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Biclosed Relations with respect to Torsion Theories

Starting point: Dickson, Domenach-Leclerc

torsion theories

Definition [Dickson, 1966]
A torsion theory is a pair of classes (T,F) in R-Mod such that:

T ∩ F = {0}.
T is closed under epimorphisms, F is closed under
monomorphisms.
For each M ∈ R-Mod there exist T ∈ T, F ∈ F, and an
exact sequence:

0→ T → M → F → 0
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Starting point: Dickson, Domenach-Leclerc

torsion theories

Characterization [Dickson, 1966]
A pair of classes (T,F) in R-Mod is a torsion theory if, and only
if:

T = l(F) := {M | ∀N ∈ F,HomR(M,N) = 0}
F = r(T) := {N | ∀M ∈ T,HomR(M,N) = 0}

Notice that 〈r , l〉 : ℘(R-Mod)→ ℘(R-Mod) is an antitone Galois
connection, i.e.:

r , l are order-reversing.
l ◦ r , r ◦ l are inflationary.
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Starting point: Dickson, Domenach-Leclerc

correspondence polarities-relations

Proposition
There is a one-to-one correspondence between relations
S ⊆ A× B and Galois connections 〈f ,g〉 : ℘(A)→ ℘(B):

Given S ⊆ A× B:
fS(U) :=

⋂
a∈U aS, where aS := {b ∈ B | (a,b) ∈ S}.

fS(V ) :=
⋂

b∈V Sb, where Sb := {a ∈ A | (a,b) ∈ S}.

Given 〈f ,g〉 : ℘(A)→ ℘(B):

S〈f ,g〉 : = {(a,b) ∈ A× B | b ∈ f ({a})}
= {(a,b) ∈ A× B | a ∈ g({b})}.
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Starting point: Dickson, Domenach-Leclerc

biclosed relations

Definition
Given a set A, a Moore family is a family Φ of subsets of A which
satisfy ∩Φ′ ∈ Φ for every Φ′ ⊆ Φ.

Definition [Domenach, Leclerc, 2000]

Given Moore families Φ ⊆ ℘(A) and Φ′ ⊆ ℘(B),
a relation R ⊆ A× B is called biclosed wrt (Φ,Φ′) if:

∀ a ∈ A,aR ∈ Φ′

∀ b ∈ B,Rb ∈ Φ
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Starting point: Dickson, Domenach-Leclerc

biclosed relations

some Moore situations

Φ = cls(ϕ),Φ′ = cls(ϕ′), are Moore families, where ϕ,ϕ′

are any closure operators on ℘(A), ℘(B), respectively.

ϕ = g ◦ f , ϕ′ = f ◦ g are closure operators, where
〈f ,g〉 : ℘(A)→ ℘(B) is any Galois connection. In this case
Φ = Im(g) and Φ′ = Im(f ).
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Starting point: Dickson, Domenach-Leclerc

biclosed relations

some Moore situations

In case that 〈f ,g〉 : ℘(A)→ ℘(B) is the Galois connection
induced by any relation S ⊆ A× B:

Φ = {
⋂

b∈V Sb | V ⊆ B}
Φ′ = {

⋂
a∈U aS | U ⊆ A}

In case that 〈r , l〉 : ℘(R-Mod)→ ℘(R-Mod) is the Galois
connection induced by the relation
H = {(M,N) | HomR(M,N) = 0}:

Φ = {T| T is a torsion class}
Φ′ = {F| F is a torsion-free class}
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Biclosed relations wrt torsion theories

biclosed relations wrt torsion theories

Characterization
A relation R on R-Mod is biclosed wrt H if, and only if:

∀ M ∈ R-Mod,MR is a torsion-free class.
∀ N ∈ R-Mod,RN is a torsion class.

[H]� denotes the class of all biclosed relations wrt H.

