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Algebraic Properties of Division Rings
in Terms of Commutators

Mehdi Aaghabali

The University of Edinburgh, Edinburgh, Scotland

a joint work with

S. Akbari1, M.H. Bien2

1Sharif University of Technology, Tehran, Iran
2University of Architecture, HCM City, Vietnam

Abstract

Let D be a division algebra with center F and K a (not necessarily
central) subfield of D. An element a ∈ D is called left algebraic (resp. right
algebraic) over K, if there exists a non-zero left polynomial a0 + a1x+ · · ·+
anx

n (resp. right polynomial a0 + xa1 + · · ·+ xnan) over K such that a0 +
a1a+· · ·+anan = 0 (resp. a0+aa1+· · ·+anan). Bell et al proved that every
division algebra whose elements are left (right) algebraic of bounded degree
over a (not necessarily central) subfield must be centrally finite. In this
paper we generalize this result and prove that every division algebra whose
all multiplicative commutators are left (right) algebraic of bounded degree
over a (not necessarily central) subfield must be centrally finite provided
that the center of division algebra is infinite. Also, we show that every
division algebra whose multiplicative group of commutators is left (right)
algebraic of bounded degree over a (not necessarily central) subfield must
be centrally finite. Among other results we present similar result regarding
additive commutators under certain conditions.

Keywords

division algebra, commutators, Laurent polynomial identity, maximal subfield,
left algebraic.
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Generalized Hereditary Noetherian Prime Rings

Evrim Akalan

Hacettepe University, Ankara, Turkey

a joint work with

H. Marubayashi1, A. Ueda2

1 Naruto University of Education, Tokushima, Japan
2 Shimane University, Shimane, Japan

Abstract

In this talk, we will introduce generalized hereditary noetherian prime
rings (G-HNP rings for short) which generalizes the class of hereditary
noetherian prime (HNP rings for short) rings. We will describe the struc-
ture of projective ideals of G-HNP rings and some over rings of G-HNP rings.
Examples will be given to illustrate and delimit the theory.

Keywords

HNP Rings, projective ideals, invertible ideals.
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C4- and D4-Modules via Perspective Submodules

M. Altun-Özarslan

Hacettepe University, Ankara, Turkey

a joint work with

Y. Ibrahim1, A. Ç. Özcan2, & M. Yousif.3

1Cairo University, Giza, Egypt
2Hacettepe University, Ankara, Turkey
3The Ohio State University, Ohio, USA

Abstract

A right R-module M is said to be a C4-module if for every decomposition
M = A ⊕ B and every homomorphism f : A → B with ker f ⊆⊕ A, then
Imf ⊆⊕ B. A C4-module has a natural dual which is called a D4-module. In
this work, we continue the study of C4- and D4-modules, providing several
new characterizations and results on the subject. Endomorphism rings of
C4-modules and extensions of right C4-rings are also investigated. Decom-
positions of C4-modules with restricted ACC on summands and D4-modules
with restricted DCC on summands are obtained.

Keywords

C4- and D4-modules, C3- and D3-modules, Perspective submodules.
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Dual Zariski Topology Of Modules

Mustafa ALKAN

Akdeniz University, Antalya-Turkey

a joint work with

Seçil ÇEKEN

İstanbul Aydın University, Istanbul-Turkey

Abstract

Let R be a commutative ring with identity and Specs(M) denote the
set all second submodules of an R-module M . In this talk, we investigate
the dual Zariski topology on Specs(M), denoted by τs, from the point of
view of seperation axioms, spectral spaces and combinatorial dimension. We
prove that there are some relationships between divisible submodules of M
and T0-ness of (Specs(M), τs). We investigate when (Specs(M), τs) is T0 for
injective modules M and weak comultiplication modules M . We also give
some results concerning T1-ness and T2-ness of (Specs(M), τs) for a module
M over a Dedekind domain R. Furthermore, we study some conditions under
which (Specs(M), τs) is a spectral space for modules M over some special
rings such as Dedekind domains, one-dimensional domains and rings with
Noetherin spectrum. Finally, we study on the combinatorial dimension of
(Specs(M), τs) for a secondful module M .

