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Semiprime Modules

Definition (L. Bican, P. Jambor, T. Kepka, P. Nemec. 1980)

Let M and L be R-modules and K ≤ M. The product of K with L
in M is defined as

KML =
∑
{f (K )|f ∈ HomR(M, L)}

In general, this product is not associative. If M is projective in
σ[M] then it is. In fact, if M is projective in σ[M] then the
complete lattice of submodules of M is a quantale with this
product.
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Semiprime Modules

Prime submodule and Prime module

Definition

Let M ∈ R −Mod . A fully invariant submodule N ≤ M is a prime
submodule in M if for any fully invariant submodules K , L ≤ M
such that KML ≤ N, then K ≤ N or L ≤ N.

Definition

We say M is a prime module if 0 is a prime submodule.
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Semiprime Modules

Semiprime submodule and Semiprime module

Definition

A fully invariant submodule N ≤ M is a semiprime submodule in
M if for any fully invariant submodule K ≤ M such that
KMK ≤ N, then K ≤ N.

Definition

We say M is a semiprime module if 0 is a semiprime submodule.
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Semiprime Modules

Proposition

Let 0 6= M be an R-module and projective in σ[M]. If P is prime
in M then there exists a minimal prime P ′ ⊆ P.

Proposition

Let S := EndR(M) and assume M generates all its submodules. If
N is a fully invariant submodule of M such that HomR(M,N) is a
prime (semiprime) ideal of S, then N is prime (semiprime) in M.
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Semiprime Modules

From now on, M will be an R-module projective in σ[M].

Definition

A module M is retractable if HomR(M,N) 6= 0 for all 0 6= N ≤ M.

Proposition

Let M be retractable. Then, S := EndR(M) is a semiprime ring if
and only if M is semiprime.
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Semiprime Modules

The Annihilator

Definition

Let N ∈ σ[M]. The annihilator of N in M is defined as

AnnM(N) =
⋂
{Ker(f )|f ∈ HomR(M,N)}

AnnM(N) is the largest submodule of M such that
AnnM(N)MN = 0. Moreover AnnM(N) is a fully invariant
submodule.
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Semiprime Modules

Proposition

Let N be a proper fully invariant submodule of M. The following
conditions are equivalent:

1 N is semiprime in M.

2 If m ∈ M is such that RmMRm ≤ N, then m ∈ N.

3 N is an intersection of prime submodules.

By (3) of this proposition we see that if M is a semiprime module
then M has prime submodules. So M has minimal primes
submodules. This give us another description of AnnM(N) when
N ≤ M.
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Semiprime Modules

Lemma

Let M be a semiprime module and N ≤ M. Let X be the set of all
minimal prime submodules of M which do not contain N. Then
AnnM(N) =

⋂
{P|P ∈ X}.

Proposition

Let M be semiprime and N ≤ M. If N = AnnM(U) with U ≤ M
an uniform submodule, then N is a minimal prime in M.
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ACC on annihilators

ACC on annihilators

Definition

A left annihilator in M is a submodule

AX =
⋂
{Ker(f )|f ∈ X}

for some X ⊆ EndR(M).

In particular if N ≤ M then AnnM(N) is a left annihilator in M.

We say that M satisfies ACC on annihilators if M satisfies
ascending chain condition on left annihilators.
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ACC on annihilators

Definition

Let M be an R-module and N a submodule of M. We define the
powers of N as:

1 N0 = 0

2 N1 = N

3 Nm = NMNm−1

Let N ∈ σ[M]. Denote by Z(N) the M-singular submodule of N.

Proposition

If M satisfies ACC on annihilators then Z(M) is nilpotent.
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ACC on annihilators

Corollary

Let S = EndR(M). If M satisfies ACC on annihilators then Zr (S)
is nilpotent. Here Zr (S) denotes the right singular ideal of S.

Corollary

Let S = EndR(M). Suppose that M is a continuous module. If M
satisfies ACC on annihilators then J(S) is nilpotent; where J(S) is
the Jacobson radical of S.
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ACC on annihilators

Now we investigate the conditions semiprime and ACC on
annihilators together.

Theorem

Let M be semiprime. Suppose that M satisfies ACC on
annihilators, then:

1 M has finitely many minimal prime submodules.

2 If P1, ...,Pn are the minimal prime submodules then
0 = P1 ∩ ... ∩ Pn.

3 If P ≤ M is prime in M then P is a minimal prime if and only
if P = AnnM(N) for some N ≤ M.
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ACC on annihilators

Proof

Definition

Let M ∈ R −Mod and N ≤ M. N is an annihilator submodule if
N = AnnM(K ) for some 0 6= K ≤ M.

By ”prime annihilator” we mean an annihilator submodule which is
a prime submodule.

Proof

To prove (1), using that M satisfies ACC on annihilators it is seen
that every annihilator submodule contains a finite product of prime
annihilators. We have that AnnM(M) = 0. Then there exists
finitely many prime annihilators P1, ...,Pl such that P1M ...MPl = 0.
Hence the minimal primes in M have to be some of {P1, ..,Pl}.
The proof of (2) and (3) are consequences of previous results.
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ACC on annihilators

Let τg be the hereditary torsion theory in σ[M] generated by all
M-singular modules. If M is non M-singular then τg = χ(M)
where χ(M) denotes the hereditary torsion theory in σ[M]
cogenerated by M.

SpecMin(M) denotes the set of minimal primes in M

If τ is an hereditary torsion theory in σ[M]
Eτ (M) is a complete set of representatives of isomorphism classes
of indecomposable τ -torsionfree injective modules in σ[M].
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ACC on annihilators

Theorem

Let M be semiprime. If M satisfies ACC on annihilators and any
nonzero submodule of M contains an uniform submodule, then
there is a bijective correspondence between Eτg (M) and
SpecMin(M).

