

Space-Time Codes from Quotients of Division Algebras

Frédérique Oggier joint work with B. A. Sethuraman and J. Ducoat

Division of Mathematical Sciences Nanyang Technological University, Singapore

NCRA IV, Lens

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Space-Time Coding: Model

$$\mathbf{Y} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \underbrace{\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}}_{space-time \ codeword \ \mathbf{X}} + \mathbf{W}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙

Space-Time Coding: Code Design

• We need a family ${\mathcal C}$ of complex matrices of $n\times n$ matrices such that

 $\det(\boldsymbol{X}-\boldsymbol{X}')\neq 0, \ \boldsymbol{X}\neq \boldsymbol{X}'\in \mathcal{C}.$

Space-Time Coding: Code Design

• We need a family ${\mathcal C}$ of complex matrices of $n\times n$ matrices such that

$$\det(\mathbf{X} - \mathbf{X}') \neq 0, \ \mathbf{X} \neq \mathbf{X}' \in \mathcal{C}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• *Central simple division algebras* have been used to design space-time codes, in particular cyclic division algebras and crossed products, over number fields.

Cyclic Division Algebras and Natural Order

- Let K/F be a number field extension of degree n with cyclic Galois group (σ), and respective rings of integers O_K and O_F.
- Consider the cyclic F-algebra A defined by

$$K \oplus Ke \oplus \cdots Ke^{n-1}$$

where $e^n = u \in F$, and $ek = \sigma(k)e$ for $k \in K$.

- We assume that uⁱ, i = 0,..., n − 1, are not norms in K/F so that the algebra is division, and that u ∈ O_F.
- Then

$$\Lambda = \mathcal{O}_{\mathcal{K}} \oplus \mathcal{O}_{\mathcal{K}} e \oplus \cdots \oplus \mathcal{O}_{\mathcal{K}} e^{n-1}$$

is an \mathcal{O}_F -order of A, which is typically not maximal.

Quotients of Cyclic Division Algebras

The questions are:

• Determine the structure of Λ/\mathcal{J} when $\Lambda = \bigoplus_{i=0}^{n-1} \mathcal{O}_{\mathcal{K}} e^i$ and \mathcal{J} is a two-sided ideal of Λ .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- Construct codes over Λ/\mathcal{J} and relate them to the original space-time code.

The Structure of Λ/\mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ . Then $\mathcal{J} \cap \mathcal{O}_F \neq 0$.
- The intersection $\mathcal{I} = \mathcal{J} \cap \mathcal{O}_F$ is a nonzero ideal of \mathcal{O}_F .
- An ideal $\mathcal{I} \neq 0$ of \mathcal{O}_F lies in the center of Λ , and generates $\mathcal{I}\Lambda$.
- We have $\mathcal{J} \supseteq \mathcal{I}$ if and only if $\mathcal{J} \supseteq \mathcal{I}\Lambda$. There is then a one-to-one correspondence between ideals of Λ that contain $\mathcal{I}\Lambda$ and ideals of the quotient $\Lambda/\mathcal{I}\Lambda$ (the ideal $\mathcal{J} \supseteq \mathcal{I}\Lambda$ of Λ corresponds to the ideal $\mathcal{J}/\mathcal{I}\Lambda$ of $\Lambda/\mathcal{I}\Lambda$).
- To determine all quotient rings Λ/\mathcal{J} , it is enough to determine the ideal structure of $\Lambda/\mathcal{I}\Lambda$ for \mathcal{I} a nonzero ideal of \mathcal{O}_F .

[O.-Sethuraman, Quotients of Orders in Cyclic Algebras and Space-Time Codes]

The Structure of $\Lambda/\mathcal{I}\Lambda$

We have

$$\Lambda/\mathcal{I}\Lambda \cong \oplus_{i=0}^{n-1}(\mathcal{O}_K/\mathcal{I}\mathcal{O}_K)e^i.$$

Lemma.

$$\Lambda/\mathcal{I}\Lambda\cong\mathcal{R}_1\times\cdots\times\mathcal{R}_t$$

where \mathcal{R}_i is the ring $\bigoplus_{j=0}^{n-1} (\mathcal{O}_K / \mathfrak{p}_i^{s_i} \mathcal{O}_K) e^j$ is subject to $e(k + \mathfrak{p}_i^{s_i} \mathcal{O}_K) = (\sigma(k) + \mathfrak{p}_i^{s_i} \mathcal{O}_K) e$ and $e^n = u + \mathfrak{p}_i^{s_i}$.

