Mappings between R-tors and other lattices.

Hugo Alberto Rincón-Mejía Martha Lizbeth Shaid Sandoval-Miranda^(*) Manuel Gerardo Zorrilla-Noriega

Facultad de Ciencias, Universidad Nacional Autónoma de México

Noncommutative rings and their applications, IV Lens, France

8-11 June 2015

Notation:

- R will denote an associative ring with identity.
- R-Mod will denote the category of unital left R-modules.
- S(M), the complete lattice of submodules of M.
- $S_{fi}(M)$, the lattice of fully invariant submodules of M.
- R-simp a complete set of representatives of isomorphism classes of simple modules

A preradical r for R-Mod is a subfunctor of the identity functor for R-Mod, that is, for every module homomorphism $f : M \to N$ it happens that $f(r(M)) \subseteq r(N)$.

R-pr :

The class of all preradicals in $\operatorname{R-Mod}$.

For each $M \in \text{R-Mod}$ and $r, s \in \text{R-pr}$,

• Order: $r \leq s$ if $r(M) \leq s(M)$ for each $M \in \text{R-Mod.}$

• Meet:
$$(r \wedge s)(M) = r(M) \cap s(M)$$
,

- Join $(r \lor s)(M) = r(M) + s(M)$.
- Product: $(r \cdot s)(M) = r(s(M))$.
- Coproduct: (r:s)(M) is such that (r:s)(M)/r(M) = s(M/r(M)).

The lattice structure of $\operatorname{R-pr}$

 $R\text{-}\mathrm{pr}$ with the partial ordering $\preceq,$ is a complete, atomic, coatomic, modular, upper continuous and strongly pseudocomplemented big lattice

The least element is the zero functor denoted by $\underline{0}$ and the identity functor $\underline{1}$ is the greatest element.

- The class of atoms of R-pr is $\{\alpha_{S}^{E(S)} \mid S \in \text{R-simp}\}.$
- The class of coatoms of R-pr is {ω_I^R | *I* is a maximal two sided ideal of R}.

For $r \in \text{R-pr}$, we say that

- *r* is idempotent if $r \cdot r = r$.
- r is a radical if r : r = r.
- r is a left exact preradical if $r(N) = N \cap r(M)$ for every $N \leq M$ and $M \in \text{R-Mod}$.
- *r* is a *t*-radical when r(M) = r(R)M for every $M \in \text{R-Mod}$.

For each $r \in \text{R-pr}$, we denote

T_r = {M | r(M) = M}, the pretorsion class associated to r,
F_r := {M | r(M) = 0}, the pretorsion free class associated to r.

Alpha and omega preradicals.

For $N \in S_{fi}(M)$, there are two distinguished preradicals, α_N^M and ω_N^M , assigning M to N, which are defined as follows:

 $\alpha_N^M(L) := \sum \{f(N) \mid f \in \operatorname{Hom}_{\mathrm{R}}(M, L)\}$

$$\omega_N^M(L):=\cap \{f^{-1}(N) \mid f \in \operatorname{Hom}_{\mathrm{R}}(L,M)\},\$$

for each $L \in \text{R-Mod}$.

If N is a fully invariant submodule of M, we have that the class $\{r \in \text{R-pr} \mid r(M) = N\}$ is precisely the interval $[\alpha_N^M, \omega_N^M]$.

A torsion theory for R-Mod is an ordered pair (\mathbb{T}, \mathbb{F}) of classes of modules such that:

(*i*) Hom(T, F) = 0 for every $T \in \mathbb{T}$ and for every $F \in \mathbb{F}$.

(*ii*) If Hom_R(C, F) = 0 for all $F \in \mathbb{F}$, then $C \in \mathbb{T}$.

(*iii*) If $\operatorname{Hom}_{\mathrm{R}}(T, C) = 0$ for all $T \in \mathbb{T}$, then $C \in \mathbb{F}$.