Keywords

Second submodule, Cotop module, Dual Zariski topology.
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On Generalized Perfect Rings

Pınar Aydoğdu

Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

a joint work with

Dolors Herbera1

1Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193
Bellaterra (Barcelona)

Abstract

Inspired by the fundamental work of Bass [2] on perfect rings and pro-
jective covers, A. Amini, B. Amini, M. Ershad and H. Sharif proposed in [1]
to study a class of rings that they named generalized perfect rings.

Let R be a ring, and let F and M be right R-modules such that FR is
flat. Following [1], a module epimorphism f : F → M is said to be a G-flat
cover of M if Ker (f) is a small submodule of F . Still following [1], a ring
R is called right generalized perfect (right G-perfect, for short) if every right
R-module has a flat cover. A ring R is called G-perfect if it is both left and
right G-perfect. It is clear from the definition that right perfect rings are
right G-perfect rings, and also that von Neumann regular rings are G-perfect
rings.

A celebrated result by Bican, El Bashir and Enochs [3] shows that any
module has a flat cover. The relation between G-flat covers and flat covers
(if any!) is quite unclear. In the case of perfect rings they coincide, and in
the case of von Neumann regular rings flat covers are trivially G-flat covers
but, in general, the converse is not true [1] (it happens that flat covers are
unique up to isomorphism, while G-flat covers are not!).

Looking for a characterization of G-perfect rings, it was showed in [1] that
if R is right G-perfect, then the Jacobson radical J(R) is right T -nilpotent
and, hence, idempotents lift modulo J(R). Moreover, it was also proved
that if R is right duo (i.e. all right ideals are two-sided ideals) and right
G-perfect, then R/J(R) is von Neumann regular. It was claimed that it was
reasonable to conjecture that a right G-perfect ring is von Neumann regular
modulo the Jacobson radical. In this work, we answer this conjecture in
the negative by constructing semiprimitive G-perfect rings that are not von
Neumann regular.

Our examples are built using the following well-known pattern: let S ↪→
T be a ring inclusion, and consider the ring

R = {(x1, x2, . . . , xn, x, x, . . .)|n ∈ N, xi ∈ T, x ∈ S} ⊆ TN.

Such a construction appears quite frequently in the literature. Our new
input is the study of its category of modules. To do that it is very useful
to consider a family of TTF-triples associated to such type of rings that
relates the category of modules over R with the categories of T -modules and
of S-modules. We show that if S is right G-perfect and T is von Neumann
regular, then R is also right G-perfect. We also show that if flat covers of
S-modules are G-flat covers, then the same is true for R.
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Keywords

Flat covers, Generalized perfect rings
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Classical left regular left quotient ring of a ring
and its semisimplicity criteria

V. V. Bavula

University of Sheffield, Sheffield, UK

Abstract

Let R be a ring, CR and ′CR be the set of regular and left regular elements
of R (CR ⊆ ′CR). Goldie’s Theorem is a semisimplicity criterion for the
classical left quotient ring Ql,cl(R) := C−1

R R. Semisimplicity criteria are
given for the classical left regular left quotient ring ′Ql,cl(R) := ′C−1

R R. As
a corollary, two new semisimplicity criteria for Ql,cl(R) are obtained (in the
spirit of Goldie).

Keywords

Goldie’s Theorem, the classical left quotient ring, the classical left regular left
quotient ring.
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On (f, σ, δ)-Codes over finite commutative rings

Mhammed Boulagouaz

Department of Mathematics, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia

Abdulaziz Deajim

Department of Mathematics, King Khalid University,P.O. Box 9004, Abha, Saudi Arabia

Abstract

Boulagouaz and Leroy (2013) used skew-polynomial rings (a.k.a Ore poly-
nomial rings) to introduce the notion of (f, σ, δ)-codes over a finite ring R,
which generalizes the classical linear cyclic, constacyclic, skew-cyclic, and
skew-constacyclic codes over finite fields and rings. However, some work re-
mained to be done to fully compute generating and control matrices of such
codes. We settle this issue here by giving recursive formulas that calculate
all entries of such matrices. When a code is (f, σ, δ)⊥-codes ( That is the case
if R is a finite quasi Frobenius ring), δ = 0 and f(X) = Xn − λ (so that the
code is a classical skew-cyclic one), we use our formulas to explicitly deduce
a known control matrix of the code in order to highlight the generalizing side
of our computations.

