Rings of Morita Contexts which are Maximal Orders

Pınar AYDOĞDU

Hacettepe University / TURKEY

(Joint work with E. Akalan, H. Marubayashi and B. Saraç)

NCRA IV
June 8-11, 2015
A Morita context is a set $M = (R, V, W, S)$ and two maps θ and ψ, where

- V is an R-S bimodule,
A Morita context is a set $M = (R, V, W, S)$ and two maps θ and ψ, where

- V is an R-S bimodule,
- W is an S-R bimodule.
A Morita context is a set \(M = (R, V, W, S) \) and two maps \(\theta \) and \(\psi \), where

- \(V \) is an \(R-S \) bimodule,
- \(W \) is an \(S-R \) bimodule.
- \(\theta : V \otimes_S W \to R \) is an \(R-R \) bilinear map,
Background

A Morita context is a set $M = (R, V, W, S)$ and two maps θ and ψ, where

- V is an R-S bimodule,
- W is an S-R bimodule.
- $\theta : V \otimes_S W \to R$ is an R-R bilinear map,
- $\psi : W \otimes_R V \to S$ is an S-S bilinear map.
Furthermore, the maps θ and ψ satisfy the associativity conditions that are required to make

$$T = \begin{pmatrix} R & V \\ W & S \end{pmatrix}$$

a ring.
Background

Furthermore, the maps θ and ψ satisfy the associativity conditions that are required to make

$$T = \begin{pmatrix} R & V \\ W & S \end{pmatrix}$$

a ring. T is called the ring of the Morita context.
Notation

For any $v \in V$ and $w \in W$,

$\theta(v \otimes w)$ is denoted by vw,

$\psi(w \otimes v)$ by wv.

$\text{Im}(\theta)$ by VW,

$\text{Im}(\psi)$ by WV.
For any $v \in V$ and $w \in W$,
- $\theta(v \otimes w)$ is denoted by vw,
- $\psi(w \otimes v)$ by wv.

Notation

For any \(v \in V \) and \(w \in W \),
- \(\theta(v \otimes w) \) is denoted by \(vw \),
- \(\psi(w \otimes v) \) by \(wv \).
- \(\text{Im}(\theta) \) by \(VW \),
- \(\text{Im}(\psi) \) by \(WV \).
Let R be a prime Goldie ring and $Q(R)$ be its simple Artinian quotient ring.

Definition: Let I be an R-R bisubmodule of $Q(R)$. I is called fractional R-ideal if it satisfies

1. I contains a regular element.
2. There exist regular elements $c_1, c_2 \in R$ such that $c_1 I \subseteq R$ and $I c_2 \subseteq R$.
Let R be a prime Goldie ring and $Q(R)$ be its simple Artinian quotient ring.

Definition: Let I be an R-R bisubmodule of $Q(R)$. I is called **fractional R-ideal** if it satisfies

1. I contains a regular element.

2. There exist regular elements $c_1, c_2 \in R$ such that $c_1 I \subseteq R$ and $Ic_2 \subseteq R$.
Let \(R \) be a prime Goldie ring and \(Q(R) \) be its simple Artinian quotient ring.

Definition: Let \(I \) be an \(R-R \) bisubmodule of \(Q(R) \). \(I \) is called fractional \(R \)-ideal if it satisfies

1. \(I \) contains a regular element.
2. There exist regular elements \(c_1, c_2 \in R \) such that \(c_1I \subseteq R \) and \(Ic_2 \subseteq R \).
A commutative ring R is a Dedekind domain $\iff F(R) = \{I|I \text{ is a fractional } R\text{-ideal}\}$ is a group under multiplication.
Let R be a right order in $Q(R)$.

Background
Let R be a right order in $Q(R)$. R is a maximal right order in $Q(R)$ if there exists a right order S in $Q(R)$ and a regular element $c \in R$ such that either $cS \subseteq R$ or $Sc \subseteq R$ implies that $S = R$.

\[\iff\]
Let I be a fractional R-ideal. Then
$O_l(I) = \{ q \in Q(R) | qI \subseteq I \}$ is a left order of I.
Let I be a fractional R-ideal. Then

$O_l(I) = \{ q \in Q(R) | qI \subseteq I \}$ is a left order of I.

$O_r(I) = \{ q \in Q(R) | lq \subseteq I \}$ is a right order of I.
Let I be a fractional R-ideal. Then

$O_l(I) = \{ q \in Q(R) | qI \subseteq I \}$ is a left order of I.