Notice that

- T is a torsion class (i.e a class closed under taking quotients, direct sums and extensions)
- F is a torsion-free class (i.e a class closed under taking submodules, direct products and extensions).
- (𝔅,𝔅) is a hereditary torsion theory if and only if 𝔅 is closed under submodules. If in adition 𝔅 is closed under quotients, (𝔅,𝔅) is a cohereditary and hereditary torsion theory.

$\mathbf{R} - \mathbf{TORS}$

The big lattice of all torsion theories in R-Mod.

R-tors

The frame of all hereditary torsion theories in R-Mod.

R-qtors

All hereditary torsion theories which are cohereditary

- For $\tau \in \mathbb{R}$ -tors, we shall write \mathbb{T}_{τ} for the τ -torsion class and \mathbb{F}_{τ} for the τ -torsion free class, so that $\tau = (\mathbb{T}_{\tau}, \mathbb{F}_{\tau})$.
- For a class \mathcal{A} of modules:
 - $\xi(\mathcal{A})$ is the hereditary torsion theory generated by \mathcal{A} .
 - $\chi(\mathcal{A})$ is the hereditary torsion theory cogenerated by \mathcal{A} .
- We shall write ξ (respectively, χ) for the least (resp., greatest) element of R-tors.
- For $\tau \in \mathbb{R}$ -tors, let τ^{\perp} stand for the pseudocomplement in \mathbb{R} -tors of τ .

Mappings beween R-tors and R-pr.

Well Known Facts:

There exist lattice isomorphisms

 $\varphi: \operatorname{R-rid} \longrightarrow \operatorname{R-TORS},$

 $\zeta : \operatorname{R-ler} \longrightarrow \operatorname{R-tors}$

where both are given by $r \mapsto (\mathbb{T}_r, \mathbb{F}_r)$.

In both cases, the inverse is $(\mathbb{T}, \mathbb{F}) \mapsto t_{(\mathbb{T}, \mathbb{F})}$, where $t_{(\mathbb{T}, \mathbb{F})} = \bigvee \{ \alpha_T^T \mid T \in \mathbb{T} \}$. (Note that $t_{(\mathbb{T}, \mathbb{F})}$, the so-called *torsion part*, coincides with $\bigwedge \{ \omega_0^F \mid F \in \mathbb{F} \}$.

There exists a canonical isomorphism

$$\eta: S_{fi}(\mathbf{R}) \to \mathbf{R}\text{-trad},$$

 $\eta(I) := \alpha_I^{\mathbf{R}}$ (which is, observe, left multiplication by I). Its inverse sends $r \mapsto r(\mathbf{R})$.

Define a mapping

$$t: \operatorname{R-tors} \longrightarrow \operatorname{R-pr},$$

 $\tau \mapsto t_{\tau}.$

Remark

- The mapping t is always injective, order-preserving and preserves infima. This also holds in the arbitrary case.
- 2 In general, t does not preserve suprema. Indeed, while it is true, for $\tau, \sigma \in \mathbb{R}$ -tors, that $t_{\tau} \vee t_{\sigma} \leq t_{\tau \vee \sigma}$, equality does not always hold.

Example

Let R be the subring of $\mathbb{Z}_2^{\mathbb{N}}$ spanned by 1 and $\mathbb{Z}_2^{(\mathbb{N})}$, so that R consists of sequences of zero and ones eventually constant. Denote as Z the left exact preradical sending each module to its singular submodule. It can be proved that:

Every simple ideal is a direct summand of R, and therefore soc_p(R) = soc(R) = Z₂^(N).
 Z₂^(N) ≤_e R.
 T_{τ_G} = F_{τ_{SP}}, and τ_G ∈ R-jans.
 τ_{SP} = τ_G,
 τ_{SP} ∨ τ_G = τ_{SP} ∨ τ_{SP}[⊥] = ξ(SP) ∨ χ(SP) = χ.
 Thus, t<sub>τ_{SP}∨τ_G(R) = R, but t_{τ_{SP}}(R) + t_{τ_G}(R) = soc_p(R) = Z₂^(N) ≠ R.
</sub>

Lemma

Let $\{\tau_i\}_{i \in I} \subseteq \mathbb{R}$ -qtors. Then $t_{\bigvee_{i \in I} \tau_i} = \bigvee_{i \in I} t_{\tau_i}$, taking the supremum on the left in \mathbb{R} -tors and the one on the right in \mathbb{R} -pr.