A biclosed relation R defines R-torsion pairs (T,F) such that:

T = fR(F) := {M | ∀N ∈ F, (M,N) ∈ R}
F = fR(T) := {N | ∀M ∈ T, (M,N) ∈ R}
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Biclosed relations wrt torsion theories

preradicals

Definitions
A preradical is an assignment σ : R-Mod→ R-Mod such that:

For each M ∈ R-Mod, σ(M) ≤ M
For each f : M → N, f (σ(M)) ≤ σ(N)

R-pr denotes the class of all preradicals.
It is a (big) complete lattice, where:

meet:

(∧
i∈C

σi

)
(M) =

⋂
i∈C

σi(M)

join:

(∨
i∈C

σi

)
(M) =

∑
i∈C

σi(M)
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Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:

idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:

idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:

idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:

idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:

idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:
idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.



Biclosed Relations with respect to Torsion Theories

Biclosed relations wrt torsion theories

product and coproduct of preradicals

Definitions
Given preradicals σ and τ :

product: (σ · τ)(M) := σ(τ(M))

coproduct: (σ : τ)(M)/σ(M) := τ(M/σ(M))

A preradical σ is called:
idempotent, if σ · σ = σ

radical, if σ : σ = σ

R-radid denotes the class of all idempotent radicals.
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Biclosed relations wrt torsion theories

R-torsion theories and idempotent radicals

Definition
If R is a biclosed relation wrt H then:

〈λR, µR〉 is an isotone Galois connection on R-radid:

λR(σ) := Rej fR(Tσ) =
∧

N∈fR(Tσ)

ωN
0

µR(τ) := Tr fR(Fτ ) =
∨

M∈fR(Fτ )

αM
M

It induces an isomorphism between the intervals:

[[σR,1]] := {σ ∈ R-radid | Tσ ∈ (f )R-cls},
[[0, τR]] := {τ ∈ R-radid | Fτ ∈ cls-(f )R}.
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Biclosed Relations with respect to Torsion Theories

Hom-type bifunctors

continuous and cocontinuous functors

Characterization
Let H : A → B be a covariant functor between bicomplete
abelian categories.

H is continuous if, and only if, H is left exact and it
preserves products.

H is cocontinuous if, and only if, H is right exact and it
preserves coproducts.
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Hom-type bifunctors

almost continuous and cocontinuous functors

Definition
Let H : A → B be a covariant functor between bicomplete
abelian categories.

H is called almost continuous if:

H is left exact.
For each family {Mα} of objects in A, the induced morphism∏

H(pα) : H(
∏

Mα) −→
∏

H(Mα) is a monomorphism.

H is called almost cocontinuous if:

H is right exact.
For each family {Mα} of objects in A the induced morphism⊕

H(iα) :
⊕

H(Mα) −→ H(
⊕

Mα) is an epimorphism.
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Hom-type bifunctors

almost continuous and cocontinuous functors

examples: continuous and cocontinuous functors

Every continuous (cocontinuous) functor is almost
continuous (almost cocontinuous).
HomR(M, ) ( HomR( ,M)) is an almost continuous
covariant (contravariant) functor.
M ⊗ is an almost cocontinuous covariant functor.



Biclosed Relations with respect to Torsion Theories

Hom-type bifunctors

almost continuous and cocontinuous functors

examples: continuous and cocontinuous functors
Every continuous (cocontinuous) functor is almost
continuous (almost cocontinuous).

HomR(M, ) ( HomR( ,M)) is an almost continuous
covariant (contravariant) functor.
M ⊗ is an almost cocontinuous covariant functor.



Biclosed Relations with respect to Torsion Theories

Hom-type bifunctors

almost continuous and cocontinuous functors

examples: continuous and cocontinuous functors
Every continuous (cocontinuous) functor is almost
continuous (almost cocontinuous).
HomR(M, ) ( HomR( ,M)) is an almost continuous
covariant (contravariant) functor.

M ⊗ is an almost cocontinuous covariant functor.



Biclosed Relations with respect to Torsion Theories

Hom-type bifunctors

almost continuous and cocontinuous functors

examples: continuous and cocontinuous functors
Every continuous (cocontinuous) functor is almost
continuous (almost cocontinuous).
HomR(M, ) ( HomR( ,M)) is an almost continuous
covariant (contravariant) functor.
M ⊗ is an almost cocontinuous covariant functor.



