On Internally Cancellable Rings

Meltem ALTUN
Hacettepe University, Ankara, Turkey
Joint work with A. Ç. ÖZCAN

Noncommutative Rings and their Applications June 2015

Outline

Background
 Unit Regular Elements and Internal Cancellation

Internal Cancellation with SSP

Special Clean Elements

Let R be an associative unital ring.
$\mathrm{U}(\mathrm{R})$ denotes the group of units of a ring R.
$\operatorname{Reg}(R)$ is the set of all regular elements of a ring R.
$\operatorname{Idem}(R)$ is the set of all idempotent elements of a ring R.

Let R be an associative unital ring.
$\mathrm{U}(\mathrm{R})$ denotes the group of units of a ring R.
$\operatorname{Reg}(R)$ is the set of all regular elements of a ring R.
$\operatorname{Idem}(R)$ is the set of all idempotent elements of a ring R.

Definition

An element a in a ring R is called regular if there exists an element $x \in R$ such that $a=a x a$. The ring R is called regular if every element in R is regular.

Let R be an associative unital ring.
$\mathrm{U}(\mathrm{R})$ denotes the group of units of a ring R.
$\operatorname{Reg}(R)$ is the set of all regular elements of a ring R.
$\operatorname{Idem}(R)$ is the set of all idempotent elements of a ring R.

Definition

An element a in a ring R is called regular if there exists an element $x \in R$ such that $a=a x a$. The ring R is called regular if every element in R is regular.

Definition

An element a in a ring R is called unit-regular if there exists a unit element $u \in R$ such that $a=$ aua. The ring R is called unit-regular if every element in R is unit-regular.

Definition [Bass, 1964]
A ring R has stable range one $(\operatorname{sr}(R)=1)$ if, for each $a, b \in R$ with $R a+R b=R$ there exists $x \in R$ such that $a+x b \in U(R)$.

Definition [Bass, 1964]
A ring R has stable range one $(\operatorname{sr}(R)=1)$ if, for each $a, b \in R$ with $R a+R b=R$ there exists $x \in R$ such that $a+x b \in U(R)$.
[Vasershtein, 1971]
Stable range one condition is left-right symmetric.

Definition [Bass, 1964]
A ring R has stable range one $(\operatorname{sr}(R)=1)$ if, for each $a, b \in R$ with $R a+R b=R$ there exists $x \in R$ such that $a+x b \in U(R)$.
[Vasershtein, 1971]
Stable range one condition is left-right symmetric.
[Fuchs, 1971, Henriksen, 1973, Kaplansky, 1971]
Unit regular rings have stable range one.

Definition [Bass, 1964]
A ring R has stable range one $(\operatorname{sr}(R)=1)$ if, for each $a, b \in R$ with $R a+R b=R$ there exists $x \in R$ such that $a+x b \in U(R)$.
[Vasershtein, 1971]
Stable range one condition is left-right symmetric.
[Fuchs, 1971, Henriksen, 1973, Kaplansky, 1971]
Unit regular rings have stable range one.
Definition [Khurana-Lam, 2005]
An element $a \in R$ is said to have stable range one $(\operatorname{sr}(a)=1)$ if, for any $b \in R$ with $R a+R b=R$ there exists $x \in R$ such that $a+x b \in U(R)$.

Definition

A right R-module M is said to be internally cancellable (IC, for short) if $M=M_{1} \oplus M_{2}=N_{1} \oplus N_{2}$ (in the category of R-modules) and $M_{1} \cong N_{1}$ together imply that $M_{2} \cong N_{2}$.

Definition

A right R-module M is said to be internally cancellable (IC, for short) if $M=M_{1} \oplus M_{2}=N_{1} \oplus N_{2}$ (in the category of R-modules) and $M_{1} \cong N_{1}$ together imply that $M_{2} \cong N_{2}$. If R_{R} is internally cancellable then R is said to be a (right) IC ring.

Definition

A right R-module M is said to be internally cancellable (IC, for short) if $M=M_{1} \oplus M_{2}=N_{1} \oplus N_{2}$ (in the category of R-modules) and $M_{1} \cong N_{1}$ together imply that $M_{2} \cong N_{2}$. If R_{R} is internally cancellable then R is said to be a (right) IC ring.

