Mappings between \mathbb{R}-tors and other lattices.

Hugo Alberto Rincón-Mejía
Martha Lizbeth Shaid Sandoval-Miranda(*)
Manuel Gerardo Zorrilla-Noriega
Facultad de Ciencias, Universidad Nacional Autónoma de México

Noncommutative rings and their applications, IV
Lens, France

8-11 June 2015
Notation:

- \mathbb{R} will denote an associative ring with identity.
- \mathbb{R}-Mod will denote the category of unital left \mathbb{R}-modules.
- $S(M)$, the complete lattice of submodules of M.
- $S_{fi}(M)$, the lattice of fully invariant submodules of M.
- \mathbb{R}-simp a complete set of representatives of isomorphism classes of simple modules.
A \textit{preradical} r for R-Mod is a subfunctor of the identity functor for R-Mod, that is, for every module homomorphism $f : M \to N$ it happens that $f (r (M)) \subseteq r (N)$.

\[\text{R-pr} : \]

The class of all preradicals in R-Mod.

For each $M \in R$-Mod and $r, s \in \text{R-pr}$,

- **Order**: $r \preceq s$ if $r (M) \leq s (M)$ for each $M \in R$-Mod.
- **Meet**: $(r \wedge s) (M) = r (M) \cap s (M)$,
- **Join**: $(r \vee s) (M) = r (M) + s (M)$.
- **Product**: $(r \cdot s) (M) = r (s (M))$.
- **Coproduct**: $(r : s) (M)$ is such that $(r : s) (M) / r (M) = s (M / r (M))$.
The lattice structure of $R\text{-pr}$

$R\text{-pr}$ with the partial ordering \preceq, is a complete, atomic, coatomic, modular, upper continuous and strongly pseudocomplemented big lattice.

The least element is the zero functor denoted by 0 and the identity functor 1 is the greatest element.

- The class of atoms of $R\text{-pr}$ is $\{\alpha^E_S \mid S \in R\text{-simp}\}$.
- The class of coatoms of $R\text{-pr}$ is $\{\omega^R_I \mid I \text{ is a maximal two sided ideal of } R\}$.
For $r \in R\text{-pr}$, we say that

- r is idempotent if $r \cdot r = r$.
- r is a radical if $r : r = r$.
- r is a left exact preradical if $r(N) = N \cap r(M)$ for every $N \leq M$ and $M \in R\text{-Mod}$.
- r is a t–radical when $r(M) = r(R)M$ for every $M \in R\text{-Mod}$.
<table>
<thead>
<tr>
<th>R-id</th>
<th>idempotent preradicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-lep</td>
<td>left exact preradicals</td>
</tr>
<tr>
<td>R-ler</td>
<td>left exact radicals</td>
</tr>
<tr>
<td>R-rad</td>
<td>radicals</td>
</tr>
<tr>
<td>R-trad</td>
<td>t-radicals</td>
</tr>
<tr>
<td>R-rid</td>
<td>idempotent radicals</td>
</tr>
</tbody>
</table>
For each $r \in \mathbb{R}$-pr, we denote

- $\mathbb{T}_r = \{ M \mid r(M) = M \}$, the pretorsion class associated to r,
- $\mathbb{F}_r := \{ M \mid r(M) = 0 \}$, the pretorsion free class associated to r.
Alpha and omega preradicals.

- For $N \in S_{fi}(M)$, there are two distinguished preradicals, α^M_N and ω^M_N, assigning M to N, which are defined as follows:

$$\alpha^M_N(L) := \sum \{ f(N) \mid f \in \text{Hom}_R(M, L) \}$$

$$\omega^M_N(L) := \cap \{ f^{-1}(N) \mid f \in \text{Hom}_R(L, M) \},$$

for each $L \in R\text{-Mod}$.

- If N is a fully invariant submodule of M, we have that the class $\{ r \in R\text{-pr} \mid r(M) = N \}$ is precisely the interval $[\alpha^M_N, \omega^M_N]$.
A *torsion theory* for R-Mod is an ordered pair (\mathbb{T}, \mathbb{F}) of classes of modules such that:

(i) $\text{Hom}(T, F) = 0$ for every $T \in \mathbb{T}$ and for every $F \in \mathbb{F}$.

(ii) If $\text{Hom}_R(C, F) = 0$ for all $F \in \mathbb{F}$, then $C \in \mathbb{T}$.