Thus, over any left perfect ring, R-qtors is a complete sublattice both of R-tors and (via a canonical embedding) of R-pr.

Theorem

Let R be a left perfect ring. Then R-qtors is a complete sublattice of R-tors and $t_{|_{R-qtors}} : R-qtors \longrightarrow R-pr$ is a complete lattice embedding.

Mappings between R-tors and $S_{fi}(R)$

Define a mapping, evaluation (at the ring),

$$e: \operatorname{R-tors} \longrightarrow \operatorname{S}_{fi}(\operatorname{R}),$$

 $au \mapsto t_{ au}(R).$

Remark

Notice that *e* preserves orderings and arbitrary infima. In general, *e* **does not preserve even binary suprema.**

- A module *M* ∈ R-Mod is called a *Kasch module* if and only if every *S* ∈ R-simp is embeddable in *M*.
- R is a left Kasch ring if E(R) is an injective cogenerator for R-Mod.

Proposition

If the mapping e is injective, then ${\rm R}$ is a left Kasch ring.

Recall that a ring R is said to be *left fully idempotent* (or *left weakly regular*) when every left ideal is idempotent.

Proposition

If R is left fully idempotent and e is injective, then R is a left Bronowitz-Teply ring (i.e. R-qtors = R-tors.)

Lemma

If R-trad = R-ler, then R is a semisimple ring.

Proposition

If R is regular (in the sense of von Neumann) and e is an isomorphism, then R is semisimple.

For an arbitrary ring R, abbreviate as $\mathscr{E}(R)$ the statement " $e: \operatorname{R-tors} \to \operatorname{S}_{fi}(\operatorname{R})$ is a lattice isomorphism".

Theorem

Let R be a ring such that $\mathscr{E}(R)$ and $_{R}\mathcal{SP}$ is finite. Then $R = R_{s} \times R_{e}$ for some (possibly trivial) semisimple ring R_{s} and some ring R_{e} such that $\mathscr{E}(R_{e})$ and $\operatorname{soc}_{p}(R_{e}) = 0$. Let us now consider the inverse of e, when e is a lattice isomorphism. Set

 $\alpha, \ \beta: \mathcal{S}_{fi}(\mathbb{R}) \to \mathbb{R}\text{-tors}$ $\alpha(I) := \xi(I) = \bigwedge \{ \tau \in \mathbb{R}\text{-tors} \mid I \in \mathbb{T}_{\tau} \}$

and

 $\beta : \mathbf{S}_{fi}(\mathbf{R}) \to \mathbf{R}\text{-tors}$ $\beta(I) := \chi(\mathbf{R}/I) = \bigvee \{\tau \in \mathbf{R}\text{-tors} \mid R/I \in \mathbb{F}_{\tau}\},\$

for each $I \in S_{fi}(R)$.

Theorem

If any one of α , β or e is a lattice isomorphism, then all three are isomorphisms, $\alpha = \beta$ and its inverse is e.

Mappings between $S_{fi}(M)$ and R-ler

Now, we continue the previous study for any $M \in \operatorname{R-Mod}$ and $S_{fi}(M)$.

For $L, K \in S_{fi}(M)$, consider the product

$$K_M L := \alpha_K^M(L)$$

- We say that *M* is *fully idempotent* if and only if $N_M N = N$ for every $N \in S_{fi}(M)$.
- Notice that R is fully idempotent if and only if every two-sided ideal is idempotent.

