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Associated areas

Theory of skew fields: universal construction

Theoretical computer science: weighted finite automata

Free real algebraic geometry: linear matrix inequalities

Systems/control theory: linear systems evolving on a free group

Noncommutative symmetric functions: quasi-determinants
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Nc rational expressions

F a field of characteristic 0, Z = {z1, . . . , zg}, F<Z> nc polynomials.

RF(Z ) nc rational expressions built from F<Z> using +, ·, −1, (, ),
e.g. z2(1 + z−1

2 (z1 − 3)−1)−1, (z2 − z2)−1.

Evaluations on matrices:

M =
⋃

m∈NMm(F)g .

dom r is the subset of M where r ∈ RF(Z ) is defined;
domm r = dom r ∩Mm(F)g .

r is degenerate if dom r = ∅ and nondegenerate otherwise.

For nondegenerate r1 and r2: r1 ∼ r2 iff r1(a) = r2(a) for all
a ∈ dom r1 ∩ dom r2.
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Nc rational functions

Nc rational functions are equivalence classes of nondegenerate
expressions, F (<Z )>. This is a skew field (with obvious operations).
The class of r is r, dom r =

⋃
r∈r dom r .

This construction is due to Helton, McCullough, Vinnikov.
We can also describe F (<Z )> using

rational expressions over an ∞-dim skew field (Amitsur, Bergman),

full matrices over F<Z> (Cohn),

Malcev-Neumann construction on a free group (Lewin),

skew field associated to a free Lie algebra (Lichtman).
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Universal property

F (<Z )> is the universal skew field of fractions of F<Z>, i.e., for every
skew field D ⊇ F and epimorphism F<Z>→ D we have a commutative
diagram

F<Z> �
� //

##

K �
� //

φ
��

F (<Z )>

D

where K is a local ring and φ : K → D satisfies φ(x) 6= 0⇒ x−1 ∈ K .

Informally: if a nc rational expression vanishes on all tuples of matrices
over F, then it vanishes on all tuples of elements in D, where D is an
arbitrary skew field containing F.
Such expressions are called rational identities.
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Functions analytic at the origin

It can be hard to distinguish nc rational functions; e.g.(
z1 − (1 + z2)−1z1(1 + z2)

) (
(1 + z2)−1z1(1 + z2)− z−1

2 z1z
−1
2

)−1 − z2

represents 0, i.e., is a rational identity. Alternative description?

Let r ∈ RF(Z ). If (0, . . . , 0) ∈ dom r , then we can expand r into a
noncommutative power series S ∈ F<<Z>>. Such a series is rational, i.e.,
it belongs to the rational closure of F<Z> in F<<Z>>.

Theorem (Schützenberger, ’61)

Every rational series S has a linear representation, i.e., there exists
n ∈ N and c ∈ F1×n, b ∈ Fn×1 and Aj ∈ Fn×n for 1 ≤ j ≤ g, such that

S = c

In −
g∑

j=1

Ajzj

−1

b.
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General case

Previous result can be applied to rational expressions defined at some
point in Fg . What about other rational expressions, e.g. (z1z2 − z2z1)−1?

Let m ∈ N. The algebra of generalized polynomials over Mm(F) is
defined as

Mm(F)<Z> := Mm(F) ∗F F<Z> .

Its (Z )-completion is called the algebra of generalized series over Mm(F)
and denoted Mm(F)<<Z>>.

Assume r is defined at p ∈ Mm(F)g . Then we can expand r into a
generalized series S about the point p. Again, this series belongs to the
rational closure of Mm(F)<Z> in Mm(F)<<Z>>.
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Realizations

If S ∈ Mm(F)<<Z>> is a rational series, then there exists n ∈ N and

c ∈ Mm(F)1×n, b ∈ Mm(F)n×1, Aj ∈
∑

Mm(F)n×nzjMm(F)n×n

for 1 ≤ j ≤ g , such that

S = c

In −
g∑

j=1

Aj

−1

b.

(b,A, c) is called a (linear) representation of S of dimension n.

If r ∈ RF(Z ) is defined at p ∈ Mm(F)g and S is its expansion about p,
then (b,A, c) is called a realization of r about p of dimension n.
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Interpretation

Let (b,A, c) be a realization of r about p and let s ∈ N.
With some abuse of the notation we can write

c

Inms −
g∑

j=1

Aj(qj − pj)

−1

b = r(q) ∈ Mms(F)

for q ∈ Mms(F)g , where the entries of c, b and Aj are considered as
elements in Mms(F) using the embedding

Mm(F) ↪→ Mms(F), a 7→

a
. . .

a

 .
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Two examples

Realization of ((1− z1 − z2(1− z1)−1z2)−1 about (0, 0):

(
1 0

)(
I2 −

(
z1 0
0 z1

)
−
(

0 z2

z2 0

))−1(
1
0

)
Realization of (z1z2 − z2z1)−1 about (p1, p2) ∈ M2(F)2 assuming that
p1p2 − p2p1 is invertible with inverse q:

c
(
I3 − A1(z1 − p1)− A2(z2 − p2)

)−1
b, where

c =
(
q 0 0

)
, A1 =

−z1p2q + p2z1q z1 0
0 0 0
−z1q 0 0

 ,

A2 =

z2p1q − p1z2q 0 −z2

−z2q 0 0
0 0 0

 , b =

1
0
0

 .
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Special types of representations

Let (b,A, c) be a representation over Mm(F) of dimension n of series S .
Its obstruction modules are

UL = {u ∈ Mm(F)1×n : uAi1 . . .Ai`b = 0 ∀ij , `},
UR = {u ∈ Mm(F)n×1 : cAi1 . . .Ai`u = 0 ∀ij , `}.

