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L preliminaries

Notation:

m R will denote an associative ring with identity.

R-Mod will denote the category of unital left R-modules.
S(M), the complete lattice of submodules of M.

S#i(M), the lattice of fully invariant submodules of M.

R-simp a complete set of representatives of isomorphism
classes of simple modules
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A preradical r for R-Mod is a subfunctor of the identity functor
for R-Mod, that is, for every module homomorphism f : M — N it
happens that f(r(M)) C r(N).

R-pr:
The class of all preradicals in R-Mod.

For each M € R-Mod and r,s € R-pr,
m Order: r < s if r(M) < s(M) for each M € R-Mod.
m Meet: (r As)(M) =r(M)Ns(M),
m Join (rV s)(M) = r(M) + s(M).
m Product: (r-s)(M) = r(s(M)).
m Coproduct: (r: s)(M) is such that
(r:s)(M)/r(M) = s(M/r(M)).
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The lattice structure of R-pr

R-pr with the partial ordering <, is a complete, atomic, coatomic,
modular, upper continuous and strongly pseudocomplemented big

lattice

The least element is the zero functor denoted by 0 and the identity
functor 1 is the greatest element.

m The class of atoms of R-pr is {ag(s) | S € R-simp}.

m The class of coatoms of R-pr is
{wl | I'is a maximal two sided ideal of R}.
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For r € R-pr, we say that
m ris idempotent if r-r =r.

mrisaradical if r:r=r.

m ris a left exact preradical if r(N) = NN r(M) for every
N < M and M € R-Mod.

m ris a t—radical when r(M) = r(R)M for every M € R-Mod.
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R-id R-rad
idempotent preradicals radicals
R-lep R-trad
left exact preradicals t-radicals
R-ler R-rid

left exact radicals idempotent radicals
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For each r € R-pr, we denote
m T, ={M | r(M)= M}, the pretorsion class associated to r,

m F, .= {M| r(M) = 0}, the pretorsion free class associated to
r.
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Alpha and omega preradicals.

m For N € S4(M), there are two distinguished preradicals, a"N”

and w,Q,/I, assigning M to N, which are defined as follows:

ay/(L):=> {f(N) | f € Homg(M, L)}

Wi (L):= N {F~X(N) | f € Homg(L, M)},
for each L € R-Mod.

m If N is a fully invariant submodule of M, we have that the
class {r € R-pr | r(M) = N} is precisely the interval
(o] il
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A torsion theory for R-Mod is an ordered pair (T, ) of classes of
modules such that:

(i) Hom(T,F) =0 for every T € T and for every F € F.
(ii) If Homp(C, F) =0 for all F € F, then C € T.
(iii) If Homg (T, C) =0 for all T € T, then C € F.
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Notice that

m T is a torsion class (i.e a class closed under taking quotients,
direct sums and extensions)

m [ is a torsion-free class (i.e a class closed under taking
submodules, direct products and extensions).

m (T,F) is a hereditary torsion theory if and only if T is closed
under submodules. If in adition F is closed under quotients,
(T, ) is a cohereditary and hereditary torsion theory.
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R — TORS R-tors
The big lattice of all torsion The frame of all hereditary
theories in R-Mod. torsion theories in R-Mod.
R-qtors

All hereditary torsion theories
which are cohereditary
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For 7 € R-tors, we shall write T for the 7-torsion class and
[F, for the 7-torsion free class, so that 7 = (T,,F,).
m For a class A of modules:

- £(A) is the hereditary torsion theory generated by A.

- x(A) is the hereditary torsion theory cogenerated by A.
We shall write & (respectively, x) for the least (resp., greatest)
element of R-tors.

For 7 € R-tors, let 71 stand for the pseudocomplement in
R-tors of 7.
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Mappings beween R-tors and R-pr.
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Well Known Facts:

m There exist lattice isomorphisms
p : R-rid — R-TORS,

¢ : R-ler — R-tors
where both are given by r — (T,,F,).

= In both cases, the inverse is (T, F) — t( ), where

termy = V{aT | T € T}. (Note that t(p ), the so-called
torsion part, coincides with A{wf | F € F}.



LI\[appings ween R-tors and R-pr.

m There exists a canonical isomorphism
n: Sk(R) — R-trad,

n(l) := o&t (which is, observe, left multiplication by /). Its
inverse sends r — r(R).



- Mappings beween R-tors and R-pr.

Define a mapping
t : R-tors — R-pr,
T +— tr.