Theorem [Ehrlich, 1976]
A right R-module M is IC if and only if every regular element in the endomorphism ring $\operatorname{End}_{R}(M)$ of M is unit-regular.

Definition

A right R-module M is said to be internally cancellable (IC, for short) if $M=M_{1} \oplus M_{2}=N_{1} \oplus N_{2}$ (in the category of R-modules) and $M_{1} \cong N_{1}$ together imply that $M_{2} \cong N_{2}$. If R_{R} is internally cancellable then R is said to be a (right) IC ring.

Theorem [Ehrlich, 1976]
A right R-module M is IC if and only if every regular element in the endomorphism ring $\operatorname{End}_{R}(M)$ of M is unit-regular.

The IC-property of rings is right-left symmetric.

Examples of IC rings

(1) Any unit-regular ring is IC.

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.
(3) Any right artinian ring is IC.

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.
(3) Any right artinian ring is IC.

Theorem
The following statements are equivalent for a ring R.
(1) R is an IC ring;

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.
(3) Any right artinian ring is IC.

Theorem
The following statements are equivalent for a ring R.
(1) R is an IC ring;
(2) Given idempotents $e, f \in R$, if $e R \cong f R$, then $(1-e) R \cong(1-f) R$;

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.
(3) Any right artinian ring is IC.

Theorem
The following statements are equivalent for a ring R.
(1) R is an IC ring;
(2) Given idempotents $e, f \in R$, if $e R \cong f R$, then $(1-e) R \cong(1-f) R$;
(3) Given idempotents $e, f \in R$, if $e R \cong f R$, then $u e u^{-1}=f$ for some $u \in \mathrm{U}(R)$;

Examples of IC rings

(1) Any unit-regular ring is IC.
(2) Any Abelian ring is IC.
(3) Any right artinian ring is IC.

Theorem
The following statements are equivalent for a ring R.
(1) R is an IC ring;
(2) Given idempotents $e, f \in R$, if $e R \cong f R$, then $(1-e) R \cong(1-f) R$;
(3) Given idempotents $e, f \in R$, if $e R \cong f R$, then $u e u^{-1}=f$ for some $u \in U(R) ;$
(4) The left analogues of (2) and (3).

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.

Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, (\diamond) holds;

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, ($\diamond)$ holds;
(3) For each $a, b \in \operatorname{Reg}(R)$, ($\diamond)$ holds;

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, ($\diamond)$ holds;
(3) For each $a, b \in \operatorname{Reg}(R)$, ($\diamond)$ holds;
(4) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Idem}(R)$, ($\diamond)$ holds;

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, ($\diamond)$ holds;
(3) For each $a, b \in \operatorname{Reg}(R)$, ($\diamond)$ holds;
(4) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Idem}(R)$, ($\diamond)$ holds;
(5) For each $a \in R$ and $b \in \operatorname{Idem}(R),(\diamond)$ holds;

Consider the following statement:
$(\diamond): R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ for some $x \in R$, where the elements $a, b \in R$ are to be quantified.
Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, ($\diamond)$ holds;
(3) For each $a, b \in \operatorname{Reg}(R)$, ($\diamond)$ holds;
(4) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Idem}(R)$, ($\diamond)$ holds;
(5) For each $a \in R$ and $b \in \operatorname{Idem}(R)$, ($\diamond)$ holds;
(6) For each $a \in R$ and $b \in \operatorname{Reg}(R)$, ($\diamond)$ holds.
R is unit-regular $\Longrightarrow \operatorname{sr}(R)=1 \Longrightarrow r s r(R)=1 \Longleftrightarrow R$ is $I C$

\llcorner Unit Regular Elements and Internal Cancellation

Consider the following condition:

\llcorner Unit Regular Elements and Internal Cancellation

Consider the following condition:
$(*): \quad R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$ for some $x \in R$,
where the elements $a, b \in R$ are to be quantified.

Consider the following condition:
(*): $\quad R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$ for some $x \in R$,
where the elements $a, b \in R$ are to be quantified.