Keywords

Ore polynomial ring, skew linear code, generic and control matrices, pseudo
linear transformation, quasi Frobenius ring. .
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Solvable Crossed Product Algebras Revisited

Christian Brown

a joint work with

S. Pumplün

University of Nottingham, England

Abstract

For any central simple algebra over a field F which contains a maximal
subfield M with non-trivial automorphism group G = AutF (M), G is solv-
able if and only if the algebra contains a finite chain of subalgebras which are
generalized cyclic algebras over their centers (field extensions of F ) satisfy-
ing certain conditions. These subalgebras are related to a normal subseries
of G. A crossed product algebra F is hence solvable if and only if it can be
constructed out of such a finite chain of subalgebras. This result was stated
for division crossed product algebras by Petit, and overlaps with a similar
result by Albert which, however, is not explicitly stated in these terms. In
particular, every solvable crossed product division algebra is a generalized
cyclic algebra over F .

Keywords

Skew polynomial ring, skew polynomial, solvable crossed product algebra, gen-
eralized cyclic algebra, cyclic subalgebra, crossed product subalgebra, admissible
group.
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Poor modules with no proper poor direct
summands

Engin Büyükaşık

Izmir Institute of Technology, Department of Mathematics, 35430, Urla, Izmir, Turkey.

a joint work with

Rafail Alizade, Sergio R. López-Permouth & Liu Yang

Abstract

Let R be a ring with an identity element. Given right modules M and
N , M is said to be N -injective if for every submodule K of N and every
morphism f : K → M there is a morphism g : N → M such that g|K = f.
The injectivity domain In−1(M) of M is defined to be the collection of
all modules N such that M is N -injective. For any right R-module M ,
semisimple right modules are contained in In−1(M), and M is injective if and
only if In−1(M) =Mod-R. In [1] , a right module M is called poor if In−1(M)
is exactly the class of semisimple right modules. Poor modules exists over
arbitrary rings. Direct sum of poor modules is poor, and any module having
a poor summand is poor. In this talk we investigate pauper modules i.e.
poor modules with no poor proper direct summands. In contrast to poor
modules, pauper modules do not exist over arbitrary rings. Several classes of
rings that admits pauper modules will be investigated. We shall also discuss
the structure of pauper modules over Noetherian rings. In particular, we
give a complete characterization of pauper abelian groups of torsion-free
rank one.

Keywords

Injective module, poor module, indecomposably poor module.
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On Generalized Weyl Enveloping Algebras

Stefan Catoiu

DePaul University, Chicago, USA

Abstract

There are two explicit methods for generating ideals of the enveloping alge-
bra of the type A1 semisimple Lie algebra sl2: by highest weight elements
relative to the adjoint module structure, introduced by the author, and by
homogenous elements relative to the canonical grading of the generalized
Weyl algebra, introduced by V. V. Bavula. We give a unitary treatment
of these methods in both the classical and quantum type An

1 , that is for
all enveloping algebras and quantized enveloping algebras of semisimple Lie
algebras that are generalized Weyl algebras.

==============================
=====================

A Generalization of Poor Modules

Yılmaz Mehmet Demirci

Sinop University, Sinop, Turkey

Abstract

Throughout R is an associative ring with identity and all modules are
right and unital unless stated otherwise.

In this work, we define and study impecunious modules. We call an R-
module M impecunious if the injectivity domain of M is contained in the
class of all pure-split R-modules, equivalently if whenever M is N -injective
for an R-module N , then N is pure-split. Every semisimple module is pure-
split and every N -injective R-module is N -pure-injective for an R-module N
which implies that our definition gives a generalization of both poor modules
and pi-poor modules.

Among other results concerning impecunious modules, we show that a
ring R is right pure-semisimple if and only if every R-module is impecunious.

Keywords

Poor module, pure-injectively poor module, impecunious module, pure-split
module.
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On the polynomial representation of the Principal
matrix p-th root

Youness El Khatabi

University Moulay Ismail, Morocco

Abstract

The computation of matrix p-th roots is involved in various applications
of mathematics, such as systems theory, finance and health care. Given a
matrix A ∈Md(C), a matrix X is a p-th root of A if

Xp = A.

