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Introductions
Codes over The Ring Bk

Introductions

Corresponding ring is Bk = Fp[v1, . . . , vk ], where v2
i = vi for

all i = 1, . . . , k .

A code over Bk is a subset of Bn
k .

A linear codes over Bk is a Bk -submodule of Bn
k .
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Introductions
Codes over The Ring Bk

Bk is a commutative algebra over Fp.

In [Cengellenmis and Dougherty, 2012], there are many nice

properties of codes over Bk , with p = 2, including Gray maps,

MacWiliams relations, relation to complex lattices, etc.

In [Abualrub et al, 2012], structures of skew-cyclic codes over

B1, with p = 2, have been studied via skew-polynomial ring

and they find some optimal Euclidean self-dual codes.

Others then insterested to study skew-cyclic codes over this

ring in general.
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Codes over The Ring Bk

Properties of the ring Bk

Lemma

The ring Bk can be viewed as an Fp-vector space with

dimension 2k and basis consists of elements of the form

β|B|
∏

i∈B wi , for some β ∈ B×k , where B ⊆ {1, . . . , k} and

wi ∈ {vi , 1− vi}, and 1.

The ring Bk has characteristic p and cardinality (p)2k .

ω ∈ Bk is a zero divisor if and only if ω ∈ 〈w1,w2, . . . ,wk〉,
where wi ∈ {βvi , β(1− vi )} for all i = 1, 2, . . . , k, for some

unit β.
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Codes over The Ring Bk

Prop.

An ideal I in Bk is maximal if and only if I = 〈w1,w2, . . . ,wk〉,
where wi ∈ {βvi , β(1− vi )} for all i = 1, 2, . . . , k , for some unit β.

Prop. 2

Let θ be an endomorphism in Bk . Then, θ is an automorphism if

and only if θ(wi ) = βwj , for every i ∈ {1, . . . , k}, where β is a unit

in Bk , and θ(a) = a, for every a ∈ Fp.
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Gray map

ϕ : Bk → F2k
p

a =
∑λ

i=1 αSiwSi 7→ (αS1 ,
∑

B⊆S2
αB , . . . ,

∑
B⊆Sλ αB)

where wSi =
∏

i∈Si wi and Si ⊆ {1, . . . , k}.

Remark

There is one-on-one correspondence between ϕ and

automorphism in Bk up to lexicographic order.

This map should be a permutation of similar map in

[Cengellenmis and Dougherty, 2012]
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Characterization for codes over Bk

C is a Bk -linear code with length n if and only if

there exist linear

codes, C1, . . . ,Cλ, over Fp such that

C = ϕ−1(C1, . . . ,C2k ).

Equivalence

Two codes C and C ′ over Bk are equivalent if either they are

permutation-equivalent or C is permutation equivalent to the code

θ(C ′) for some automorphism θ in Ak , i.e. the code θ(C ′)

obtained from C ′ by changing c ′ with θ(c ′) in all coordinates.

Characterization

C and C ′ are equivalent if and only if there exists a permutation

which sends (C1, . . . ,Cs) to (C ′1, . . . ,C
′
s) or to

(C ′1,C
′
λ1
,C ′2, . . . ,C

′
λ1−1, . . . ,C

′
λt
, . . . ,C ′λt−1,C

′
s).
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Codes over The Ring Bk

Other Properties

Euclidean self-dual codes

Let C = ϕ−1(C1, . . . ,C2k ).

C is a self-dual code over Bk if and

only if C1, . . . ,Cλ are also self-dual codes over Fp and

C1 = C2 = · · · = C2k .

Minimum Hamming distance

If C = ϕ−1(C1, . . . ,C2k ), for some codes C1, . . . ,C2k over Fp, then

dH(C ) = min1≤i≤2k dH(Ci ).
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MacWiliams Relation

WC⊥(X ,Y ) =
1

|C |
WC (X + (p2k − 1)Y ,X − Y )

Group Action

〈T ,D〉,

T =

 1

p2k−1
p2k−1

p2k−1

1

p2k−1
−1

p2k−1

 and D =

(
−1 0

0 −1

)
.

Lemma

If WC (X ,Y ) is a Hamming weight enumerator for a self-dual code

C over Bk , then WC (X ,Y ) is invariant under the action of G .
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p2k−1
−1

p2k−1

 and D =

(
−1 0

0 −1

)
.

Lemma

If WC (X ,Y ) is a Hamming weight enumerator for a self-dual code

C over Bk ,

then WC (X ,Y ) is invariant under the action of G .
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Invariant ring

Invariant ring of G is generated by WC0(x , y) = x2 + (p2k − 1)y2

and f̃ (x , y) = 1
4

(
2p2k−1

+2

p2k
x2 +

4
(
p2k−1

)
p2k−1 xy + 2(p2k−1)2

p2k−1 y2

)
.

Remark

WC0(x , y) = x2 + (p2k − 1)y2 is the Hamming weight enumerator

for repetition code.
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Remarks

The result can be generalized to the ring Fpr [v1, . . . , vk ],

where v2
i = vi .

It is interesting to study skew-cyclic codes over Bk , since it

has a connection to skew-cyclic codes over finite field which

gives optimal Euclidean self-dual skew-cyclic codes, see

[Boucher and Ulmer, 2009].

Irwansyah et al. Codes over Infinite Family of Algebras



Introductions
Codes over The Ring Bk

Thank You
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