We deal with the nine combinations for the quantifiers "for all", "for all regular elements" and "for all idempotents elements" for each a, b and we obtain new characterizations of unit regular rings and IC rings by these combinations.

Consider the following condition:
(*): $R a+R b=R$ implies that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$ for some $x \in R$,
where the elements $a, b \in R$ are to be quantified.

We deal with the nine combinations for the quantifiers "for all", "for all regular elements" and "for all idempotents elements" for each a, b and we obtain new characterizations of unit regular rings and IC rings by these combinations.

It is observed that $(*)$ and (\diamond) have different behavior.

\llcorner Unit Regular Elements and Internal Cancellation

Theorem [Khurana-Lam, 2005]
If a is a unit regular element in a ring R, then $\operatorname{sr}(a)=1$

\llcorner Unit Regular Elements and Internal Cancellation

Theorem [Khurana-Lam, 2005]
If a is a unit regular element in a ring R, then $\operatorname{sr}(a)=1$
Theorem 1.1
For any element a in a ring R, the following are equivalent:

\llcorner Unit Regular Elements and Internal Cancellation

Theorem [Khurana-Lam, 2005]
If a is a unit regular element in a ring R, then $\operatorname{sr}(a)=1$
Theorem 1.1
For any element a in a ring R, the following are equivalent:
(1) a is unit regular;

Theorem [Khurana-Lam, 2005]
If a is a unit regular element in a ring R, then $\operatorname{sr}(a)=1$
Theorem 1.1
For any element a in a ring R, the following are equivalent:
(1) a is unit regular;
(2) Whenever $R a+R b=R$, there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$.

\llcorner Unit Regular Elements and Internal Cancellation

Corollary 1.2
The following are equivalent for a ring R :

\llcorner Unit Regular Elements and Internal Cancellation

Corollary 1.2
The following are equivalent for a ring R :
(1) R is unit regular;

\llcorner Unit Regular Elements and Internal Cancellation

Corollary 1.2

The following are equivalent for a ring R :
(1) R is unit regular;
(2) Whenever $R a+R b=R$, there exists $e \in \operatorname{Idem}(R)$ such that $a+e b \in \mathrm{U}(R)$ and $a R \cap e R=0$;

Corollary 1.2
The following are equivalent for a ring R :
(1) R is unit regular;
(2) Whenever $R a+R b=R$, there exists $e \in \operatorname{Idem}(R)$ such that $a+e b \in \mathrm{U}(R)$ and $a R \cap e R=0$;
(3) Whenever $R a+R b=R$, there exists $x \in R$ such that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$;

Corollary 1.2
The following are equivalent for a ring R :
(1) R is unit regular;
(2) Whenever $R a+R b=R$, there exists $e \in \operatorname{Idem}(R)$ such that $a+e b \in \mathrm{U}(R)$ and $a R \cap e R=0$;
(3) Whenever $R a+R b=R$, there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;
(4) For each $a \in R$ and $b \in \operatorname{Reg}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$;

Corollary 1.2
The following are equivalent for a ring R :
(1) R is unit regular;
(2) Whenever $R a+R b=R$, there exists $e \in \operatorname{Idem}(R)$ such that $a+e b \in \mathrm{U}(R)$ and $a R \cap e R=0$;
(3) Whenever $R a+R b=R$, there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;
(4) For each $a \in R$ and $b \in \operatorname{Reg}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$;
(5) For each $a \in R$ and $b \in \operatorname{Idem}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in \mathrm{U}(R)$ and $a R \cap x R=0$.

\llcorner Unit Regular Elements and Internal Cancellation

- Next we consider the element a to be regular in ($*$) whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

\llcorner Unit Regular Elements and Internal Cancellation

- Next we consider the element a to be regular in ($*$) whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

Theorem 1.3
The following are equivalent for a ring R.

\llcorner Unit Regular Elements and Internal Cancellation

- Next we consider the element a to be regular in (*) whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

Theorem 1.3
The following are equivalent for a ring R.
(1) R is IC;

- Next we consider the element a to be regular in $(*)$ whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

Theorem 1.3
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;

- Next we consider the element a to be regular in $(*)$ whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

Theorem 1.3
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;
(3) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Reg}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;

- Next we consider the element a to be regular in $(*)$ whenever $b \in R$, $b \in \operatorname{Reg}(R)$ or $b \in \operatorname{Idem}(R)$ and characterize IC rings.