When A has no eigenvalues on R− (the closed negative real axis) there exists
a unique matrix X such that Xp = A and the eigenvalues of X lie in the
segment {z; −π/p < arg(z) < π/p} (see [2]), where arg(z) symbolizes the
argument of z. In this case the matrix X is the so-called principal pth root
of the matrix A, and it is denoted as X = A1/p. Besides, the matrix function
f(A) = A1/p is a primary matrix function (see [2] and [3, Ch. 6]), where f
is the complex function f(z) = z1/p defined on its principal branch.

Several works have been carried out on the calculation of matrix p-th
roots, using specifically numerical methods. In this research we are particu-
larly interested in the polynomial representation of the principal matrix p-th
root, of non-singular matrices, using some fundamental properties of matrix
functions and generalized Fibonacci sequences.

Keywords

Principal Matrix pth root, Matrix function, Generalized Fibonacci Sequence,
Binet formula.
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On images of linear maps with skew derivations

Mnevver Pınar EROĞLU

Dokuz Eylul University, Izmir, Turkey

a joint work with

Tsiu-Kwen LEE

National Taiwan University, Taipei, Taiwan

Abstract

Motivated by the Skolem-Noether theorem, in [1] given a nonzero derivation
δ of a simple GPI-ring R we characterize linear differential maps φ : x 7→∑

j ajδ
j(x) for x ∈ R, where Q is Martindale symmetric ring of quotients of

R and aj ’s are finitely many elements in Q, such that φ(R) ⊆ [R,R]. These
results also are described and proved in terms of polynomials in Q[t; δ], the
Ore extension of Q by the derivation δ. In this talk, our aim is to generalize
the results in [1] to the skew case. We use a more general notion introduced
in [4] for quasi-algebraic skew derivations which is suitable for our purpose
in this work.

Keywords

Simple GPI-ring, σ-derivation, Martindale symmetric ring of quotients, quasi-
algebraic, associated polynomial.
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Modules with chain conditions up to isomorphism

A. Facchini

Padova University, Padova, Italy

a joint work with

Z. Nazemian1

1Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

The content of the first of the two papers in the references will be pre-
sented. The second paper will be presented by my coauthor. We have
studied modules with chain conditions up to isomorphism, in the following
sense. Let R be a ring and M be a right R-module. We say that M is isoar-
tinian if, for every descending chain M ≥ M1 ≥ M2 ≥ . . . of submodules
of M , there exists an index n ≥ 1 such that Mn is isomorphic to Mi for
every i ≥ n. Dually, we say that M is isonoetherian if, for every ascending
chain M1 ≤M2 ≤ . . . of submodules of M , there exists an index n ≥ 1 such
that Mn

∼= Mi for every i ≥ n. Similarly, we say that M is isosimple if it is
non-zero and every non-zero submodule of M is isomorphic to M . We study
these three classes of modules, determining a number of their properties.
The results we obtain give a good description of these modules and often
have a surprising analogy with the “classical” case of artinian, noetherian
and simple modules. For instance, we prove that any isoartinian module
contains an essential submodule that is a direct sum of isosimple modules.
The endomorphism ring of an isosimple module MR is a right Ore domain E,
whose principal right ideals form a noetherian modular lattice with respect
to inclusion. We say that a ring R is right isoartinian if the right module
RR is isoartianian. Several results will be presented.

Keywords

Chain conditions.
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Skew cyclic codes: Hamming distance and
decoding algorithms

J. Gómez-Torrecillas

Department of Algebra and CITIC, University of Granada, Granada, Spain

a joint work with

F. J. Lobillo1, G. Navarro2,

1Dept. of Algebra and CITIC, University of Granada, Granada, Spain
2Dept. of Computer Science and AI, and CITIC, University of Granada,