To give the proof of this theorem we need next definition

Definition

Let K ∈ σ[M]. A proper fully invariant submodule N of M is
associated to K if there exists a nonzero submodule L ≤ K such
that AnnM(L′) = N for all nonzero submodule L′ of L. We can see
that if N ≤ M is associated to K ∈ σ[M] then N is prime in M.
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ACC on annihilators

Denote by AssM(K ) the set of prime submodules associated to
K ∈ σ[M]. If K is an uniform module then AssM(K ) has at most
one element.

Remark

Suppose that C is χ(M)-cocritical, then there exist submodules
C ′ ≤ C and M ′ ≤ M such that C ′ ∼= M ′. Since C is cocritical then
it is uniform, so M ′ does. Hence AnnM(M ′) = P is a minimal
prime and AssM(M ′) = {P}. Thus AssM(C ) = {P}.

Proof

It could be shown that semiprime and ACC on annihilators implies
that M is non M-singular, so χ(M) = τg . If E ∈ Eτg (M) then E is
uniform and hence it is τg -cocritical. Hence AssM(E ) = {P} with
P ∈ SpecMin(M)
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ACC on annihilators

Proof

Then, we define

Ψ : Eτg (M)→ SpecMin(M)

as Ψ(E ) = P
Now, in order to define Ψ−1, let P ∈ SpecMin(M) then
P = AnnM(N) for some N ≤ M. By hypothesis there exists
U ≤ N uniform, then P = AnnM(N) ⊆ AnnM(U) but AnnM(U) is
a minimal prime, hence P = AnnM(U). Thus Ψ−1(P) = Û.

Notation: L ∈ σ[M]. L̂ denote the M-injective hull of L
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ACC on annihilators

Theorem

Let M be semiprime. Suppose that M satisfies ACC on
annihilators and any nonzero submodule of M contains an uniform
submodule. If P1, ...,Pn are the minimal primes in M, then

N̂1 ⊕ ...⊕ N̂n = M̂

where Ni = AnnM(Pi ).
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ACC on annihilators

Goldie Modules

As examples of modules which satisfy the last theorems we have
the semiprime Goldie Modules

Definition

Let M be an R-module. M is a Goldie Module if M satisfies ACC
on annihilators and has finite uniform dimension.

We can see that if we put M = R then with this definition R is a
left Goldie ring. So all semiprime left Goldie rings satisfy the last
theorems. We have the following corollaries
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ACC on annihilators

Corollary

Let R be a semiprime left Goldie ring, then there is a bijective
correspondence between indecomposable non-singular injective
modules, up to isomorphism, and minimal prime ideals of R.

Corollary

Let R be a semiprime left Goldie ring. If P1, ...,Pn are the minimal
primes ideals of R then

E (R) = E (N1)⊕ ...⊕ E (Nn)

where Ni = (0 : Pi )
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ACC on annihilators

Using the decomposition of the M-injective hull of M given above,
we have that

Proposition

Let M be semiprime. Suppose that M is a Goldie Module and
P1,P2, ...,Pn are the minimal prime in M submodules. If
Ni = AnnM (Pi ) for 1 ≤ i ≤ n, then

Pi = M ∩
⊕
j 6=i

N̂j

for all 1 ≤ i ≤ n.
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Semiprime Goldie Modules

In this context we have a generalization of Goldie’s theorem

Theorem

Let M ∈ R −Mod with finite uniform dimension. The following
conditions are equivalent:

1 M is semiprime and non M-singular

2 M is semiprime and satisfies ACC on annihilators

3 Let N ≤ M, then N ≤e M if and only if there exists a
monomorphism f : M → N.
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Semiprime Goldie Modules

We have some corollaries which give some examples of Goldie
modules

Corollary

Let M be a semiprime R-module. Then, M has finite uniform
dimension and enough monoforms if and only if M is a Goldie
module.

Corollary

Let M ∈ R −Mod with finite uniform dimension. If M is a
semiprime module and has M-Gabriel dimension, then M is a
Goldie module.

Corollary

Let M be semiprime with Krull dimension. Then M is a semiprime
Goldie module.
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Semiprime Goldie Modules

Goldie Modules and their endomorphism rings

Theorem

Let M ∈ R −Mod, S = EndR(M) and T = EndR(M̂). The
following conditions are equivalent:

1 M is a semiprime Goldie module.

2 T is semisimple right artinian and is the classical right
quotient ring of S.

3 S is a semiprime right Goldie ring.

4 M is weakly compressible with finite uniform dimension, and
for all N ≤e M, HomR(M/N,M) = 0 .
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Duo Modules

Duo Modules

Proposition

Suppose that M is a semiprime and non M-singular duo module.
The following conditions are equivalent:

1 M has finite uniform dimension.

2 M has finitely many minimal prime submodules.

3 M satisfies ACC on annihilators.

4 M satisfies ACC on pseudocomplements.
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Duo Modules

Theorem

If M is a semiprime duo module, then the following conditions are
equivalent:

1 M is a prime Goldie module.

2 M̂ is indecomposable and M is non M-singular.

3 M is uniform and non M-singular.
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Continuous modules and Goldie modules

Continuous modules and Goldie modules

Theorem

Suppose that M is continuous, retractable, non M-singular and
satisfies ACC on annihilators. Then M is a semiprime Goldie
module.

Corollary

Let R be a continuous and non singular ring. If R satisfies ACC on
left annihilators then R is a semiprime left Goldie ring.
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Continuous modules and Goldie modules

Thank you for your attention!
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