Theorem 1.3
The following are equivalent for a ring R.
(1) R is IC;
(2) For each $a \in \operatorname{Reg}(R)$ and $b \in R$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;
(3) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Reg}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$;
(4) For each $a \in \operatorname{Reg}(R)$ and $b \in \operatorname{Idem}(R)$, if $R a+R b=R$, then there exists $x \in R$ such that $a+x b \in U(R)$ and $a R \cap x R=0$.

\llcorner Unit Regular Elements and Internal Cancellation

- Now we consider the elements a and b to be idempotent in $(*)$ and see that this situation always holds.
- Now we consider the elements a and b to be idempotent in ($*$) and see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if $R e+R f=R$, then there exists a unit regular element $x \in R f$ such that $e+x f \in \mathrm{U}(R)$ and $e R \cap x R=0$.

- Now we consider the elements a and b to be idempotent in ($*$) and see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if $R e+R f=R$, then there exists a unit regular element $x \in R f$ such that $e+x f \in \mathrm{U}(R)$ and $e R \cap x R=0$.

Remark 1.5

In other words, Theorem 1.4 says that $(*)$ always holds for each $a \in \operatorname{Idem}(R)$ and $b \in \operatorname{Idem}(R)$. This condition is also equivalent the following conditions.

- Now we consider the elements a and b to be idempotent in ($*$) and see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if $R e+R f=R$, then there exists a unit regular element $x \in R f$ such that $e+x f \in \mathrm{U}(R)$ and $e R \cap x R=0$.

Remark 1.5

In other words, Theorem 1.4 says that ($*$) always holds for each $a \in \operatorname{Idem}(R)$ and $b \in \operatorname{Idem}(R)$. This condition is also equivalent the following conditions.
(1) (*) holds for each $a \in \operatorname{Idem}(R)$ and $b \in R$;

- Now we consider the elements a and b to be idempotent in ($*$) and see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if $R e+R f=R$, then there exists a unit regular element $x \in R f$ such that $e+x f \in \mathrm{U}(R)$ and $e R \cap x R=0$.

Remark 1.5

In other words, Theorem 1.4 says that $(*)$ always holds for each $a \in \operatorname{Idem}(R)$ and $b \in \operatorname{Idem}(R)$. This condition is also equivalent the following conditions.
(1) $(*)$ holds for each $a \in \operatorname{Idem}(R)$ and $b \in R$;
(2) (*) holds for each $a \in \operatorname{Idem}(R)$ and $b \in \operatorname{Reg}(R)$.

In [Garg, Grover and Khurana, 2014], the authors ask the following question:

In [Garg, Grover and Khurana, 2014], the authors ask the following question:

- If every regular element of R has idempotent stable range one, then is R perspective?

In [Garg, Grover and Khurana, 2014], the authors ask the following question:

- If every regular element of R has idempotent stable range one, then is R perspective?

Definition [Khurana-Lam, 2005]

An element $a \in R$ is said to have idempotent stable range one if, for any $b \in R$ with $R a+R b=R$ there exists $e \in \operatorname{Idem}(R)$ such that $a+e b \in \mathrm{U}(R)$.

Definition [Garg, Grover and Khurana, 2014]
A ring R is called perspective if any two isomorphic direct summands of R have a common complement, i.e. if $e R \cong f R$ for any $e, f \in \operatorname{Idem}(R)$, then there exists a direct summand C of R such that $R=e R \oplus C=f R \oplus C$.

Definition [Garg, Grover and Khurana, 2014]

A ring R is called perspective if any two isomorphic direct summands of R have a common complement, i.e. if $e R \cong f R$ for any $e, f \in \operatorname{Idem}(R)$, then there exists a direct summand C of R such that $R=e R \oplus C=f R \oplus C$.

- Abelian rings and rings with stable range one are perspective rings.

