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Background

Let R be an associative unital ring.
U(R) denotes the group of units of a ring R.
Reg(R) is the set of all regular elements of a ring R.
Idem(R) is the set of all idempotent elements of a ring R.

Definition
An element a in a ring R is called regular if there exists an element x ∈ R
such that a = axa.The ring R is called regular if every element in R is
regular.

Definition
An element a in a ring R is called unit-regular if there exists a unit
element u ∈ R such that a = aua. The ring R is called unit-regular if
every element in R is unit-regular.
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Background

Definition [Bass, 1964]
A ring R has stable range one (sr(R) = 1) if, for each a, b ∈ R with
Ra + Rb = R there exists x ∈ R such that a + xb ∈ U(R).

[Vasershtein, 1971]
Stable range one condition is left-right symmetric.

[Fuchs, 1971, Henriksen, 1973, Kaplansky, 1971]
Unit regular rings have stable range one.

Definition [Khurana-Lam, 2005]
An element a ∈ R is said to have stable range one (sr(a) = 1) if, for any
b ∈ R with Ra + Rb = R there exists x ∈ R such that a + xb ∈ U(R).
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Background

Definition
A right R-module M is said to be internally cancellable (IC, for short) if
M = M1 ⊕M2 = N1 ⊕ N2 (in the category of R-modules) and M1

∼= N1

together imply that M2
∼= N2.

If RR is internally cancellable then R is
said to be a (right) IC ring.

Theorem [Ehrlich, 1976]
A right R-module M is IC if and only if every regular element in the
endomorphism ring EndR(M) of M is unit-regular.

The IC-property of rings is right-left symmetric.
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Background

Examples of IC rings

(1) Any unit-regular ring is IC.

(2) Any Abelian ring is IC.

(3) Any right artinian ring is IC.

Theorem
The following statements are equivalent for a ring R.

(1) R is an IC ring;

(2) Given idempotents e, f ∈ R, if eR ∼= fR, then (1− e)R ∼= (1− f )R;

(3) Given idempotents e, f ∈ R, if eR ∼= fR, then ueu−1 = f for some
u ∈ U(R);

(4) The left analogues of (2) and (3).
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Background

Consider the following statement:

(♦) : Ra + Rb = R implies that a + xb ∈ U(R) for some x ∈ R,

where the elements a, b ∈ R are to be quantified.

Lemma [Song-Chu-Zhu, 2003, Khurana-Lam, 2005]
The following are equivalent for a ring R.

(1) R is IC;

(2) For each a ∈ Reg(R) and b ∈ R, (♦) holds;

(3) For each a, b ∈ Reg(R), (♦) holds;

(4) For each a ∈ Reg(R) and b ∈ Idem(R), (♦) holds;

(5) For each a ∈ R and b ∈ Idem(R), (♦) holds;

(6) For each a ∈ R and b ∈ Reg(R), (♦) holds.
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R is unit-regular =⇒ sr(R) = 1 =⇒ rsr(R) = 1 ⇐⇒ R is IC



Unit Regular Elements and Internal Cancellation

Consider the following condition:

(∗): Ra + Rb = R implies that a + xb ∈ U(R) and aR ∩ xR = 0 for
some x ∈ R,

where the elements a, b ∈ R are to be quantified.

We deal with the nine combinations for the quantifiers “for all”, “for all
regular elements” and “for all idempotents elements” for each a, b and
we obtain new characterizations of unit regular rings and IC rings by
these combinations.

It is observed that (∗) and (♦) have different behavior.
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Theorem [Khurana-Lam, 2005]
If a is a unit regular element in a ring R, then sr(a) = 1

Theorem 1.1
For any element a in a ring R, the following are equivalent:

(1) a is unit regular;

(2) Whenever Ra + Rb = R, there exists x ∈ R such that a + xb ∈ U(R)
and aR ∩ xR = 0.
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Corollary 1.2
The following are equivalent for a ring R:

(1) R is unit regular;

(2) Whenever Ra + Rb = R, there exists e ∈ Idem(R) such that
a + eb ∈ U(R) and aR ∩ eR = 0;

(3) Whenever Ra + Rb = R, there exists x ∈ R such that a + xb ∈ U(R)
and aR ∩ xR = 0;

(4) For each a ∈ R and b ∈ Reg(R), if Ra + Rb = R, then there exists
x ∈ R such that a + xb ∈ U(R) and aR ∩ xR = 0;

(5) For each a ∈ R and b ∈ Idem(R), if Ra + Rb = R, then there exists
x ∈ R such that a + xb ∈ U(R) and aR ∩ xR = 0.
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For any idempotents e, f in a ring R, if Re + Rf = R, then there exists a
unit regular element x ∈ Rf such that e + xf ∈ U(R) and eR ∩ xR = 0.
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In other words, Theorem 1.4 says that (∗) always holds for each
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(1) (∗) holds for each a ∈ Idem(R) and b ∈ R;

(2) (∗) holds for each a ∈ Idem(R) and b ∈ Reg(R).