(iii) If $\text{Hom}_R(T, C) = 0$ for all $T \in \mathbb{T}$, then $C \in \mathbb{F}$.
Notice that

- \mathbb{T} is a torsion class (i.e. a class closed under taking quotients, direct sums and extensions).
- \mathbb{F} is a torsion-free class (i.e. a class closed under taking submodules, direct products and extensions).
- (\mathbb{T}, \mathbb{F}) is a hereditary torsion theory if and only if \mathbb{T} is closed under submodules. If in addition \mathbb{F} is closed under quotients, (\mathbb{T}, \mathbb{F}) is a cohereditary and hereditary torsion theory.
<table>
<thead>
<tr>
<th>R – TORS</th>
<th>R-tors</th>
</tr>
</thead>
<tbody>
<tr>
<td>The big lattice of all torsion theories in R-Mod.</td>
<td>The frame of all hereditary torsion theories in R-Mod.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-qtors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All hereditary torsion theories which are cohereditary</td>
</tr>
</tbody>
</table>
For $\tau \in R$-tors, we shall write T_τ for the τ-torsion class and F_τ for the τ-torsion free class, so that $\tau = (T_\tau, F_\tau)$.

For a class \mathcal{A} of modules:
- $\xi(\mathcal{A})$ is the hereditary torsion theory generated by \mathcal{A}.
- $\chi(\mathcal{A})$ is the hereditary torsion theory cogenerated by \mathcal{A}.

We shall write ξ (respectively, χ) for the least (resp., greatest) element of R-tors.

For $\tau \in R$-tors, let τ^\perp stand for the pseudocomplement in R-tors of τ.
Mappings between R-tors and R-pr.
Well Known Facts:

- There exist lattice isomorphisms

\[\varphi : \mathbb{R}\text{-rid} \rightarrow \mathbb{R}\text{-TORS}, \]

\[\zeta : \mathbb{R}\text{-ler} \rightarrow \mathbb{R}\text{-tors} \]

where both are given by \(r \mapsto (\mathbb{T}_r, \mathbb{F}_r) \).

- In both cases, the inverse is \((\mathbb{T}, \mathbb{F}) \mapsto t_{(\mathbb{T}, \mathbb{F})} \), where

\[t_{(\mathbb{T}, \mathbb{F})} = \bigvee \{ \alpha_T \mid T \in \mathbb{T} \}. \]

(Note that \(t_{(\mathbb{T}, \mathbb{F})} \), the so-called torsion part, coincides with \(\bigwedge \{ \omega^F_0 \mid F \in \mathbb{F} \} \).)
There exists a canonical isomorphism

\[\eta : S_{fi}(R) \to R\text{-}\text{trad}, \]

\[\eta(I) := \alpha^R_I \text{ (which is, observe, left multiplication by } I). \] Its inverse sends \(r \mapsto r(R). \)
Define a mapping

\[t : \text{R-tors} \longrightarrow \text{R-pr}, \]
\[\tau \mapsto t_\tau. \]

Remark

1. The mapping \(t \) is always injective, order-preserving and preserves infima. This also holds in the arbitrary case.

2. In general, \(t \) **does not preserve suprema**. Indeed, while it is true, for \(\tau, \sigma \in \text{R-tors} \), that \(t_\tau \lor t_\sigma \leq t_{\tau \lor \sigma} \), equality does not always hold.
Example

Let R be the subring of $\mathbb{Z}_2^\mathbb{N}$ spanned by 1 and $\mathbb{Z}_2^{(\mathbb{N})}$, so that R consists of sequences of zero and ones eventually constant. Denote as Z the left exact preradical sending each module to its singular submodule. It can be proved that:

1. Every simple ideal is a direct summand of R, and therefore $\text{soc}_p(R) = \text{soc}(R) = \mathbb{Z}_2^{(\mathbb{N})}$.

2. $\mathbb{Z}_2^{(\mathbb{N})} \leq e R$.

3. $T_{\tau_G} = F_{\tau_{SP}}$, and $\tau_G \in R$-jans.

4. $\tau_{SP}^\perp = \tau_G$.

5. $\tau_{SP} \vee \tau_G = \tau_{SP} \vee \tau_{SP}^\perp = \xi(SP) \vee \chi(SP) = \chi$.

6. Thus, $t_{\tau_{SP} \vee \tau_G}(R) = R$, but $t_{\tau_{SP}}(R) + t_{\tau_G}(R) = \text{soc}_p(R) = \mathbb{Z}_2^{(\mathbb{N})} \neq R$.
Lemma

Let \(\{\tau_i\}_{i \in I} \subseteq R\text{-qtors} \). Then \(t \bigvee_{i \in I} \tau_i = \bigvee_{i \in I} t \tau_i \), taking the supremum on the left in \(R\text{-tors} \) and the one on the right in \(R\text{-pr} \).

Thus, over any left perfect ring, \(R\text{-qtors} \) is a complete sublattice both of \(R\text{-tors} \) and (via a canonical embedding) of \(R\text{-pr} \).
Theorem

Let R be a left perfect ring. Then R-qtors is a complete sublattice of R-tors and $t|_{R$-qtors} : R$-qtors \rightarrow R-pr is a complete lattice embedding.
Mappings between R-tors and $S_f(R)$
Define a mapping, *evaluation* (at the ring),

\[e : \text{R-tors} \longrightarrow S_{fi}(R), \]

\[\tau \mapsto t_{\tau}(R). \]

Remark

Notice that \(e \) preserves orderings and arbitrary infima. In general, \(e \) does not preserve even binary suprema.
A module $M \in \mathbb{R} \text{-Mod}$ is called a *Kasch module* if and only if every $S \in \mathbb{R} \text{-simp}$ is embeddable in M.

