Space-Time Codes
 from Quotients of Division Algebras

Frédérique Oggier
joint work with B. A. Sethuraman and J. Ducoat

Division of Mathematical Sciences
Nanyang Technological University, Singapore
NCRA IV, Lens

Space-Time Coding: Model

$$
\mathbf{Y}=\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right) \underbrace{\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)}_{\text {space-time }}+\mathbf{W}
$$

Space-Time Coding: Code Design

- We need a family \mathcal{C} of complex matrices of $n \times n$ matrices such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

Space-Time Coding: Code Design

- We need a family \mathcal{C} of complex matrices of $n \times n$ matrices such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

- Central simple division algebras have been used to design space-time codes, in particular cyclic division algebras and crossed products, over number fields.

Cyclic Division Algebras and Natural Order

- Let K / F be a number field extension of degree n with cyclic Galois group $\langle\sigma\rangle$, and respective rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}.
- Consider the cyclic F-algebra A defined by

$$
K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in F$, and $e k=\sigma(k) e$ for $k \in K$.

- We assume that $u^{i}, i=0, \ldots, n-1$, are not norms in K / F so that the algebra is division, and that $u \in \mathcal{O}_{F}$.
- Then

$$
\Lambda=\mathcal{O}_{K} \oplus \mathcal{O}_{K} e \oplus \cdots \oplus \mathcal{O}_{K} e^{n-1}
$$

is an \mathcal{O}_{F}-order of A, which is typically not maximal.

Quotients of Cyclic Division Algebras

The questions are:

- Determine the structure of Λ / \mathcal{J} when $\Lambda=\oplus_{i=0}^{n-1} \mathcal{O}_{K} e^{i}$ and \mathcal{J} is a two-sided ideal of Λ.
- Construct codes over Λ / \mathcal{J} and relate them to the original space-time code.

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.
- The intersection $\mathcal{I}=\mathcal{J} \cap \mathcal{O}_{F}$ is a nonzero ideal of \mathcal{O}_{F}.
- An ideal $\mathcal{I} \neq 0$ of \mathcal{O}_{F} lies in the center of Λ, and generates In.
- We have $\mathcal{J} \supseteq \mathcal{I}$ if and only if $\mathcal{J} \supseteq \mathcal{I} \wedge$. There is then a one-to-one correspondence between ideals of Λ that contain $\mathcal{I} \Lambda$ and ideals of the quotient $\Lambda / \mathcal{I} \Lambda$ (the ideal $\mathcal{J} \supseteq \mathcal{I} \Lambda$ of Λ corresponds to the ideal $\mathcal{J} / \mathcal{I} \Lambda$ of $\Lambda / \mathcal{I} \Lambda$).
- To determine all quotient rings Λ / \mathcal{J}, it is enough to determine the ideal structure of $\Lambda / \mathcal{I} \Lambda$ for \mathcal{I} a nonzero ideal of \mathcal{O}_{F}.
[O.-Sethuraman, Quotients of Orders in Cyclic Algebras and Space-Time Codes]

The Structure of $\Lambda / \mathcal{I} \Lambda$

- We have

$$
\Lambda / \mathcal{I} \Lambda \cong \oplus_{i=0}^{n-1}\left(\mathcal{O}_{K} / \mathcal{I} \mathcal{O}_{K}\right) e^{i}
$$

- Lemma.

$$
\Lambda / \mathcal{I} \Lambda \cong \mathcal{R}_{1} \times \cdots \times \mathcal{R}_{t}
$$

where \mathcal{R}_{i} is the ring $\oplus_{j=0}^{n-1}\left(\mathcal{O}_{K} / \mathfrak{p}_{i}^{\boldsymbol{s}_{i}} \mathcal{O}_{K}\right) e^{j}$ is subject to $e\left(k+\mathfrak{p}_{i}^{s_{i}} \mathcal{O}_{K}\right)=\left(\sigma(k)+\mathfrak{p}_{i}^{s_{i}} \mathcal{O}_{K}\right) e$ and $e^{n}=u+\mathfrak{p}_{i}^{s_{i}}$.

- Characterization for the inertial case ($\mathcal{I}=\mathfrak{p}$ and $\mathcal{I}=q^{s}, s>1, g=e=1, f=n$) and the split case ($\mathcal{I}=\mathfrak{p}$ and $\left.\mathcal{I}=q^{s}, s>1, g>1, e=1, f=n / g\right)$, for $u \in \mathfrak{p}$ and $u \notin \mathfrak{p}$.
- For example, when $\mathcal{I}=\mathfrak{p}$ and $u \notin \mathfrak{p}, \Lambda / \mathcal{I} \Lambda \cong \operatorname{Mat}_{n}\left(\mathcal{O}_{F} / \mathfrak{p}\right)$.