Unit Regular Elements and Internal Cancellation

I Now we consider the elements a and b to be idempotent in (∗) and
see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if Re + Rf = R, then there exists a
unit regular element x ∈ Rf such that e + xf ∈ U(R) and eR ∩ xR = 0.

Remark 1.5
In other words, Theorem 1.4 says that (∗) always holds for each
a ∈ Idem(R) and b ∈ Idem(R). This condition is also equivalent the
following conditions.

(1) (∗) holds for each a ∈ Idem(R) and b ∈ R;

(2) (∗) holds for each a ∈ Idem(R) and b ∈ Reg(R).



Unit Regular Elements and Internal Cancellation

I Now we consider the elements a and b to be idempotent in (∗) and
see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if Re + Rf = R, then there exists a
unit regular element x ∈ Rf such that e + xf ∈ U(R) and eR ∩ xR = 0.

Remark 1.5
In other words, Theorem 1.4 says that (∗) always holds for each
a ∈ Idem(R) and b ∈ Idem(R). This condition is also equivalent the
following conditions.

(1) (∗) holds for each a ∈ Idem(R) and b ∈ R;

(2) (∗) holds for each a ∈ Idem(R) and b ∈ Reg(R).



Unit Regular Elements and Internal Cancellation

I Now we consider the elements a and b to be idempotent in (∗) and
see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if Re + Rf = R, then there exists a
unit regular element x ∈ Rf such that e + xf ∈ U(R) and eR ∩ xR = 0.

Remark 1.5
In other words, Theorem 1.4 says that (∗) always holds for each
a ∈ Idem(R) and b ∈ Idem(R). This condition is also equivalent the
following conditions.

(1) (∗) holds for each a ∈ Idem(R) and b ∈ R;

(2) (∗) holds for each a ∈ Idem(R) and b ∈ Reg(R).



Unit Regular Elements and Internal Cancellation

I Now we consider the elements a and b to be idempotent in (∗) and
see that this situation always holds.

Theorem 1.4
For any idempotents e, f in a ring R, if Re + Rf = R, then there exists a
unit regular element x ∈ Rf such that e + xf ∈ U(R) and eR ∩ xR = 0.

Remark 1.5
In other words, Theorem 1.4 says that (∗) always holds for each
a ∈ Idem(R) and b ∈ Idem(R). This condition is also equivalent the
following conditions.

(1) (∗) holds for each a ∈ Idem(R) and b ∈ R;

(2) (∗) holds for each a ∈ Idem(R) and b ∈ Reg(R).



Internal Cancellation with SSP
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An element a ∈ R is said to have idempotent stable range one if, for any
b ∈ R with Ra + Rb = R there exists e ∈ Idem(R) such that
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Definition [Garg, Grover and Khurana, 2014]
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the sum of two direct summands of R is again a direct summand.
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Theorem 2.1
If R is an IC ring with SSP, then R is perspective.

In Theorem 2.1, SSP is not superfluous.

Example
Let R = M2(Z).

I R is IC because R ∼= EndZ(Z⊕ Z) and Z⊕ Z is an IC Z-module.

I But the element
(
12 5
0 0

)
is unit regular but not clean. [Khurana and

Lam, 2004]

I Hence R is not perspective by [Garg, Grover and Khurana, 2014]

I On the other hand, Z⊕ Z has not SSP as a Z-module, hence R has
not SSP by [Goodearl, 1991]
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Let R be a ring with SSP. Then the following are equivalent.

(1) R is perspective;

(2) Every regular element of R has idempotent stable range one.
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Definition [Abrams-Rangaswamy, 2010]
An element a in R is called special clean if there exists a decomposition
a = e + u such that aR ∩ eR = 0 where e ∈ Idem(R), u ∈ U(R). The
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(1) R is IC;

(2) For every a ∈ Reg(R), there exists u ∈ U(R) such that au is special
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I This gives the following fact for a ring R:

Every regular element is special clean =⇒ IC

Lemma 3.2
Any left non-zero divisor regular element over an abelian ring is a unit.
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Theorem 3.3
Let R be an abelian ring. Then for every a ∈ Reg(R), there exists a
unique decomposition a = e + u such that aR ∩ eR = 0 where
e ∈ Idem(R), u ∈ U(R).

Corollary 3.4 [Akalan-Vaš, 2013]
If R is abelian, then R is unit regular if and only if for every a ∈ R, there
exists a unique decomposition a = e + u such that aR ∩ eR = 0 where
e ∈ Idem(R), u ∈ U(R).
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