- Characterization for the inertial case $(\mathcal{I} = \mathfrak{p} \text{ and } \mathcal{I} = q^s, s > 1, g = e = 1, f = n)$ and the split case $(\mathcal{I} = \mathfrak{p} \text{ and } \mathcal{I} = q^s, s > 1, g > 1, e = 1, f = n/g)$, for $u \in \mathfrak{p}$ and $u \notin \mathfrak{p}$.
- For example, when $\mathcal{I} = \mathfrak{p}$ and $u \notin \mathfrak{p}$, $\Lambda/\mathcal{I}\Lambda \cong Mat_n(\mathcal{O}_F/\mathfrak{p})$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Quotients of Cyclic Division Algebras

The questions are:

- Determine the structure of Λ/J when Λ = ⊕ⁿ⁻¹_{i=0} O_Keⁱ and J is a two-sided ideal of Λ.
 Characterization partially answered (the ramified case is still open).
- Construct codes over Λ/\mathcal{J} and relate them to the original space-time code.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Skew-polynomial Rings

- Given a ring S with a group ⟨σ⟩ acting on it, the skew-polynomial ring S[x; σ] is the set of polynomials s₀ + s₁x + ... + s_nxⁿ, s_i ∈ S for i = 0,..., n, with xs = σ(s)x for all s ∈ S.
- Lemma. There is an 𝔽_{pf}-algebra isomorphism between Λ/pΛ and the quotient of (𝒪_K/p𝒪_K)[x; σ] by the two-sided ideal generated by xⁿ − u.

Construction A

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- Let ρ : Z^N → F^N₂ be the reduction modulo 2 componentwise.
- Let C ⊂ 𝔽^N₂ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

Construction A

- Let ρ : Z^N → F^N₂ be the reduction modulo 2 componentwise.
- Let C ⊂ 𝔽^N₂ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

- Let ζ_p be a primitive pth root of unity, p a prime.
- Let $\rho : \mathbb{Z}[\zeta_p]^N \mapsto \mathbb{F}_p^N$ be the reduction componentwise modulo the prime ideal $\mathfrak{p} = (1 \zeta_p)$.
- Then ρ⁻¹(C) is a lattice, when C is an (N, k) linear code over 𝔽_p.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• In particular, *p* = 2 yields the binary Construction A.

Construction A

- Let ρ : Z^N → F^N₂ be the reduction modulo 2 componentwise.
- Let C ⊂ 𝔽^N₂ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

- Let ζ_p be a primitive pth root of unity, p a prime.
- Let ρ : Z[ζ_p]^N → F^N_p be the reduction componentwise modulo the prime ideal p = (1 − ζ_p).
- Then ρ⁻¹(C) is a lattice, when C is an (N, k) linear code over 𝔽_p.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

• In particular, *p* = 2 yields the binary Construction A.

What about a Construction A from division algebras?

Ingredients

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ingredients

- $\Lambda \supset \mathfrak{p}\Lambda$ Κ $\mathcal{O}_K \supset \mathfrak{p}\mathcal{O}_K$ $\langle \sigma \rangle$ $\mathcal{O}_F \supset \mathfrak{p}$ $\mathbb{Z} \supset p$
- Let K/F be a cyclic number field extension of degree n, and rings of integers O_K and O_F. Consider the cyclic division algebra

$$\mathcal{A} = \mathcal{K} \oplus \mathcal{K} e \oplus \cdots \mathcal{K} e^{n-1}$$

where $e^n = u \in \mathcal{O}_F$, and $ek = \sigma(k)e$ for $k \in K$.

Let Λ be its natural order

$$\Lambda = \mathcal{O}_{\mathcal{K}} \oplus \mathcal{O}_{\mathcal{K}} e \oplus \cdots \oplus \mathcal{O}_{\mathcal{K}} e^{n-1}.$$

Let p be a prime ideal of *O_F* so that pΛ is a two-sided ideal of Λ.

Quotients

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\Lambda \supset \mathfrak{p}\Lambda \qquad \Lambda/\mathfrak{p}\Lambda$ $\mathfrak{p}\mathcal{O}_{K}$ $\mathcal{O}_K \supset \mathfrak{p}$ $\langle \sigma \rangle$ $\mathcal{O}_F \qquad \mathcal{O}_F \supset \mathfrak{p}$ $\mathbb{Z} \supset p \qquad \mathbb{Z}/p\mathbb{Z}$