Remark

The mapping t is always injective, order-preserving and
preserves infima. This also holds in the arbitrary case.
In general, t does not preserve suprema. Indeed, while it is

true, for 7,0 € R-tors, that ¢ V t, = t;ve, equality does not
always hold.
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Example

Let R be the subring of ZI§ spanned by 1 and ZgN), so that R
consists of sequences of zero and ones eventually constant. Denote
as Z the left exact preradical sending each module to its singular
submodule. It can be proved that:

Every simple ideal is a direct summand of R, and therefore
socp(R) = soc(R) = ZgN).

z8" <. R.

T;. =F.s5, and 76 € R-jans.

[/ T‘é_p =76,

Tsp V76 = Tsp V Tgp = £(SP) V x(SP) = x.

i Thus, trg v (R) =R, but
trep(R) + tro(R) = socp(R) = ZgN) # R.
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Lemma

Let {7i}ic/ € R-qtors. Then By = Ve, tr;, taking the
supremum on the left in R-tors and the one on the right in R-pr.

Thus, over any left perfect ring, R-qtors is a complete sublattice
both of R-tors and (via a canonical embedding) of R-pr.
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Theorem
Let R be a left perfect ring. Then R-qtors is a complete sublattice
of R-tors and fg qrors - R-qtors — R-pr is a complete lattice

embedding.
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Mappings between R-tors and Sg(R)
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Define a mapping, evaluation (at the ring),

e : R-tors — Sg(R),
7 — t-(R).
Remark

Notice that e preserves orderings and arbitrary infima.
In general, e does not preserve even binary suprema.
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m A module M € R-Mod is called a Kasch module if and only if
every S € R-simp is embeddable in M.

= R is a left Kasch ring if E(R) is an injective cogenerator for
R-Mod.

Proposition

If the mapping e is injective, then R, is a left Kasch ring.
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Recall that a ring R is said to be left fully idempotent(or left
weakly regular) when every left ideal is idempotent.

Proposition
If R is left fully idempotent and e is injective, then R is a left
Bronowitz-Teply ring (i.e. R-qtors = R-tors.)

Lemma

If R-trad = R-ler, then R is a semisimple ring.

Proposition

If R is regular (in the sense of von Neumann) and e is an
isomorphism, then R is semisimple.
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For an arbitrary ring R, abbreviate as &(R) the statement
“e : R-tors — Sf(R) is a lattice isomorphism”.

Theorem

Let R be a ring such that &(R) and RSP is finite. Then

R = Rs X Re for some (possibly trivial) semisimple ring Rs and
some ring Re such that &(Re) and socp(Re) = 0.
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Let us now consider the inverse of e, when e is a lattice
isomorphism. Set
a, B :Ss(R) — R-tors
a(l) =) = /\{7’ € R-tors | I € T}

and
B : S#(R) — R-tors

B(1) = x(R/1) = \/{r € R-tors | R/I € F,},
for each I € Sg(R) .

Theorem

If any one of o, B or e is a lattice isomorphism, then all three are
isomorphisms, o = (3 and its inverse is e.
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Mappings between S¢(M) and R-ler
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Now, we continue the previous study for any M € R-Mod and
St(M).
m For L, K € Sf(M), consider the product

Kyl = oM(L)

m We say that M is fully idempotent if and only if NypyN = N
for every N € Sg(M).

m Notice that R is fully idempotent if and only if every
two-sided ideal is idempotent.
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Set,
)\I\/I : Sfj(M) — R—pr
Am(N) = ol
and
em : R-tors — S5(M)
em(7) ==t (M)

It is clear that eg = e.
Taking the isomorphism ( : R-ler — R-tors, notice that
emo(C:r—r(M).
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Proposition

Let M € R-Mod be such that the assignation A : Sg(M) — R-ler
M

given by Ay(N) = oy is well-defined and a lattice isomorphism.
Then, the following conditions hold.

a) S#(M) is an atomic frame.

) M is fully idempotent.

)
)

(¢) em o ( is the inverse of \p.
) M is a generator for R-Mod.
)

') M is a Kasch module, t¢(s)(M) = socs(M) for every
S € R-simp, soc(M) is the least essential element of S¢(M),
and ey (7p) = soc(M).

(f) For every T € R-tors, t; = O‘Qj(/w)'

(2) Forevery I € Si(R), aff = alM,.

(h) If M is projective, then, for every T € R-tors, t; = aE(R).
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Theorem

For a ring R, the following statements are equivalent.

(a) R is semisimple.

(b) R-trad = R-ler.

(¢) For every projective generator P, Ap : Sg(P) — R-ler is
well-defined and a lattice isomorphism.

(d) Ar : S#(R) — R-ler is well-defined and a lattice isomorphism.

(e) There is some projective module P such that
Ap : Sg(P) — R-ler is well-defined and a lattice isomorphism.
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Thank you!
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