Quotients of Cyclic Division Algebras

The questions are:

- Determine the structure of Λ / \mathcal{J} when $\Lambda=\oplus_{i=0}^{n-1} \mathcal{O}_{K} e^{i}$ and \mathcal{J} is a two-sided ideal of Λ.
Characterization partially answered (the ramified case is still open).
- Construct codes over Λ / \mathcal{J} and relate them to the original space-time code.

Skew-polynomial Rings

- Given a ring S with a group $\langle\sigma\rangle$ acting on it, the skew-polynomial ring $S[x ; \sigma]$ is the set of polynomials $s_{0}+s_{1} x+\ldots+s_{n} x^{n}, s_{i} \in S$ for $i=0, \ldots, n$, with $x s=\sigma(s) x$ for all $s \in S$.
- Lemma. There is an $\mathbb{F}_{p^{f} \text {-algebra isomorphism between } \Lambda / \mathfrak{p} \Lambda} \Lambda$ and the quotient of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma]$ by the two-sided ideal generated by $x^{n}-u$.

Construction A

- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

Construction A

- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

Construction A

- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

What about a Construction A from division algebras?

Ingredients

$$
\begin{array}{rc}
\left.\right|_{K} ^{A} & \wedge \supset \mathfrak{p} \wedge \\
\langle\sigma\rangle \mid & \\
F & \mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K} \\
\mid & \\
\mathbb{O} & \\
\mathbb{Q} & \mathbb{Z} \supset \mathfrak{p}
\end{array}
$$

Ingredients

- Let K / F be a cyclic number field extension of degree n, and rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}. Consider the cyclic division algebra

$$
\mathcal{A}=K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in \mathcal{O}_{F}$, and $e k=\sigma(k) e$ for $k \in K$.

- Let Λ be its natural order

$$
\Lambda=\mathcal{O}_{K} \oplus \mathcal{O}_{K} e \oplus \cdots \oplus \mathcal{O}_{K} e^{n-1}
$$

- Let \mathfrak{p} be a prime ideal of \mathcal{O}_{F} so that $\mathfrak{p} \wedge$ is a two-sided ideal of Λ.

Quotients

$$
\begin{array}{cc}
\wedge \supset \mathfrak{p} \wedge & \wedge / \mathfrak{p} \wedge \\
\mathcal{O}_{K} \supset \mathfrak{p} & \mathfrak{p} \mathcal{O}_{K} \\
\langle\sigma\rangle \mid & \\
\mathcal{O}_{F} & \mathcal{O}_{F} \supset \mathfrak{p} \\
& \\
\mathbb{Z} \supset p & \mathbb{Z} / p \mathbb{Z}
\end{array}
$$

Quotients

$\wedge \supset \mathfrak{p} \wedge \quad \wedge / \mathfrak{p} \wedge$

- There is an $\mathbb{F}_{p^{f} \text {-algebra }}$ isomorphism

$$
\mathcal{O}_{K} \supset \mathfrak{p} \quad \mathfrak{p} \mathcal{O}_{K}
$$

$$
\left.\langle\sigma\rangle\right|^{\left\langle\mathcal{O}_{F}\right.} \quad \mathcal{O}_{F} \supset \mathfrak{p}
$$

$$
\psi: \Lambda / \mathfrak{p} \Lambda \cong\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

- If \mathfrak{p} is inert, $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$ is a finite field

$$
\mathbb{Z} \supset p \quad \mathbb{Z} / p \mathbb{Z}
$$

Codes over Finite Fields

$$
\begin{array}{ll}
\Lambda / \mathfrak{p} \Lambda & \mathbb{F}_{q}^{n} \\
\mathcal{O}_{K} / \mathfrak{p} & \mathbb{F}_{p^{f}}^{N} \\
\mathbb{Z} / p \mathbb{Z} & \mathbb{F}_{p}^{N}
\end{array}
$$

Codes over Finite Fields

- Let \mathcal{I} be a left ideal of $\Lambda, \mathcal{I} \cap \mathcal{O}_{F} \supset \mathfrak{p}$. Then $\mathcal{I} / \mathfrak{p} \Lambda$ is an ideal of $\Lambda / \mathfrak{p} \Lambda$ and $\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ a left ideal of $\mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$.
- Let $f \in \mathbb{F}_{q}[x ; \sigma]$ be a polynomial of degree n. If (f) is a two-sided ideal of $\mathbb{F}_{q}[x ; \sigma]$, then a σ-code consists of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of a right divisor g of f.
- Using $\psi: \Lambda / \mathfrak{p} \Lambda \cong \mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$, for every left ideal \mathcal{I} of Λ, we get a σ-code $C=\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ over \mathbb{F}_{q}.
[D. Boucher and F. Ulmer, Coding with skew polynomial rings]

