \mathbf{b} and A_{j} are considered as elements in $M_{m s}(\mathbb{F})$ using the embedding

$$
M_{m}(\mathbb{F}) \hookrightarrow M_{m s}(\mathbb{F}), \quad a \mapsto\left(\begin{array}{ccc}
a & & \\
& \ddots & \\
& & a
\end{array}\right)
$$

Two examples

Realization of $\left(\left(1-z_{1}-z_{2}\left(1-z_{1}\right)^{-1} z_{2}\right)^{-1}\right.$ about $(0,0)$:

$$
\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(l_{2}-\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{1}
\end{array}\right)-\left(\begin{array}{cc}
0 & z_{2} \\
z_{2} & 0
\end{array}\right)\right)^{-1}\binom{1}{0}
$$

Realization of $\left(z_{1} z_{2}-z_{2} z_{1}\right)^{-1}$ about $\left(p_{1}, p_{2}\right) \in M_{2}(\mathbb{F})^{2}$ assuming that $p_{1} p_{2}-p_{2} p_{1}$ is invertible with inverse q :

$$
\begin{gathered}
\mathbf{c}\left(l_{3}-A_{1}\left(z_{1}-p_{1}\right)-A_{2}\left(z_{2}-p_{2}\right)\right)^{-1} \mathbf{b}, \\
\mathbf{c}=\left(\begin{array}{lll}
q & 0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccc}
-z_{1} p_{2} q+p_{2} z_{1} q & z_{1} & 0 \\
0 & 0 & 0 \\
-z_{1} q & 0 & 0
\end{array}\right), \\
A_{2}=\left(\begin{array}{ccc}
z_{2} p_{1} q-p_{1} z_{2} q & 0 & -z_{2} \\
-z_{2} q & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Special types of representations

Let $(\mathbf{b}, A, \mathbf{c})$ be a representation over $M_{m}(\mathbb{F})$ of dimension n of series S. Its obstruction modules are

$$
\begin{aligned}
\mathcal{U}_{L} & =\left\{\mathbf{u} \in M_{m}(\mathbb{F})^{1 \times n}: \mathbf{u} A_{i_{1}} \ldots A_{i_{\ell}} \mathbf{b}=0 \forall i_{j}, \ell\right\} \\
\mathcal{U}_{R} & =\left\{\mathbf{u} \in M_{m}(\mathbb{F})^{n \times 1}: \mathbf{c} A_{i_{1}} \ldots A_{i_{\ell}} \mathbf{u}=0 \forall i_{j}, \ell\right\}
\end{aligned}
$$

Special types of representations

Let $(\mathbf{b}, A, \mathbf{c})$ be a representation over $M_{m}(\mathbb{F})$ of dimension n of series S. Its obstruction modules are

$$
\begin{aligned}
\mathcal{U}_{L} & =\left\{\mathbf{u} \in M_{m}(\mathbb{F})^{1 \times n}: \mathbf{u} A_{i_{1}} \ldots A_{i_{\ell}} \mathbf{b}=0 \forall i_{j}, \ell\right\} \\
\mathcal{U}_{R} & =\left\{\mathbf{u} \in M_{m}(\mathbb{F})^{n \times 1}: \mathbf{c} A_{i_{1}} \ldots A_{i_{\ell}} \mathbf{u}=0 \forall i_{j}, \ell\right\}
\end{aligned}
$$

We say that $(\mathbf{b}, A, \mathbf{c})$ is

- reduced if \mathcal{U}_{L} and \mathcal{U}_{R} are torsion $M_{m}(\mathbb{F})$-modules;
- minimal if its dimension is minimal amongst all representations of S;
- totally reduced if if \mathcal{U}_{L} and \mathcal{U}_{R} are trivial.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.
(2) We have an algorithm that transforms any representation into a reduced one.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.
(2) We have an algorithm that transforms any representation into a reduced one.
(3) if $\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{L}+\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{R}<m^{2}$ holds for a reduced representation, then it is minimal.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.
(2) We have an algorithm that transforms any representation into a reduced one.
(3) if $\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{L}+\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{R}<m^{2}$ holds for a reduced representation, then it is minimal.
(4) The dimension of a reduced representation is greater than the minimal one for at most 1.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.
(2) We have an algorithm that transforms any representation into a reduced one.
(3) if $\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{L}+\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{R}<m^{2}$ holds for a reduced representation, then it is minimal.
(9) The dimension of a reduced representation is greater than the minimal one for at most 1.
(5) A totally reduced representation is unique up to a basis change.