Biclosed Relations with respect to Torsion Theories

Hom-type bifunctors

almost continuous and cocontinuous functors

examples: the other way round

M ⊗ is an almost continuous covariant functor if, and
only if, MR is flat and Mittag-Leffler.
HomR(M, ) is an almost cocontinuous covariant functor
if, and only if, RM is projective and it has the following
property: for any family {Mα}α∈Λ of R-modules, the image
of every homomorphism M →

⊕
α∈Λ Mα is contained in⊕

α∈Λ′ Mα for some finite subset Λ′ of Λ.
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I , where I is an ideal of R, is an almost
cocontinuous covariant functor.
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Hom-type bifunctors

AC bifunctors

Definition
A bifunctor K : Aop × B −→ C is called an AC bifunctor if:

For each object M of A, K (M, ) is an almost continuous
covariant functor.
For each object N of B, K ( ,N) is an almost continuous
contravariant functor.
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AC bifunctors

Proposition

If K ( , ) : Aop × B −→ C is an AC bifunctor, F : A′ −→ A is an
almost cocontinuous covariant functor and G : B′ −→ B is an
almost continuous covariant functor then:

K (F ( ), ) : (A′)op × B −→ C is an AC bifunctor.
K ( ,G( )) : Aop × B′ −→ C is an AC bifunctor.
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AC bifunctors

Theorem
If K ( , ) : (R-Mod)op ×R-Mod −→ Ab is an AC bifunctor, then
R(K ) := {(M,N) ∈ (R-Mod)2 | K (M,N) = 0} is biclosed wrt H.

special cases
F : R-Mod −→ R-Mod almost cocontinuous covariant,
G : R-Mod −→ R-Mod almost continuous covariant.

RF := {(M,N) ∈ (R-Mod)2 | HomR(F (M),N) = 0},
RG := {(M,N) ∈ (R-Mod)2 | HomR(M,G(N)) = 0}.

If 〈F ,G〉 is an adjoint pair then RF = RG.
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adjoint pairs

Proposition

If R is the biclosed relation induced by the adjoint pair 〈F ,G〉
then the following diagrams commute:

℘(R-Mod)

←
G
��

℘(R-Mod)

←
F
��

℘(R-Mod)

fH
55

fR //

→
F
��

℘(R-Mod)

→
G
��

fH
55

fR // ℘(R-Mod)

℘(R-Mod)

fH

55

℘(R-Mod)
fH

55
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Biclosed relations induced by AC bifunctors

adjoint pairs

Proposition

If R is the biclosed relation induced by the adjoint pair 〈F ,G〉
then the class of all R-torsion theories is:

{(Tσ,
←
G (Fσ)) | σ ∈ [[σR,1]]}

= {(
←
F (Tτ ),Fτ ) | τ ∈ [[0, τR]]}
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Biclosed relations induced by AC bifunctors

R-bimodules

Definitions

We define a preorder on R-BiMod: L � K if L generates K .
The equivalence class of L is denoted by [L]∼

There is an order-preserving assignment:

Ψ : R-BiMod/ ∼ −→ [H]�

Ψ([L]∼) := R[L]
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Biclosed relations induced by AC bifunctors

bimodules R/I

Proposition
If I is an ideal of R then:

The corresponding adjoint pair to the bimodule R/I is
(up to natural isomorphism):〈

(αR
I )∗, α

R/I
R/I

〉
The corresponding Galois connection on ℘(R-Mod) is
given by:

fR[R/I](Tσ) = F
σα

R/I
R/I

fR[R/I](Fτ ) = T(αR
I :τ)
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semisimple Artinian rings

Theorem
If R is a semisimple Artinian ring with |R-simp| = n then:

[H]� is a Boolean lattice of 2n2
elements.

R-BiMod/ ∼ is a Boolean lattice of 2n elements.
Ψ is injective.
Im(Ψ) = {R ∈ [H]� | H ⊆ R}.
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H

(R-Mod)2

Θ

The Boolean lattice [H]�
for a semisimple Artinian ring R with |R-simp| = 2
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H

R2R1

(R-Mod)2

Θ

The image of Ψ : R-BiMod/ ∼ −→ [H]�
for a semisimple Artinian ring R with |R-simp| = 2
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