Granada, Spain

Abstract

Cyclic structures on convolutional codes were first considered in [9]. From
a pure mathematical perspective, these cyclic convolutional codes are un-
derstood as left ideals of an Ore extension of a finite algebra. This idea has
been developed, for example, in [10], [2], [8], [6]. In [3], an alternative way
to endow convolutional codes with cyclic structures is proposed. Thus, skew
cyclic convolutional codes are understood as left ideals of a suitable factor
ring of a skew polynomial ring with coefficients in the rational function field
of a finite field. The proposal to build skew cyclic block codes by using
skew polynomials with coefficients in a finite field was started in [1]. By
a careful choice of the non-commutative roots of the generator polynomial,
skew Reed-Solomon convolutional codes were constructed and studied in [4],
and they were proved to be MDS, with the help of the theory developed in
[7]. Also, a Sugiyama like decoding algorithm, based on a noncommutative
version of the “key equation”, is proposed. Indeed, these ideas work over
an abstract field, so that they can be successfully applied also to skew RS
block codes. This is made explicit in [5], where a noncommutative version
of Peterson-Gorenstein–Zierler decoding algorithm is designed. The aim of
this talk is to describe some of these ideas and constructions.

Keywords

Skew polynomial ring, skew RS code, skew convolutional code, MDS code,
decoding algorithm.
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Injective Hulls of Simple Modules Over Nilpotent
Lie Color Algebras

Can Hatipoglu

American University of the Middle East, Egaila, Kuwait

Abstract

Using cocycle twists for associative graded algebras, we characterize finite
dimensional nilpotent Lie color algebras L graded by arbitrary abelian groups
whose enveloping algebras U(L) have the property that the injective hulls of
simple right U(L)-modules are locally Artinian.

Keywords

Lie color algebras, graded algebras, enveloping algebras.
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Nondistributive rings

Ma lgorzata E. Hryniewicka

Institute of Mathematics, University of Bia lystok, Bia lystok, Poland

Abstract

Referring to a graduate course in Abstract Algebra, by a ring we mean
a set R of no fewer than two elements, together with two binary operations
called the addition and multiplication, in which (1) R is an abelian group
with respect to the addition, (2) R is a semigroup with unit with respect to
the multiplication, (3) (r+s)t = rt+st and r(s+t) = rs+rt for any r, s, t ∈ R.
A nearring N is a generalization of a ring, namely the addition needs not be
abelian and only the right distributive law is required, additionally the left
distributive law is replaced by n0 = 0 for every n ∈ N . The last postulate
means that we require a nearring to be zerosymmetric. The talk is intended
as a discussion on sets N satisfying the nearring axioms except the right
distributive law, which we replace by 0n for every n ∈ N .
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===================
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On radicals of graded ring constructions

Emil Ilić-Georgijević

University of Sarajevo, Bosnia and Herzegovina

Abstract

In this talk by a graded ring we mean a ring which is a direct sum of
a family of its additive subgroups such that the product of homogeneous
elements is again homogeneous. We extend already known construction of
the graded polynomial ring over a graded ring to other graded ring construc-
tions and observe their radicals with emphasis on the incidence ring of group
automata over a graded ring.

Keywords

Graded rings, semigroup rings, incidence rings of group automata, radical.
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Rings and modules characterized by opposites of
Absolute Purity

Gizem Kafkas Demirci

Izmir Institute of Technology, Izmir, Turkey

a joint work with

Engin Büyükaşık

Izmir Institute of Technology, Izmir, Turkey

Abstract

The purpose of this talk is to mention the study of an alternative per-
spective on the analysis of the absolute purity of a module. Our study
follows a pattern which has been somewhat established in previous studies
so called test module for injectivity by subinjectivity (t.i.b.s.) and indigent
modules(see [1], [2]).

Given a right R-module M and a left R-module N , the module M is said
to be absolutely N -pure if M ⊗N → K ⊗N is monic for each extension K
of M . For a right module M , the subpurity domain of M is defined to be the
collection of all left modules N such that M is absolutely N -pure (see [3]).
M is absolutely pure if and only if its subpurity domain consists of the entire
class R −MOD. As an opposite to absolute purity, a module M is called
sp-poor if its subpurity domain is as small as possible, namely, consisting of
exactly the flat left modules. Rings all of whose modules are sp-poor are
shown to be precisely the von Neumann regular rings.