Definition [Garg, Grover and Khurana, 2014]

A ring R is called perspective if any two isomorphic direct summands of R have a common complement, i.e. if $e R \cong f R$ for any $e, f \in \operatorname{Idem}(R)$, then there exists a direct summand C of R such that $R=e R \oplus C=f R \oplus C$.

- Abelian rings and rings with stable range one are perspective rings.

Definition

A ring R is said to have the summand sum property (SSP, for short) if the sum of two direct summands of R is again a direct summand.

Definition [Garg, Grover and Khurana, 2014]

A ring R is called perspective if any two isomorphic direct summands of R have a common complement, i.e. if $e R \cong f R$ for any $e, f \in \operatorname{Idem}(R)$, then there exists a direct summand C of R such that $R=e R \oplus C=f R \oplus C$.

- Abelian rings and rings with stable range one are perspective rings.

Definition

A ring R is said to have the summand sum property (SSP, for short) if the sum of two direct summands of R is again a direct summand.

- Regular rings and abelian rings have the summand sum property.

LInternal Cancellation with SSP

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

LInternal Cancellation with SSP

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.
Example
Let $R=\mathbb{M}_{2}(\mathbb{Z})$.

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.
Example
Let $R=\mathbb{M}_{2}(\mathbb{Z})$.

- R is IC because $R \cong E n d_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z})$ and $\mathbb{Z} \oplus \mathbb{Z}$ is an IC \mathbb{Z}-module.

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.
Example
Let $R=\mathbb{M}_{2}(\mathbb{Z})$.

- R is IC because $R \cong E n d_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z})$ and $\mathbb{Z} \oplus \mathbb{Z}$ is an IC \mathbb{Z}-module.
- But the element $\left(\begin{array}{cc}12 & 5 \\ 0 & 0\end{array}\right)$ is unit regular but not clean. [Khurana and Lam, 2004]

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.
Example
Let $R=\mathbb{M}_{2}(\mathbb{Z})$.

- R is IC because $R \cong \operatorname{End}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z})$ and $\mathbb{Z} \oplus \mathbb{Z}$ is an IC \mathbb{Z}-module.
- But the element $\left(\begin{array}{cc}12 & 5 \\ 0 & 0\end{array}\right)$ is unit regular but not clean. [Khurana and Lam, 2004]
- Hence R is not perspective by [Garg, Grover and Khurana, 2014]

Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.
Example
Let $R=\mathbb{M}_{2}(\mathbb{Z})$.

- R is IC because $R \cong \operatorname{End}_{\mathbb{Z}}(\mathbb{Z} \oplus \mathbb{Z})$ and $\mathbb{Z} \oplus \mathbb{Z}$ is an IC \mathbb{Z}-module.
- But the element $\left(\begin{array}{cc}12 & 5 \\ 0 & 0\end{array}\right)$ is unit regular but not clean. [Khurana and Lam, 2004]
- Hence R is not perspective by [Garg, Grover and Khurana, 2014]
- On the other hand, $\mathbb{Z} \oplus \mathbb{Z}$ has not SSP as a \mathbb{Z}-module, hence R has not SSP by [Goodearl, 1991]
- By the previous theorem, we have a partial answer to the question.
- By the previous theorem, we have a partial answer to the question.

Theorem 2.2
Let R be a ring with SSP. Then the following are equivalent.

- By the previous theorem, we have a partial answer to the question.

Theorem 2.2
Let R be a ring with SSP. Then the following are equivalent.
(1) R is perspective;

- By the previous theorem, we have a partial answer to the question.

Theorem 2.2
Let R be a ring with SSP. Then the following are equivalent.
(1) R is perspective;
(2) Every regular element of R has idempotent stable range one.

\llcorner Special Clean Elements

Definition [Abrams-Rangaswamy, 2010]

An element a in R is called special clean if there exists a decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$. The ring R is called special clean if every element of R is special clean.

\llcorner Special Clean Elements

Definition [Abrams-Rangaswamy, 2010]

An element a in R is called special clean if there exists a decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in U(R)$. The ring R is called special clean if every element of R is special clean.

Proposition 3.1
The following are equivalent for a ring R.