Quotients

 $\Lambda \supset \mathfrak{p}\Lambda \qquad \Lambda/\mathfrak{p}\Lambda$ There is an 𝑘_p-algebra isomorphism $\begin{array}{c|c} \mathcal{O}_{K} \supset \mathfrak{p} & \mathfrak{p}\mathcal{O}_{K} \\ \hline & \\ \langle \sigma \rangle \\ \\ \mathcal{O}_{F} & \mathcal{O}_{F} \supset \mathfrak{p} \end{array}$ $\mathcal{O}_K \supset \mathfrak{p}$ $\psi:\Lambda/\mathfrak{p}\Lambda\cong(\mathcal{O}_{\mathcal{K}}/\mathfrak{p}\mathcal{O}_{\mathcal{K}})[x;\sigma]/(x^n-u).$ • If p is inert, $\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K$ is a finite field $\mathbb{Z} \supset p \qquad \mathbb{Z}/p\mathbb{Z}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Codes over Finite Fields

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

Codes over Finite Fields

$\Lambda/\mathfrak{p}\Lambda$	\mathbb{F}_{a}^{n}	 Let I be a left ideal of Λ, I ∩ O_F ⊃ p. Then I/pΛ is an ideal of Λ/pΛ and ψ(I/pΛ) a left
7.1	Ч	ideal of $\mathbb{F}_q[x;\sigma]/(x^n-u)$.
$\mathcal{O}_{\mathcal{K}}/\mathfrak{p}$	$\mathbb{F}^{N}_{p^{f}}$	• Let $f \in \mathbb{F}_q[x; \sigma]$ be a polynomial of degree <i>n</i> . If (f) is a two-sided ideal of $\mathbb{F}_q[x; \sigma]$, then a σ -code consists of codewords $a = (a_0, a_1, \dots, a_{n-1})$, where $a(x)$ are left
$\mathbb{Z}/p\mathbb{Z}$	\mathbb{F}_{p}^{N}	 multiples of a right divisor g of f. Using ψ : Λ/pΛ ≅ F_q[x; σ]/(xⁿ - u), for every left ideal I of Λ, we get a σ-code C = ψ(I/pΛ) over F_q.

D. Boucher and F. Ulmer, Coding with skew polynomial rings

Then a left

Codes over Finite Rings

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $\Lambda/\mathfrak{p}\Lambda (\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)^n$

 $\mathcal{O}_{\mathcal{K}}/\mathfrak{p} \ \left(\mathcal{O}_{\mathcal{K}}/\mathfrak{p}\mathcal{O}_{\mathcal{K}}\right)^{\mathcal{N}}$ $\Big|$ $\mathbb{Z}/p\mathbb{Z} \qquad \mathbb{F}_{p}^{\mathcal{N}}$

Codes over Finite Rings

$$\begin{array}{l} \Lambda/\mathfrak{p}\Lambda \quad (\mathcal{O}_{K}/\mathfrak{p}\mathcal{O}_{K})^{n} \bullet \quad \text{Let } g(x) \text{ be a right divisor of } x^{n} - u. \text{ The ideal} \\ (g(x))/(x^{n} - u) \text{ is an } \mathcal{O}_{K}/\mathfrak{p}\mathcal{O}_{K}\text{-module,} \\ \text{isomorphic to a submodule of } (\mathcal{O}_{K}/\mathfrak{p}\mathcal{O}_{K})^{n}. \text{ It} \\ \mathcal{O}_{K}/\mathfrak{p} \quad (\mathcal{O}_{K}/\mathfrak{p}\mathcal{O}_{K})^{N} \quad \left| \begin{array}{c} \text{forms a } \sigma\text{-constacyclic code} \text{ of length } n \text{ and} \\ \text{dimension } k = n - degg(x), \text{ consisting of} \\ \text{codewords } a = (a_{0}, a_{1}, \ldots, a_{n-1}), \text{ where } a(x) \text{ are} \\ \text{left multiples of } g(x). \\ \mathbb{Z}/p\mathbb{Z} \quad \mathbb{F}_{p}^{N} \quad \bullet \text{ A parity check polynomial is computed.} \end{array}$$

• A dual code is defined.