Minimization

(1) totally reduced \Rightarrow minimal \Rightarrow reduced.
(2) We have an algorithm that transforms any representation into a reduced one.
(3) if $\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{L}+\operatorname{dim}_{\mathbb{F}} \mathcal{U}_{R}<m^{2}$ holds for a reduced representation, then it is minimal.
(9) The dimension of a reduced representation is greater than the minimal one for at most 1.
(5) A totally reduced representation is unique up to a basis change.
(6) For a rational expression and "almost every" point in its domain, we can find its totally reduced realization using the previously mentioned algorithm.

Degree of nc rational function

Let \mathbb{r} be a nc rational function and r one of its representatives. Assume we have a minimal (not necessarily totally reduced) realization of r about $p \in M_{m}(\mathbb{F})^{g}$.

Degree of nc rational function

Let \mathbb{r} be a nc rational function and r one of its representatives. Assume we have a minimal (not necessarily totally reduced) realization of r about $p \in M_{m}(\mathbb{F})^{g}$.

Can we get a smaller realization about a different $p^{\prime} \in M_{m}(\mathbb{F})^{g}$?

Degree of nc rational function

Let \mathbb{r} be a nc rational function and r one of its representatives. Assume we have a minimal (not necessarily totally reduced) realization of r about $p \in M_{m}(\mathbb{F})^{g}$.

Can we get a smaller realization about a different $p^{\prime} \in M_{m}(\mathbb{F})^{g}$?
Or about $p^{\prime} \in M_{m^{\prime}}(\mathbb{F})^{g}$ for some $m^{\prime} \neq m$?

Degree of nc rational function

Let \mathbb{r} be a nc rational function and r one of its representatives. Assume we have a minimal (not necessarily totally reduced) realization of r about $p \in M_{m}(\mathbb{F})^{g}$.

Can we get a smaller realization about a different $p^{\prime} \in M_{m}(\mathbb{F})^{g}$?
Or about $p^{\prime} \in M_{m^{\prime}}(\mathbb{F})^{g}$ for some $m^{\prime} \neq m$?

The answer is no.

Degree of nc rational function

Let \mathbb{r} be a nc rational function and r one of its representatives. Assume we have a minimal (not necessarily totally reduced) realization of r about $p \in M_{m}(\mathbb{F})^{g}$.

Can we get a smaller realization about a different $p^{\prime} \in M_{m}(\mathbb{F})^{g}$?
Or about $p^{\prime} \in M_{m^{\prime}}(\mathbb{F})^{g}$ for some $m^{\prime} \neq m$?

The answer is no.
Therefore we can define the degree of a nc rational function. It is independent of the choice of a representing expression $r \in \mathbb{r}$, point of expansion p, and even the size of the matrices in p.

Domain of a nc rational function

$$
\begin{aligned}
& r_{1}=\left(1-z_{1}-z_{2}\left(1-z_{1}\right)^{-1} z_{2}\right)^{-1} \\
& r_{2}=-z_{2}^{-1}\left(1-z_{1}\right)\left(z_{2}-\left(1-z_{1}\right) z_{2}^{-1}\left(1-z_{1}\right)\right)^{-1}, \\
& r_{3}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(l_{2}-\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{1}
\end{array}\right)-\left(\begin{array}{cc}
0 & z_{2} \\
z_{2} & 0
\end{array}\right)\right)^{-1}\binom{1}{0} .
\end{aligned}
$$

Domain of a nc rational function

$$
\begin{aligned}
& r_{1}=\left(1-z_{1}-z_{2}\left(1-z_{1}\right)^{-1} z_{2}\right)^{-1}, \\
& r_{2}=-z_{2}^{-1}\left(1-z_{1}\right)\left(z_{2}-\left(1-z_{1}\right) z_{2}^{-1}\left(1-z_{1}\right)\right)^{-1}, \\
& r_{3}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(l_{2}-\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{1}
\end{array}\right)-\left(\begin{array}{cc}
0 & z_{2} \\
z_{2} & 0
\end{array}\right)\right)^{-1}\binom{1}{0} .
\end{aligned}
$$

It can be shown: $\mathbb{r}_{1}=\mathbb{r}_{2}=\mathbb{r}_{3},(1,1) \in \operatorname{dom} r_{2} \backslash \operatorname{dom} r_{1}$, $(0,0) \in \operatorname{dom} r_{1} \backslash \operatorname{dom} r_{2}$ and $\operatorname{dom} r_{3} \supsetneq \operatorname{dom} r_{1} \cup \operatorname{dom} r_{2}$.