\mathbb{R} is a left Kasch ring if $E(\mathbb{R})$ is an injective cogenerator for $\mathbb{R} \text{-Mod}$.

Proposition

If the mapping e is injective, then \mathbb{R} is a left Kasch ring.
Recall that a ring \(R \) is said to be *left fully idempotent* (or *left weakly regular*) when every left ideal is idempotent.

Proposition

If \(R \) is left fully idempotent and \(e \) is injective, then \(R \) is a left Bronowitz-Teply ring (i.e. \(R\text{-qtors} = R\text{-tors} \)).

Lemma

If \(R\text{-trad} = R\text{-ler} \), then \(R \) is a semisimple ring.

Proposition

If \(R \) is regular (in the sense of von Neumann) and \(e \) is an isomorphism, then \(R \) is semisimple.
For an arbitrary ring R, abbreviate as $\mathcal{E}(R)$ the statement “$e : R\text{-tors} \rightarrow S_{fi}(R)$ is a lattice isomorphism”.

Theorem

Let R be a ring such that $\mathcal{E}(R)$ and RSP is finite. Then $R = R_s \times R_e$ for some (possibly trivial) semisimple ring R_s and some ring R_e such that $\mathcal{E}(R_e)$ and $soc_p(R_e) = 0$.
Let us now consider the inverse of \(e \), when \(e \) is a lattice isomorphism. Set

\[
\alpha, \beta : S_{fi}(R) \rightarrow \text{R-tors}
\]

\[
\alpha(I) := \xi(I) = \bigwedge \{ \tau \in \text{R-tors} \mid I \in \mathbb{T}_\tau \}
\]

and

\[
\beta(I) := \chi(R/I) = \bigvee \{ \tau \in \text{R-tors} \mid R/I \in \mathbb{F}_\tau \},
\]

for each \(I \in S_{fi}(R) \).

Theorem

If any one of \(\alpha, \beta \) or \(e \) is a lattice isomorphism, then all three are isomorphisms, \(\alpha = \beta \) and its inverse is \(e \).
Mappings between $S_{fi}(M)$ and R-ler
Now, we continue the previous study for any $M \in R\text{-Mod}$ and $S_{fi}(M)$.

- For $L, K \in S_{fi}(M)$, consider the product

$$K_M L := \alpha^M_K(L)$$

- We say that M is \textit{fully idempotent} if and only if $N_M N = N$ for every $N \in S_{fi}(M)$.

- Notice that R is fully idempotent if and only if every two-sided ideal is idempotent.
Set,

\[\lambda_M : S_{fi}(M) \to R-pr \]

\[\lambda_M(N) = \alpha^M_N \]

and

\[e_M : R-tors \to S_{fi}(M) \]

\[e_M(\tau) := t_\tau(M) \]

It is clear that \(e_R = e \).

Taking the isomorphism \(\zeta : R-ler \to R-tors \), notice that \(e_M \circ \zeta : r \mapsto r(M) \).
Proposition

Let $M \in R\text{-Mod}$ be such that the assignation $\lambda_M : S_{fi}(M) \to R\text{-ler}$ given by $\lambda_M(N) = \alpha^M_N$ is well-defined and a lattice isomorphism. Then, the following conditions hold.

(a) $S_{fi}(M)$ is an atomic frame.
(b) M is fully idempotent.
(c) $e_M \circ \zeta$ is the inverse of λ_M.
(d) M is a generator for $R\text{-Mod}$.
(e) M is a Kasch module, $t_{\xi(S)}(M) = \text{soc}_S(M)$ for every $S \in R\text{-simp}$, $\text{soc}(M)$ is the least essential element of $S_{fi}(M)$, and $e_M(\tau_D) = \text{soc}(M)$.
(f) For every $\tau \in R\text{-tors}$, $t_\tau = \alpha^M_{t_\tau(M)}$.
(g) For every $I \in S_{fi}(R)$, $\alpha^R_I = \alpha^M_{IM}$.
(h) If M is projective, then, for every $\tau \in R\text{-tors}$, $t_\tau = \alpha^R_{t_\tau(R)}$.

Mappings between $S_{fi}(M)$ and R-ler

Theorem

For a ring R, the following statements are equivalent.

(a) R is semisimple.

(b) R-trad = R-ler.

(c) For every projective generator P, $\lambda_P : S_{fi}(P) \rightarrow R$-ler is well-defined and a lattice isomorphism.

(d) $\lambda_R : S_{fi}(R) \rightarrow R$-ler is well-defined and a lattice isomorphism.

(e) There is some projective module P such that $\lambda_P : S_{fi}(P) \rightarrow R$-ler is well-defined and a lattice isomorphism.
Thank you!
References