For a right Noetherian ring R we prove that every simple right R-module
is sp-poor or absolutely pure if and only if R is a right V -ring or R ∼= A×B,
where A is right Artinian with a unique non-injective simple right R-module
and Soc(AA) is homogeneous and B is semisimple. We also prove necessary
conditions for a right Noetherian ring whose (cyclic, finitely generated) right
modules are sp-poor or absolutely pure.

A domain R is Prüfer if and only if each finitely generated ideal is sp-poor.
Finally, we give a characterization of sp-poor modules over commutative
hereditary Noetherian rings. It is proved that an R-module N is sp-poor
if and only if Hom(N/Z(N), S) 6= 0 for each singular simple R-module S,
where Z(N) is the singular submodule of N .

Keywords

Absolutely pure modules, Injective modules, Flat modules.

18



References
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On strongly π-extending modules

Yeliz Kara
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a joint work with
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Abstract

A module M is called π-extending provided that every projection invari-
ant submodule of M (i.e., a submodule which is invariant under all idem-
potent endomorphisms of M) is essential in a direct summand. We focus
on strongly π-extending modules which is a proper subclass of π-extending
modules. We obtain that strongly π-extending modules behave better than
π-extending modules in some special module theoric cases.

Keywords Extending modules, projection invariant, π-extending module.
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Quasi-Euclidean Rings and Modules

Arda Kör

Gebze Techinal University, Kocaeli, Turkey

a joint work with

André Leroy 11,

1Univeristé d’Artois, Lens, France

Abstract

We relate the notion of quasi-Euclidean rings with other ring theoret-
ical notions such as stable range, von Neumann regularity, unit regularity
and also Bézout and K-Hermite rings. We introduce the notion of quasi-
Euclidean modules and give some of their properties. It is natural to in-
troduce the notion of quasi-Euclidean modules since it is expected to have
more functorial properties (e.g. the submodule and the quotient module of a
Q.E module is Q.E) and, of course, generalizes the notion of quasi-Euclidean
rings.

Keywords Quasi-Euclidean rings, Stable range, von Neumann regularity, Unit
regularity, Bézout ring, K-Hermite ring
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A Perspective On Amalgamated Rings Via
Symmetricity

H. Kose
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Abstract

In this work, we deal with some versions of reversibility and symmetricity
on amalgamated rings along an ideal.
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Keywords

Reversible ring, weakly reversible ring, symmetric ring, GWS ring, amalga-
mated ring along an ideal.
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MacWilliams Extension Theorem for Lee Weight
Isometries
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a joint work with

S. Dyshko1 & J. Wood2

1Toulon University, La Garde, France
2Western Michigan University, Chicago, USA

Abstract

The MacWilliams extension Theorem claims that any isometry of a code
in an Hamming space extends to an isometry of the ambiant space. It is
well known that the extension poperty holds in various situation, typically,
for the codes over finite Frobenius rings equiped of the Hamming distance.
In the two last years, we proved the extension property holds for the codes
over the modular rings equiped of the Lee metric. In my talk, I will give two
proofs in the case of prime fields. The first proof [4] uses classical results of
the theory of Dirichlet L-functions and it can be adapted to the case of a
primary module. The second proof due to Sergey Dyshko [3] involves tricks
from Harmonic analysis and it works for of a composite module.
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Keywords

MacWilliams extension theorem, Isometry, Lee Weight, L-function, Harmonic
analysis. .
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Ring theoretical properties of affine cellular
algebras

Christian Lomp

Porto University, Porto, Portugal

a joint work with
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1Porto University, Porto, Portugal
2University of Stuttgart, Germany
3University of Stuttgart, Germany