[Ducoat-O., On Skew Polynomial Codes and Lattices from Quotients of Cyclic Division Algebras]

Lattices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\Lambda/\mathfrak{p}\Lambda(\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)^n\supset C$

 $\begin{array}{ccc} \mathcal{O}_{\mathcal{K}}/\mathfrak{p} & \mathbb{F}_{p}^{\mathcal{N}} \supset \mathcal{C} \\ \\ \\ \\ \mathbb{Z}/p\mathbb{Z} & \mathbb{F}_{p}^{\mathcal{N}} \supset \mathcal{C} \end{array} \end{array}$

Lattices

 $\Lambda/\mathfrak{p}\Lambda(\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)^n\supset C$

 $\begin{array}{ccc} \mathcal{O}_{\mathcal{K}}/\mathfrak{p} & \mathbb{F}_p^{\mathcal{N}} \supset \mathcal{C} \\ \\ \\ \\ \mathbb{Z}/p\mathbb{Z} & \mathbb{F}_p^{\mathcal{N}} \supset \mathcal{C} \end{array}$

Set the map :

$$\rho: \Lambda \to \psi(\Lambda/\mathfrak{p}\Lambda) = (\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)[x;\sigma]/(x^n-u),$$

compositum of the canonical projection $\Lambda \to \Lambda/\mathfrak{p}\Lambda$ with ψ .

Set

$$L = \rho^{-1}(C) = \mathcal{I}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

 Then L is a lattice, that is a Z-module of rank n²[F : ℚ].

Example (I)

- Let $K = \mathbb{Q}(i)$ and $F = \mathbb{Q}$. Then $\mathcal{O}_F = \mathbb{Z}$ and $\mathcal{O}_K = \mathbb{Z}[i]$.
- Set p = 3, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i]/3\mathbb{Z}[i] \simeq \mathbb{F}_9$.
- Let \mathfrak{Q} be the quaternion division algebra

$$\mathfrak{Q} = \mathbb{Q}(i) \oplus \mathbb{Q}(i)e, \ e^2 = -1.$$

- Set $\Lambda = \mathbb{Z}[i] \oplus \mathbb{Z}[i]e$ and $\mathcal{I} = (1 + i + e)\Lambda$.
- Let $\alpha \in \mathbb{F}_9$ over \mathbb{F}_3 satisfy $\alpha^2 + 1 = 0$.
- We have

$$\psi((1+i+e) \mod 3) = 1 + \alpha + x,$$

which is a right divisor of $x^2 + 1$ in $\mathbb{F}_9[x; \sigma]$. Therefore, the left ideal $(x + 1 + \alpha)\mathbb{F}_9[x; \sigma]/(x^2 + 1)$ is a central σ -code.

• Taking the pre-image by ψ , it corresponds to the left-ideal $\mathcal{I}/3\Lambda$, with $\mathcal{I} = \Lambda(1 + i + e)$.

Example (II)

• For q = a + be in $\mathbb{Z}[i] \oplus \mathbb{Z}[i]e \subset \mathfrak{Q}$, $a, b \in \mathbb{Z}[i]$

$$M(q) = egin{bmatrix} a & -ar{b} \ b & ar{a} \end{bmatrix}$$

where $\overline{\cdot}$ is the non-trivial Galois automorphism of $\mathbb{Q}(i)/\mathbb{Q}$.

- M(q) used as codeword for space-time coding.
- Let t = (a + be)(1 + i + e) be an element of $\mathcal{I} = \Lambda(1 + i + e)$. Then

$$M(t) = \begin{bmatrix} a(1+i) - b & -(\overline{a} + \overline{b}(1+i)) \\ a + b(1-i) & \overline{a}(1-i) - \overline{b} \end{bmatrix}$$

Then *I* = ρ⁻¹(*C*) is a real lattice of rank 4 embedded in ℝ⁸.

Coset Encoding

- Let v = (v₁,..., v_n) be an information vector to be mapped to a lattice point in L.
- The lattice L = ρ⁻¹(C) = IΛ is a union of cosets of pΛ, each codeword in C is a coset representative.
- Coset encoding: v₁,..., v_k are encoded using the code C, and the rest of the information coefficients are mapped to a point in the lattice pΛ.
- Coset encoding is necessary for wiretap codes: information symbols are mapped to a codeword in C, while random symbols are picked uniformly at random in the lattice pΛ to confuse the eavesdropper.
- The lattice L = ρ⁻¹(C) = I thus enables coset encoding for wiretap space-time codes.

Thank You

- Cyclic division algebras are useful for space-time coding. Some applications require to understand quotients of cyclic division algebras.
- Characterization of Λ/\mathcal{J} (apart for the ramified case).
- The view point of skew-polynomial rings.
- Construction A of lattices from codes over skew-polynomial rings.
- Further work:
 - 1. Study the lattice properties inherited from codes.
 - 2. Study the space-time codes obtained.
 - 3. Study constacyclic codes over $(\mathcal{O}_{\mathcal{K}}/\mathfrak{p}\mathcal{O}_{\mathcal{K}})[x;\sigma]/(f(x))$, and duality with respect to a Hermitian inner product.