$O_r(I) = \{ q \in Q(R) | lq \subseteq I \}$ is a right order of I.

Fact: R is a maximal order $\iff O_l(I) = R = O_r(I)$ for every fractional R-ideal I.
Definition

Let I be a fractional R-ideal. $(R : I)_l = \{ q \in Q(R) | qI \subseteq R \}$ and $(R : I)_r = \{ q \in Q(R) | Iq \subseteq R \}$.

If I is reflexive, then I is called a v-ideal or reflexive ideal.
Definition

Let I be a fractional R-ideal. $(R : I)_l = \{ q \in Q(R) | qI \subseteq R \}$ and $(R : I)_r = \{ q \in Q(R) | Iq \subseteq R \}$.
$I_v = (R : (R : I)_l)_r$ and $vI = (R : (R : I)_r)_l$.
Definition

Let I be a fractional R-ideal. $(R : I)_l = \{ q \in Q(R) | qI \subseteq R \}$ and $(R : I)_r = \{ q \in Q(R) | Iq \subseteq R \}$.

$I_v = (R : (R : I)_l)_r$ and $vI = (R : (R : I)_r)_l$.

If $I_v = vI$, then I is called a v-ideal or reflexive ideal.
If R is a maximal order, then $D(R) = \{v\text{-ideals}\}$ is a group under the multiplication \circ, where $I \circ J : = (IJ)_v$.
Theorem [Marubayashi, Zhang and Yang, 1998]

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring \iff

1. \(R \) and \(S \) are prime Goldie rings,
2. \(vW = 0 \Rightarrow v = 0 \) and \(Vw = 0 \Rightarrow w = 0 \),
3. \(VsW = 0 \Rightarrow s = 0 \).
Theorem [Marubayashi, Zhang and Yang, 1998]

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring \iff

1. \(R \) and \(S \) are prime Goldie rings,

2. \(vW = 0 \Rightarrow v = 0 \) and \(Vw = 0 \Rightarrow w = 0 \),

3. \(VsW = 0 \Rightarrow s = 0 \).
Theorem [Marubayashi, Zhang and Yang, 1998]

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring \iff

1. \(R \) and \(S \) are prime Goldie rings,
2. \(vW = 0 \implies v = 0 \) and
Theorem [Marubayashi, Zhang and Yang, 1998]

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring \(\iff \)

1. \(R \) and \(S \) are prime Goldie rings,
2. \(vW = 0 \Rightarrow v = 0 \) and \(Vw = 0 \Rightarrow w = 0 \),
Theorem [Marubayashi, Zhang and Yang, 1998]

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring \iff

1. \(R \) and \(S \) are prime Goldie rings,
2. \(vW = 0 \Rightarrow v = 0 \) and \(Vw = 0 \Rightarrow w = 0 \),
3. \(VsW = 0 \Rightarrow s = 0 \).
From now on we assume that

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring.
From now on we assume that

\[T = \begin{pmatrix} R & V \\ W & S \end{pmatrix} \]

is a prime Goldie ring.

Then

\[Q(T) = \begin{pmatrix} Q(R) & Q(V) \\ Q(W) & Q(S) \end{pmatrix} \]

is the quotient ring of \(T \), where

\[Q(V) = VQ(S) = Q(R)V \text{ and } Q(W) = WQ(R) = Q(S)W. \]
Definition

Let V_1 be an R-S submodule of $Q(V)$. V_1 is called a fractional R-S module if and only if:

1. $V_1 Q(S) = Q(V) = Q(R) V_1$
2. There exist regular elements $c \in R$ and $d \in S$ such that $cV_1 \subseteq V$ and $V_1 d \subseteq V$.
Definition

Let V_1 be a fractional R-S-module. Then

$O_l(V_1) = \{ q \in Q(R) | qV_1 \subseteq V_1 \}$ and

$O_r(V_1) = \{ q \in Q(S) | V_1q \subseteq V_1 \}$
Definition

Let V_1 be a fractional R-S-module. Then

$O_l(V_1) = \{ q \in Q(R) | qV_1 \subseteq V_1 \}$ and

$O_r(V_1) = \{ q \in Q(S) | V_1q \subseteq V_1 \}$

R_VS is a maximal module in $Q(V)$ if $O_l(V_1) = R$ and $O_r(V_1) = S$

for every fractional R-S-module V_1 of $Q(V)$.
Definition

Let V_1 be a fractional R-S submodule of $Q(V)$.
$$(S : V_1)_l = \{ w' \in Q(W) | w' V_1 \subseteq S \}.$$
Definition

Let V_1 be a fractional R-S submodule of $Q(V)$.