Domain of a nc rational function

$$
\begin{aligned}
& r_{1}=\left(1-z_{1}-z_{2}\left(1-z_{1}\right)^{-1} z_{2}\right)^{-1} \\
& r_{2}=-z_{2}^{-1}\left(1-z_{1}\right)\left(z_{2}-\left(1-z_{1}\right) z_{2}^{-1}\left(1-z_{1}\right)\right)^{-1} \\
& r_{3}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(l_{2}-\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{1}
\end{array}\right)-\left(\begin{array}{cc}
0 & z_{2} \\
z_{2} & 0
\end{array}\right)\right)^{-1}\binom{1}{0} .
\end{aligned}
$$

It can be shown: $\mathbb{r}_{1}=\mathbb{r}_{2}=\mathbb{r}_{3},(1,1) \in \operatorname{dom} r_{2} \backslash \operatorname{dom} r_{1}$, $(0,0) \in \operatorname{dom} r_{1} \backslash \operatorname{dom} r_{2}$ and $\operatorname{dom} r_{3} \supsetneq \operatorname{dom} r_{1} \cup \operatorname{dom} r_{2}$.

Theorem

If $(\mathbf{c}, A, \mathbf{b})$ is a totally reduced realization of \mathbb{r} about $p \in M_{m}(\mathbb{F})^{g}$, then

$$
\operatorname{dom}_{m s} \mathbb{T}=\left\{q \in M_{m s}^{g}(\mathbb{F}): \operatorname{det}\left(I_{n m s}-\sum_{j=1}^{g} A_{j}\left(q_{j}-p_{j}\right)\right) \neq 0\right\} .
$$

The rational identity testing problem

Denote

$$
\kappa(r)=\# \text { constant_terms_in_r }+2 \cdot \text { \#letters_in_ } r+\# \text { inversions_in_r. }
$$

Example: for

$$
\left.r=2\left(z_{2} z_{1}-1\right)^{-1}-\left(z_{1} z_{2}^{-1}-z_{2}^{-1} z_{1}\right)^{-1}-1\right)
$$

we have $\kappa(r)=2+2 \cdot 6+4=18$.

The rational identity testing problem

Denote

$$
\kappa(r)=\# \text { constant_terms_in_r }+2 \cdot \# \text { letters_in_ } r+\# \text { inversions_in_r. }
$$

Example: for

$$
\left.r=2\left(z_{2} z_{1}-1\right)^{-1}-\left(z_{1} z_{2}^{-1}-z_{2}^{-1} z_{1}\right)^{-1}-1\right)
$$

we have $\kappa(r)=2+2 \cdot 6+4=18$.

Theorem

Let $r \in \mathcal{R}_{\mathbb{F}}(Z)$ and assume $\operatorname{dom}_{m} r \neq \emptyset$. Then r is a rational identity if and only if r vanishes on $\operatorname{dom}_{N} r$, where

$$
N=m\left\lceil\frac{m}{2} \kappa(r)\right\rceil .
$$

... and another version

Well known: if $p \in \mathbb{F}<Z>\backslash\{0\}$ vanishes on $M_{N}(\mathbb{F})^{g}$, then the (polynomial) degree of p is at least $2 N$.

... and another version

Well known: if $p \in \mathbb{F}<Z>\backslash\{0\}$ vanishes on $M_{N}(\mathbb{F})^{g}$, then the (polynomial) degree of p is at least $2 N$.

Theorem
Let $\mathbb{r} \in \mathbb{F} \nleftarrow Z \ngtr \backslash\{0\}$ and assume $\operatorname{dom}_{m} \mathbb{r} \neq \emptyset$. If \mathbb{r} vanishes on $\operatorname{dom}_{N} \mathbb{r}$, then the degree of \mathbb{r} is strictly greater than $\frac{2 N}{m^{2}}+1$.

References

© J. Berstel, C. Reutenauer:
Noncommutative rational series with applications,
Encyclopedia of Mathematics and its Applications 137, Cambridge, 2011.
B P. M. Cohn:
Skew fields. Theory of general division rings,
Encyclopedia of Mathematics and its Applications 57, Cambridge, 1995.
T
D. S. Kalyuzhnyi-Verbovetskiĭ, V. Vinnikov:

Noncommutative rational functions, their difference-differential calculus and realizations,
Multidimens. Syst. Signal Process. 23 (2012) 49-77.
四 J. W. Helton, S. A. McCullough, V. Vinnikov:
Noncommutative convexity arises from linear matrix inequalities, Journal of Functional Analysis 240.1 (2006) 105-191.
直 J. V.:
Matrix coefficient realization theory of noncommutative rational functions, arXiv: 1505.07472.

