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All rings are associative

R - Brown-McCoy radical ring - R cannot be mapped
homomorphically onto a ring with unity

R - Jacobson radical ring - for every a ∈ R there is a′ ∈ R such that
a + a′ + aa = a + a′ + a′a = 0

R - nil ring - for any element a ∈ R there is n such that an = 0

R - locally nilpotent ring - any subring of R generated by finitely
many elements is nilpotent

R - prime radical ring - any sequence a0, a1, a2, . . . is eventually zero
where ai+1 ∈ aiRai

R - with bounded index of nilpotence - there is n such that an = 0
for any a ∈ R
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(A. A. Klein) If R has bounded index of nilpotence then R[x ] has the
same property.

(Amitsur) R is prime radical ⇒ R[x ] is prime radical

R is locally nilpotent ⇒ R[x ] is locally nilpotent

(A. Smoktunowicz) There exists a nil algebra R over a countable field
such that the polynomial ring R[x] is not nil

Koethe’s Problem: Is R[x ] Jacobson radical if R is nil?
(Amitsur: J(R[x ]) = I [X ] for the nil ideal I = J(R[x ]) ∩ R of R)

R being Jacobson radical does not implies that R[x ] is Jacobson
radical

(Puczylowski, Smoktunowicz) If R is nil then R[x ] is Brown-McCoy
radical
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Let R be a ring. A homomorphism of the additive group of R,
δ : R → R, which satisfies δ(ab) = δ(a)b + aδ(b) for any a, b ∈ R,
is called a derivation on R.

Let R be a ring and let δ be a derivation on R. Consider the set
R[x ; δ] of all polynomials anx

n + an−1x
n−1 + . . .+ a0. With natural

addition and multiplications defined using the rule

xa = ax + δ(a)

R[x ; δ] has a structure of a ring and is called the differential
polynomial ring (Ore extension).
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Question (I. Shestakov): Let R be a locally nilpotent ring with a
derivation δ. Is then R[x ; δ] Jacobson radical ring?

Answer (Smoktunowicz, Z.): There exists a graded locally nilpotent
algebra R and a derivation δ of R such that R[x ; δ] is not Jacobson
radical.

Question (Smoktunowicz, Z.): What about Shestakov’s question if
additionally we assume that R is PI?

Answer (Bell, Madill, Shinko): If R is locally nilpotent and PI and δ
is a derivation of R, then R[x ; δ] is locally nilpotent

(Nielsen, Z.): If R is a ring with bounded index of nilpotence, then
R[x , δ] is locally nilpotent

(Nielsen, Z.): There exists a commutative ring R with bounded index
of nilpotence and a derivation δ of R such that R[x ; δ] is not prime
radical
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Question: Let R be a prime radical ring with a derivation δ. Is then
R[x ; δ] Jacobson radical?
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(Ferrero, Kishimoto, Motose):

J(R[x ; δ]) = I [x ; δ]

where I = J(R[x ; δ]) ∩ R

Is I always nil?

YES! If R is commutative (Ferrero et al.), right Noetherian (D.
Jordan), ...

Answer is ”NO” in general!

(Smoktunowicz, 2015) There exists a ring R and a derivation δ of R
such that I = J(R[x ; δ]) ∩ R is not nil.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 9 / 10



(Ferrero, Kishimoto, Motose):

J(R[x ; δ]) = I [x ; δ]

where I = J(R[x ; δ]) ∩ R

Is I always nil?

YES! If R is commutative (Ferrero et al.), right Noetherian (D.
Jordan), ...

Answer is ”NO” in general!

(Smoktunowicz, 2015) There exists a ring R and a derivation δ of R
such that I = J(R[x ; δ]) ∩ R is not nil.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 9 / 10



(Ferrero, Kishimoto, Motose):

J(R[x ; δ]) = I [x ; δ]

where I = J(R[x ; δ]) ∩ R

Is I always nil?

YES! If R is commutative (Ferrero et al.), right Noetherian (D.
Jordan), ...

Answer is ”NO” in general!

(Smoktunowicz, 2015) There exists a ring R and a derivation δ of R
such that I = J(R[x ; δ]) ∩ R is not nil.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 9 / 10



(Ferrero, Kishimoto, Motose):

J(R[x ; δ]) = I [x ; δ]

where I = J(R[x ; δ]) ∩ R

Is I always nil?

YES! If R is commutative (Ferrero et al.), right Noetherian (D.
Jordan), ...

Answer is ”NO” in general!

(Smoktunowicz, 2015) There exists a ring R and a derivation δ of R
such that I = J(R[x ; δ]) ∩ R is not nil.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 9 / 10



(Ferrero, Kishimoto, Motose):

J(R[x ; δ]) = I [x ; δ]

where I = J(R[x ; δ]) ∩ R

Is I always nil?

YES! If R is commutative (Ferrero et al.), right Noetherian (D.
Jordan), ...

Answer is ”NO” in general!

(Smoktunowicz, 2015) There exists a ring R and a derivation δ of R
such that I = J(R[x ; δ]) ∩ R is not nil.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 9 / 10



THANK YOU FOR YOUR ATTENTION.

M. Ziembowski (WUoT) On radicals of differential polynomial rings Lens 09.06.2015 10 / 10