$(S : V_1)_l = \{w' \in Q(W) | w'V_1 \subseteq S\}$.

$V_{1v} := (S : (S : V_1)_l)_r$ and $vV_1 := (R : (R : V_1)_r)_l$.
Let V_1 be a fractional R-S submodule of $Q(V)$.

$(S : V_1)_l = \{ w' \in Q(W) | w' V_1 \subseteq S \}$.

$V_{1v} := (S : (S : V_1)_l)_r$ and $v V_1 := (R : (R : V_1)_r)_l$.

If $V_{1v} = v V_1$, then V_1 is called a v-(R, S)-module.
Theorem [Marubayashi, Zhang and Yang, 1998]

TFAE:

1. T is a maximal order in $Q(T)$.
2. (i) R and S are maximal orders in $Q(R)$ and $Q(S)$, respectively;
 (ii) $(R : W)_l = V = (S : W)_r$ and $(R : V)_r = W = (S : V)_l$.

Theorem

TFAE:

1. T is a maximal order in $Q(T)$.

2. (i) V is an R-S maximal module in $Q(V)$ and W is an S-R maximal module in $Q(W)$;
 (ii) $(R : W)_l = V = (S : W)_r$ and $(R : V)_r = W = (S : V)_l$.

3. (i) V is an R-S maximal module in $Q(V)$ and W is an S-R maximal module in $Q(W)$;
 (ii) $(VW)_v = R =_v (VW)$ and $(WV)_v = S =_v (WV)$;
 (iii) $V_v = V =_v V$ and $W_v = W =_v W$.
Suppose that T is a maximal order in $Q(T)$. Then there exists a 1-1 correspondence between $D(V)$ and $D(R)$ given by:

$$V_1 \rightarrow (V_1 W)_v \text{ and } I \rightarrow (IV)_v$$
Theorem

Suppose that \(T \) is a maximal order in \(Q(T) \). Then there exists a group isomorphism between \(D(R) \) and \(D(T) \) given by

\[
I \leftrightarrow \begin{pmatrix} I & (IV)_v \\ (WI)_v & (WIV)_v \end{pmatrix}
\]
Applications

Asano order: A prime Goldie ring in which each non-zero ideal is invertible.
Applications

Asano order: A prime Goldie ring in which each non-zero ideal is invertible.
Lemma: Suppose that R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively.
Applications

Asano order: A prime Goldie ring in which each non-zero ideal is invertible.

Lemma: Suppose that R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively. Then

1. For each fractional (R, S)–module V' in $Q(V)$ we have $(V')^{-1}V' = S$ and $V'(V')^{-1} = R$.
Applications

Asano order: A prime Goldie ring in which each non-zero ideal is invertible.

Lemma: Suppose that R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively. Then

1. For each fractional (R, S)–module V' in $Q(V)$ we have $(V')^{-1}V' = S$ and $V'(V')^{-1} = R$.

2. For each fractional (S, R)–module in $Q(W)$ we have $(W')^{-1}W' = R$ and $W'(W')^{-1} = S$.
Definition

V is an (R, S)–Asano module in $Q(V)$ if for each integral (R, S)–module V', $(V')^{-1}V' = S$ and $V'(V')^{-1} = R$. Similarly we can define an (S, R)–Asano module W in $Q(W)$. It follows from Lemma that if R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively, then V is an (R, S)–Asano module in $Q(V)$ and W is an (S, R)–Asano module in $Q(W)$. Moreover, it is easy to see that if V is an (R, S)–Asano module in $Q(V)$, then it is an (R, S)–maximal module in $Q(V)$. An analogous result can be given for W.
Definition

V is an (R, S)–Asano module in $Q(V)$ if for each integral (R, S)–module V', $(V')^{-1}V' = S$ and $V'(V')^{-1} = R$. Similarly we can define an (S, R)–Asano module W in $Q(W)$. Moreover, it is easy to see that V is an (R, S)–Asano module in $Q(V)$, then it is an (R, S)–maximal module in $Q(V)$.
Definition

\(V \) is an \((R, S)\)–Asano module in \(Q(V) \) if for each integral \((R, S)\)–module \(V' \), \((V')^{-1}V' = S\) and \(V'(V')^{-1} = R\).

Similarly we can define an \((S, R)\)–Asano module \(W \) in \(Q(W) \).

