Checkable Codes form Group Algebras to Group Rings

Noha Abdelghany

Department of Mathematics, Faculty of Science, Cairo University.

Lens, NCRA IV

June 11, 2015
Table of Contents

History

Group-Ring Codes

Code-Checkable Group Rings

References
History

- (MacWilliams, 1969)
 "Codes and ideals in group algebras".
- (Hurley, 2007)
 "Module codes over group rings".
- (Hurley, 2009)
 "Codes from zero-divisors and units in group rings".
- (Jitman, 2010)
 "Checkable Codes from group rings".
Let \mathbb{F}_q^n denote the vector space of all n-tuples over the finite field \mathbb{F}_q.

- An (n,M) code C over \mathbb{F}_q is a subset of \mathbb{F}_q^n of size M.
- If C is a k-dimensional vector subspace of \mathbb{F}_q^n, then C will be called a $[n,k]$ linear code over \mathbb{F}_q. This linear code C has q^k codewords.
A **generator matrix** for an \([n, k]\) linear code \(C\) is any \(k \times n\) matrix \(G\) whose rows form a basis for the code \(C\). \(C\) is written as:

\[
C = \{xG : x \in \mathbb{F}_q^k\}
\]

A **parity check matrix** \(H\) for an \([n, k]\) linear code \(C\) is an \((n - k) \times n\) matrix defined by:

\[
x \in C \iff Hx^T = 0
\]

Note that \(GH^T = 0\). Thus \(G, H\) are in a sense zero-divisors.
The class of cyclic codes is one of the most important classes of codes. In fact almost all codes used for practical issues, like BCH and Reed-Solomon codes, are cyclic codes. This is due to the existence of fast encoding and decoding algorithms.

Definition

A linear code C is a **cyclic code** if C satisfies:

$$(c_1, c_2, \ldots, c_{n-1}, c_n) \in C \Rightarrow (c_n, c_1, \ldots, c_{n-1}) \in C,$$

For every $c \in \mathbb{F}_q^n$.

Cyclic Codes
Table of Contents

History

Group-Ring Codes

Code-Checkable Group Rings

References
Definition
Given a group G and a ring R the **group ring** RG is the ring consisting of the set of all formal finite sums $\sum_{g \in G} \alpha_g g$, where $\alpha_g \in R$.

For $u = \sum_{g \in G} \alpha_g g$, $v = \sum_{g \in G} \beta_g g \in RG$ and $\alpha \in R$, define:

- $u + v = \sum_{g \in G} (\alpha_g + \beta_g) g$,
- $uv = (\sum_{g \in G} \alpha_g g)(\sum_{h \in G} \beta_h h) = \sum_{g \in G}(\sum_{h \in G} \alpha_h \beta_{h^{-1}} g) g$,
- $\alpha u = \sum_{g \in G} (\alpha u_g) g$.
Basic Properties of Group Rings

- The group ring RG is a ring.
- The group ring RG is a left R-module.
- When R is a field, the group ring RG is an algebra over R and it is called group algebra.

Theorem

For a fixed listing of elements of a finite group $G = \{g_1, g_2, \ldots, g_n\}$ there is a one-to-one correspondence between RG and a subring of the matrix ring $M_n(R)$, given by:

$$w = \sum_{i=1}^{n} \alpha_i g_i \rightarrow W = \begin{bmatrix}
\alpha_{g_1^{-1}g_1} & \alpha_{g_1^{-1}g_2} & \cdots & \alpha_{g_1^{-1}g_n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{g_n^{-1}g_1} & \alpha_{g_n^{-1}g_2} & \cdots & \alpha_{g_n^{-1}g_n}
\end{bmatrix}$$
Let RG be a group ring, W a submodule of RG and $u \in RG$.

Definition

- A **right group ring encoding** is a mapping $f : W \rightarrow RG$, such that $f(x) = xu$.
- The **group-ring code** C generated by u relative to W is the image of the group ring encoding: $C = \{ xu : x \in W \}$.

If u is a zero-divisor (resp. unit), C is called zero-divisor (resp. unit-derived) code.
Table of Contents

History

Group-Ring Codes

Code-Checkable Group Rings

References
Suppose that \(u \) is a zero-divisor in \(RG \) and let \(v \) be a non-zero element such that \(uv = 0 \).

Let \(C = \{ xu : x \in W \} = Wu \) be a code generated by \(u \) relative to \(W \). Then

\[
y \in C \Rightarrow yv = 0.
\]

If the zero-divisor code \(C \) satisfies: \(y \in C \iff yv = 0 \). Then \(C \) is called checkable code. In other words,

\[
C = \{ y \in RG : yv = 0 \}.
\]
C is said to be checkable if $C = \{ y \in RG : yv = 0 \}$ for some $v \in RG$.

Definition (Jitman, 2010)

A group ring RG is said to be **code-checkable** if every ideal in RG is a checkable code.
Characterization of Code-Checkable Group Algebras

Let G be a finite abelian group and F be a finite field of characteristic p.

Proposition (Jitman, 2010)

The group algebra FG is code-checkable if and only if it is a PIR.

Theorem (Fisher and Sehgal, 1976)

The group algebra FG is a PIR if and only if a Sylow p-subgroup of G is cyclic.
Let G be a finite abelian group and \mathbb{F} be a finite field of characteristic p.

Proposition (Jitman, 2010)

The group algebra $\mathbb{F}G$ is code-checkable if and only if it is a PIR.

Theorem (Fisher and Sehgal, 1976)

The group algebra $\mathbb{F}G$ is a PIR if and only if a Sylow p-subgroup of G is cyclic.
Theorem (Jitman, 2010)

Let G be a finite abelian group and F be a finite field of characteristic p. Then the group algebra $F G$ is code-checkable if and only if a Sylow p-subgroup of G is cyclic.
Definition
Let π be a finite set of primes. A finite group G is called π'-by-cyclic π, if there is a normal subgroup $H \triangleleft G$ such that:

- $|H|$ is coprime with each prime in π.
- The quotient group G/H is cyclic and a π-group.

Example
Let $\pi = \{2\}$. Since $A_3 \triangleleft S_3$, $|A_3| = 3$ and $|S_3/A_3| = 2$. Then S_3 is π'-by-cyclic π.
Lemma
Let R be a finite commutative ring and G a finite group. Then RG is code-checkable if and only if RG is a principal ideal group ring.

Theorem (Dorsey, 2006)
Let R be a finite semisimple ring and G a finite group. Then RG is PIR if and only if G is π'-by-cyclic π, where π is the set of noninvertible primes in R.
Lemma
Let R be a finite commutative ring and G a finite group. Then RG is code-checkable if and only if RG is a principal ideal group ring.

Theorem (Dorsey, 2006)
Let R be a finite semisimple ring and G a finite group. Then RG is PIR if and only if G is π'-by-cyclic π, where π is the set of noninvertible primes in R.
Characterization of Code-Checkable Group Rings

Theorem
Let G be a finite group, R a finite commutative semisimple ring and π the set of noninvertible primes in R. Then the group ring RG is code-checkable if and only if G is π'-by-cyclic π.
Table of Contents

History

Group-Ring Codes

Code-Checkable Group Rings

References
References I

Thank You for Your Time.