Codes over Finite Rings

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$

$\mathcal{O}_{K} / \mathfrak{p}\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{N}$

$$
\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}
$$

Codes over Finite Rings

$\Lambda / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \bullet$ Let $g(x)$ be a right divisor of $x^{n}-u$. The ideal $(g(x)) /\left(x^{n}-u\right)$ is an $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$-module, isomorphic to a submodule of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$. It forms a σ-constacyclic code of length n and dimension $k=n-\operatorname{degg}(x)$, consisting of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of $g(x)$.
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}$

- A parity check polynomial is computed.
- A dual code is defined.
[Ducoat-O., On Skew Polynomial Codes and Lattices from Quotients of Cyclic Division Algebras]

Lattices

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset C$
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset \mathcal{C}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N} \supset C$

Lattices

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset \mathcal{C}$

- Set the map :

$$
\rho: \Lambda \rightarrow \psi(\Lambda / \mathfrak{p} \Lambda)=\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset C$ compositum of the canonical projection $\Lambda \rightarrow \Lambda / \mathfrak{p} \Lambda$ with ψ.

- Set

$$
L=\rho^{-1}(C)=\mathcal{I}
$$

- Then L is a lattice, that is a \mathbb{Z}-module of rank $n^{2}[F: \mathbb{Q}]$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

- Set $\Lambda=\mathbb{Z}[i] \oplus \mathbb{Z}[i] e$ and $\mathcal{I}=(1+i+e) \Lambda$.
- Let $\alpha \in \mathbb{F}_{9}$ over \mathbb{F}_{3} satisfy $\alpha^{2}+1=0$.
- We have

$$
\psi((1+i+e) \bmod 3)=1+\alpha+x
$$

which is a right divisor of $x^{2}+1$ in $\mathbb{F}_{9}[x ; \sigma]$. Therefore, the left ideal $(x+1+\alpha) \mathbb{F}_{9}[x ; \sigma] /\left(x^{2}+1\right)$ is a central σ-code.

- Taking the pre-image by ψ, it corresponds to the left-ideal $\mathcal{I} / 3 \Lambda$, with $\mathcal{I}=\Lambda(1+i+e)$.

Example (II)

- For $q=a+b e$ in $\mathbb{Z}[i] \oplus \mathbb{Z}[i] e \subset \mathfrak{Q}, a, b \in \mathbb{Z}[i]$

$$
M(q)=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]
$$

where ${ }^{-}$is the non-trivial Galois automorphism of $\mathbb{Q}(i) / \mathbb{Q}$.

- $M(q)$ used as codeword for space-time coding.
- Let $t=(a+b e)(1+i+e)$ be an element of $\mathcal{I}=\Lambda(1+i+e)$. Then

$$
M(t)=\left[\begin{array}{cc}
a(1+i)-b & -(\bar{a}+\bar{b}(1+i)) \\
a+b(1-i) & \bar{a}(1-i)-\bar{b}
\end{array}\right] .
$$

- Then $\mathcal{I}=\rho^{-1}(C)$ is a real lattice of rank 4 embedded in \mathbb{R}^{8}.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.
- The lattice $L=\rho^{-1}(C)=\mathcal{I} \Lambda$ is a union of cosets of $\mathfrak{p} \Lambda$, each codeword in C is a coset representative.
- Coset encoding: v_{1}, \ldots, v_{k} are encoded using the code C, and the rest of the information coefficients are mapped to a point in the lattice $\mathfrak{p} \wedge$.
- Coset encoding is necessary for wiretap codes: information symbols are mapped to a codeword in C, while random symbols are picked uniformly at random in the lattice $\mathfrak{p} \wedge$ to confuse the eavesdropper.
- The lattice $L=\rho^{-1}(C)=\mathcal{I}$ thus enables coset encoding for wiretap space-time codes.

Thank You

- Cyclic division algebras are useful for space-time coding. Some applications require to understand quotients of cyclic division algebras.
- Characterization of Λ / \mathcal{J} (apart for the ramified case).
- The view point of skew-polynomial rings.
- Construction A of lattices from codes over skew-polynomial rings.
- Further work:

1. Study the lattice properties inherited from codes.
2. Study the space-time codes obtained.
3. Study constacyclic codes over $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /(f(x))$, and duality with respect to a Hermitian inner product.