- It follows from Lemma that if \(R \) and \(S \) are Asano orders in \(Q(R) \) and \(Q(S) \), respectively, then \(V \) is an \((R, S)\)–Asano module in \(Q(V) \) and \(W \) is an \((S, R)\)–Asano module in \(Q(W) \).
- Moreover, it is easy to see that \(V \) is an \((R, S)\)–Asano module in \(Q(V) \), then it is an \((R, S)\)–maximal module in \(Q(V) \).
- An analogous result can be given for \(W \).
Suppose that $VW = R$ and $WV = S$.
Suppose that $VW = R$ and $WV = S$. Then there is a one-to-one correspondence between the set of all fractional R–ideals and the set of all fractional (R, S)–modules in $Q(V)$,
Suppose that $VW = R$ and $WV = S$. Then there is a one-to-one correspondence between the set of all fractional R–ideals and the set of all fractional (R, S)–modules in $Q(V)$, which is given by:
Suppose that $VW = R$ and $WV = S$. Then there is a one-to-one correspondence between the set of all fractional R–ideals and the set of all fractional (R, S)–modules in $Q(V)$, which is given by:

$I \mapsto IV = V'$ and $V' \mapsto V'W$,

where I is a fractional R–ideal and V' is a fractional (R, S)–module in $Q(V)$.
Theorem

The following conditions are equivalent:

1. T is an Asano order in $Q(T)$.
Theorem

The following conditions are equivalent:

1. T is an Asano order in $Q(T)$.
2. (i) R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively, and
 (ii) $VW = R$ and $WV = S$.
The following conditions are equivalent:

1. T is an Asano order in $Q(T)$.
2. (i) R and S are Asano orders in $Q(R)$ and $Q(S)$, respectively, and
 (ii) $VW = R$ and $WV = S$.
3. (i) V is an (R, S)–Asano module in $Q(V)$ and W is an
 (S, R)–Asano module in $Q(W)$, and
 (ii) $VW = R$ and $WV = S$.
Dedekind order: A prime Goldie ring which is a maximal order and hereditary.
Dedekind order: A prime Goldie ring which is a maximal order and hereditary.

Definition: V is called an (R, S)–Dedekind module in $Q(V)$ if

- V is an (R, S)–maximal module in $Q(V)$, and
- every left R–submodule of V is projective and every right S–submodule of V is projective.
Dedekind order: A prime Goldie ring which is a maximal order and hereditary.

Definition: V is called an (R, S)–Dedekind module in $Q(V)$ if

- V is an (R, S)–maximal module in $Q(V)$, and
- every left R–submodule of V is projective and every right S–submodule of V is projective.

Similarly we can define an (S, R)–Dedekind module W in $Q(W)$.
Theorem

The following three conditions are equivalent:

1. T is a Dedekind order in $Q(T)$.

2. (i) R is a Dedekind order in $Q(R)$ and S is a Dedekind order in $Q(S)$, respectively, and (ii) $VW = R$ and $WV = S$.

3. (i) V is an (R, S)–Dedekind module in $Q(V)$ and W is an (S, R)–Dedekind module in $Q(W)$, and (ii) $VW = R$ and $WV = S$.
Theorem

The following three conditions are equivalent:

1. T is a Dedekind order in $Q(T)$.
2. (i) R is a Dedekind order in $Q(R)$ and S is a Dedekind order in $Q(S)$, respectively, and
 (ii) $VW = R$ and $WV = S$.

Theorem

The following three conditions are equivalent:

1. T is a Dedekind order in $Q(T)$.

2. (i) R is a Dedekind order in $Q(R)$ and S is a Dedekind order in $Q(S)$, respectively, and
 (ii) $VW = R$ and $WV = S$.

3. (i) V is an (R, S)–Dedekind module in $Q(V)$ and W is an (S, R)–Dedekind module in $Q(W)$, and
 (ii) $VW = R$ and $WV = S$.
Definition [Akalan, 2008]

A prime Goldie ring R is called a Generalized Dedekind prime (G-Dedekind, for short) ring if

- R is a maximal order and
- Every $
u$-ideal is invertible.
Conjecture

T is a G-Dedekind prime ring \iff

1. R and S are G-Dedekind prime rings,
2. $(R : W)_l = V = (S : W)_r$ and $(R : V)_r = W = (S : V)_l$.
Acknowledgement

This work has been supported by TÜBITAK (Project no: 113F032). We would like to thank TÜBITAK for their support.