Set,

$$\lambda_{\mathcal{M}} : \mathrm{S}_{\mathrm{fi}}(\mathcal{M}) o \mathrm{R} ext{-}\mathrm{pr}$$
 $\lambda_{\mathcal{M}}(\mathcal{N}) = \alpha_{\mathcal{N}}^{\mathcal{M}}$

and

 $e_M : \operatorname{R-tors} \to \operatorname{S}_{fi}(M)$ $e_M(\tau) := t_{\tau}(M)$

It is clear that $e_{\mathbb{R}} = e$. Taking the isomorphism $\zeta : \mathbb{R}\text{-ler} \to \mathbb{R}\text{-tors}$, notice that $e_{\mathcal{M}} \circ \zeta : r \mapsto r(\mathcal{M})$.

Proposition

Let $M \in \text{R-Mod}$ be such that the assignation $\lambda_M : S_{fi}(M) \to \text{R-ler}$ given by $\lambda_M(N) = \alpha_N^M$ is well-defined and a lattice isomorphism. Then, the following conditions hold.

- (a) $S_{fi}(M)$ is an atomic frame.
- (b) *M* is fully idempotent.
- (c) $e_M \circ \zeta$ is the inverse of λ_M .
- (d) *M* is a generator for R-Mod.
- (e) *M* is a Kasch module, $t_{\xi(S)}(M) = \operatorname{soc}_{S}(M)$ for every $S \in \operatorname{R-simp}$, $\operatorname{soc}(M)$ is the least essential element of $S_{fi}(M)$, and $e_{M}(\tau_{D}) = \operatorname{soc}(M)$.
- (f) For every $\tau \in \mathbb{R}$ -tors, $t_{\tau} = \alpha_{t_{\tau}(M)}^{M}$.
- (g) For every $I \in S_{fi}(R), \alpha_I^R = \alpha_{IM}^M$.
- (h) If *M* is projective, then, for every $\tau \in \text{R-tors}$, $t_{\tau} = \alpha_{t_{\tau}(\text{R})}^{\text{R}}$.

Theorem

For a ring R, the following statements are equivalent.

- (a) R is semisimple.
- (b) R-trad = R-ler.
- (c) For every projective generator P, $\lambda_P : S_{fi}(P) \to R$ -ler is well-defined and a lattice isomorphism.
- (d) $\lambda_R : S_{fi}(R) \to R$ -ler is well-defined and a lattice isomorphism.
- (e) There is some projective module P such that $\lambda_P : S_{fi}(P) \to R$ -ler is well-defined and a lattice isomorphism.

Thank you!

References

- [1] Anderson F., Fuller K. *Rings and Categories of Modules.* Graduate Texts in Mathematics, Springer Verlag, 2nd Edition, 1992.
- [2] Bican L., Kepka T., Němec P. *Rings, Modules and Preradicals.* Lectures Notes in Pure and Applied Mathematics. Marcel Dekker Inc, 1982.
- [3] Golan J. Torsion Theories. Longman Scientific & Technical, 1986.
- [4] Lam T. Y. *Lectures on Modules and Rings*.Series Graduate Texts in Mathematics, Vol. 189, 1999.
- [5] Lam T. Y. *Exercises in Modules and Rings.* Problem books in Mathematics, Springer, 2007.
- [6] Stenström B. *Rings and modules of quotients.* Lectures Notes in Mathematics, Springer-Verlag, 1971.

- [7] Raggi F., Ríos J., Rincón H., Fernández-Alonso R., Signoret C. *The lattice structure of preradicals I.* Communications in Algebra 30 (3) (2002) 1533-1544.
- [8] Raggi F., Ríos J., Fernández-Alonso R., Rincón H., Signoret C. Prime and irreducible preradicals. Journal of Algebra and its Applications 4.04 (2005): 451-466.
- [9] Raggi F. Ríos, J., Rincón, H., Fernández-Alonso, R., Gavito, S., Main modules and some characterizations of rings with global conditions on preradicals. Journal of Algebra and Its Applications. Vol.13 No. 2 (2014)
- [10] Rincón, H., Zorrilla M., Sandoval M. Mappings between R-tors and other lattices. Preprint.
- [11] Wisbauer R. Foundations of Module and Ring Theory. 1991. http://www.math.uni-duesseldorf.de/~wisbauer/book.pdf