We say that (b,A, c) is

reduced if UL and UR are torsion Mm(F)-modules;

minimal if its dimension is minimal amongst all representations of S ;

totally reduced if if UL and UR are trivial.
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Minimization

1 totally reduced ⇒ minimal ⇒ reduced.

2 We have an algorithm that transforms any representation into a
reduced one.

3 if dimF UL + dimF UR < m2 holds for a reduced representation, then it
is minimal.

4 The dimension of a reduced representation is greater than the
minimal one for at most 1.

5 A totally reduced representation is unique up to a basis change.

6 For a rational expression and “almost every” point in its domain, we
can find its totally reduced realization using the previously mentioned
algorithm.
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Jurij Volčič (UoA) Matrix realizations of nc rational functions Lens ’15 12 / 17



Minimization

1 totally reduced ⇒ minimal ⇒ reduced.

2 We have an algorithm that transforms any representation into a
reduced one.

3 if dimF UL + dimF UR < m2 holds for a reduced representation, then it
is minimal.

4 The dimension of a reduced representation is greater than the
minimal one for at most 1.

5 A totally reduced representation is unique up to a basis change.

6 For a rational expression and “almost every” point in its domain, we
can find its totally reduced realization using the previously mentioned
algorithm.
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Degree of nc rational function

Let r be a nc rational function and r one of its representatives. Assume
we have a minimal (not necessarily totally reduced) realization of r about
p ∈ Mm(F)g .

Can we get a smaller realization about a different p′ ∈ Mm(F)g?

Or about p′ ∈ Mm′(F)g for some m′ 6= m?

The answer is no.

Therefore we can define the degree of a nc rational function. It is
independent of the choice of a representing expression r ∈ r, point of
expansion p, and even the size of the matrices in p.
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Domain of a nc rational function

r1 = (1− z1 − z2(1− z1)−1z2)−1,

r2 = −z−1
2 (1− z1)(z2 − (1− z1)z−1

2 (1− z1))−1,

r3 =
(
1 0

)(
I2 −

(
z1 0
0 z1

)
−
(

0 z2

z2 0

))−1(
1
0

)
.

It can be shown: r1 = r2 = r3, (1, 1) ∈ dom r2 \ dom r1,
(0, 0) ∈ dom r1 \ dom r2 and dom r3 ) dom r1 ∪ dom r2.

Theorem

If (c,A,b) is a totally reduced realization of r about p ∈ Mm(F)g , then

domms r =

q ∈ Mg
ms(F) : det

Inms −
g∑

j=1

Aj(qj − pj)

 6= 0

 .
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Jurij Volčič (UoA) Matrix realizations of nc rational functions Lens ’15 14 / 17



Domain of a nc rational function

r1 = (1− z1 − z2(1− z1)−1z2)−1,

r2 = −z−1
2 (1− z1)(z2 − (1− z1)z−1

2 (1− z1))−1,

r3 =
(
1 0

)(
I2 −

(
z1 0
0 z1

)
−
(

0 z2

z2 0

))−1(
1
0

)
.

It can be shown: r1 = r2 = r3, (1, 1) ∈ dom r2 \ dom r1,
(0, 0) ∈ dom r1 \ dom r2 and dom r3 ) dom r1 ∪ dom r2.

Theorem

If (c,A,b) is a totally reduced realization of r about p ∈ Mm(F)g , then

domms r =

q ∈ Mg
ms(F) : det

Inms −
g∑

j=1

Aj(qj − pj)

 6= 0

 .
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The rational identity testing problem

Denote

κ(r) = #constant terms in r + 2 ·#letters in r + #inversions in r .

Example: for

r = 2(z2z1 − 1)−1 − (z1z
−1
2 − z−1

2 z1)−1 − 1)

we have κ(r) = 2 + 2 · 6 + 4 = 18.

Theorem

Let r ∈ RF(Z ) and assume domm r 6= ∅. Then r is a rational identity if
and only if r vanishes on domN r , where

N = m
⌈
m
2 κ(r)

⌉
.
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... and another version

Well known: if p ∈ F<Z> \{0} vanishes on MN(F)g , then the
(polynomial) degree of p is at least 2N.

Theorem

Let r ∈ F (<Z )> \ {0} and assume domm r 6= ∅. If r vanishes on domN r,
then the degree of r is strictly greater than 2N

m2 + 1.
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Jurij Volčič (UoA) Matrix realizations of nc rational functions Lens ’15 16 / 17



References

J. Berstel, C. Reutenauer:
Noncommutative rational series with applications,
Encyclopedia of Mathematics and its Applications 137, Cambridge, 2011.

P. M. Cohn:
Skew fields. Theory of general division rings,
Encyclopedia of Mathematics and its Applications 57, Cambridge, 1995.

D. S. Kalyuzhnyi-Verbovetskĭı, V. Vinnikov:
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