\llcorner Special Clean Elements

Definition [Abrams-Rangaswamy, 2010]

An element a in R is called special clean if there exists a decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in U(R)$. The ring R is called special clean if every element of R is special clean.

Proposition 3.1
The following are equivalent for a ring R.
(1) R is IC;

\llcorner Special Clean Elements

Definition [Abrams-Rangaswamy, 2010]

An element a in R is called special clean if there exists a decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$. The ring R is called special clean if every element of R is special clean.

Proposition 3.1
The following are equivalent for a ring R.
(1) R is IC;
(2) For every $a \in \operatorname{Reg}(R)$, there exists $u \in \mathrm{U}(R)$ such that $a u$ is special clean.

Theorem [Camillo-Khurana, 2001]
R is unit regular if and only if R is a special clean ring.

Theorem [Camillo-Khurana, 2001]
R is unit regular if and only if R is a special clean ring.

- Any special clean element is unit regular.

\llcorner Special Clean Elements

Theorem [Camillo-Khurana, 2001]
R is unit regular if and only if R is a special clean ring.

- Any special clean element is unit regular.
- This gives the following fact for a ring R :

Every regular element is special clean $\Longrightarrow I C$

\llcorner Special Clean Elements

Theorem [Camillo-Khurana, 2001]
R is unit regular if and only if R is a special clean ring.

- Any special clean element is unit regular.
- This gives the following fact for a ring R :

Every regular element is special clean $\Longrightarrow I C$
Lemma 3.2
Any left non-zero divisor regular element over an abelian ring is a unit.

Theorem 3.3
Let R be an abelian ring. Then for every $a \in \operatorname{Reg}(R)$, there exists a unique decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$.

\llcorner Special Clean Elements

Theorem 3.3
Let R be an abelian ring. Then for every $a \in \operatorname{Reg}(R)$, there exists a unique decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$.

Corollary 3.4 [Akalan-Vaš, 2013]
If R is abelian, then R is unit regular if and only if for every $a \in R$, there exists a unique decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$.

\llcorner Special Clean Elements

Theorem 3.3
Let R be an abelian ring. Then for every $a \in \operatorname{Reg}(R)$, there exists a unique decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$.

Corollary 3.4 [Akalan-Vaš, 2013]
If R is abelian, then R is unit regular if and only if for every $a \in R$, there exists a unique decomposition $a=e+u$ such that $a R \cap e R=0$ where $e \in \operatorname{Idem}(R), u \in \mathrm{U}(R)$.

References

R H. Bass, K-theory and stable algebra, Publ. IHES 22 (1964), 5-60.
R.N. Vaserstein, Stable rank of rings and dimensionality of topological spaces, Funct. Anal. Appl. 5 (1971) 102-110.
L. Fuchs, On a substitution property of modules, Monatsh. Math. 75(1971), 198-204.

- M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math. 24(1973), 133-141.

呞 I. Kaplansky, Bass' first stable range condition, mimeographed notes, 1971.
國 D. Khurana, T.Y. Lam, Rings with internal cancellation, J. Algebra 284 (2005) 203-235.
(i. G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976) 81-90.

References

國 G. Song, C. Chu, M. Zhu, Regularly stable rings and stable isomorphism of modules, J. Univ. Sci. Technol. China 33 (2003) 1-8.
S. Garg, H.K. Grover and D. Khurana, Perspective rings, J. Algebra, 415 (2014) 1-12.
D. Khurana, T.Y. Lam, Clean matrices and unit-regular matrices, J. Algebra, 280 (2004) 683-698.

F K.R. Goodearl, Von Neumann Regular Rings, Pitman, Krieger, Malabar, FI., 1991.

囯 G. Abrams, K.L. Rangaswamy, Regularity conditions for arbitrary Leavith path algebras, Algebr. Represent. Theory 13(3) (2010) 319-334.

R- V.P. Camillo, D. Khurana, A characterization of unit regular rings, Comm. Algebra 29 (2001) 2293-2295.

R- E. Akalan, L. Vaš, Classes of almost clean rings, Algebra Represent. Theory, 16(3) (2013) 843-857.