Abstract

As a generalisation of Graham and Lehrers cellular algebras, affine cellu-
lar algebras have been introduced by Koenig and Xi in order to treat affine
versions of diagram algebras like affine Hecke algebras of type A and affine
TemperleyLieb algebras in a unifying fashion. Since then several classes of
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algebras, like the Khovanov-Lauda- Rouquier algebras or Kleshchevs graded
quasihereditary algebras have been shown to be affine cellular. In this talk
we will exhibit some ring theoretical properties of affine cellular algebras. In
particular we will show that any affine cellular algebra A satisfies a polyno-
mial identity, from which it follows, in case A is an affine k-algebra over a
field k, that simple modules are finite dimensional. Furthermore, we show
that A can be embedded into its asymptotic algebra if the occurring com-
mutative affine k-algebras Bj are reduced and the determinants of the swich
matrices are non-zero divisors. As a consequence we show that the Gelfand-
Kirillov dimension of A is less or equal to the largest Krull dimension of the
algebras Bj and that equality hold in case all affine cell ideals are idempotent
or if the Krull dimension of the algebras Bj is less or equal to 1. Special
emphasis is given to the question when an affine cell ideal is idempotent,
generated by an idempotent or finitely generated.
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Modules over Infinite Dimensional Algebras

Sergio R. Lopez-Permouth

Ohio University, Athens, USA

a joint work with
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1University of Damman, Damman, Saudi Arabia
2King Abdullaziz University, Jeddah, Saudi Arabia

Keywords Amenable bases, congeniality of bases, proper congeniality, sim-
ple.

Abstract

Let A be an infinite dimensional K- algebra, where K is a field and
let B be a basis for A. In this talk we explore a property of the basis
B that guarantees that KB (the direct product of copies indexed by B of
the field K) can be made into an A-module in a natural way. We call bases
satisfying that property ”amenable” and we show that not all amenable bases
yield isomorphic A-modules. Then we consider a relation (which we name
congeniality) that guarantees that two different bases yield isomorphic A-
module structures on KB . We will look at several examples in the familiar
setting of the algebra K[x] of polynomials with coefficients in K and will
introduce several general interesting questions in that context. Finally, if
time allows, we will mention some results regarding these notions from a
topological perspective.
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Isoradical of modules and modules generated by
isosimple modules

Z. Nazemian

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

a joint work with

A. Facchini1

1 Padova University, Padova, Italy

Abstract

A module M is called isosimple if it is non-zero and every non-zero sub-
module of M is isomorphic to M . For a ring R, the right isoradical I-rad
(RR) of a ring R is defined to be the intersection of the annihilators of all
isosimple right R-modules. Unlike Jacobson radical, which is the intersec-
tion of the annihilators of simple right modules, isoradical of a ring is not
left/right symmetric. We generalize the concept of isoradical from rings to
modules and using that we study modules generated by isosimple modules.
Special cases of such modules are when a module is a sum or a direct sum
of isosimple modules. A module that is a sum of isosimple modules is not
necessarily a direct sum of isosimple modules, but if a module M is a sum
of pairwise non-isomorphic isosimple modules, then the sum is direct. A
ring that is generated by isosimple right modules must be a semiprime right
noetherian ring. It is shown that a ring R is generated by isosimple right
modules if and only if it is a sum of isosimple right ideals, if and only if R
is a finite direct product of prime right noetherian rings that are sums of
isosimple right ideals. We do not know whether such a ring is a direct sum
of isosimple right ideals.

Keywords

Isoradical of modules.
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Euclidean domains – why they are both easier
and harder than you’d think

Pace P. Nielsen
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a joint work with
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1 College of Staten Island, The City University of New York, NY, USA

2 Brigham Young University, Provo, UT, USA

Abstract

Every Euclidean domain has a minimal norm. By allowing transfinite
values, we show that Euclidean domains can have arbitrary indecomposable
ordinal length to their minimal norm, and no other ordinal types are possible.
We also construct a Euclidean domain with no multiplicative integer valued
norm. (This work is joint with Chris Conidis and Vandy Tombs.)

Keywords

Euclidean domain, transfinite norm.
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Introduction to Space-Time Coding

Frédérique Oggier

Division of Mathematical Sciences, Nanyang Technological University, Singapore

Abstract

Space-time coding is a form of coding theory which addresses the design
of matrices with complex coefficients. It is motivated by a communication
scenario appearing in the context of wireless communication. Techniques
from non-commutative algebras have been successfully used to design good
space-time codes.

The course will present an introduction to space-time coding. From an
application view point, it will give some background to explain where space-
time coding comes from, and what are some of the parameters relevant from
a ”practical” view point. From a coding theory view point, code designs
will be given, and connections with classical coding theory (both over finite
fields and over finite rings) will be made. From a mathematical view point,
we will introduce techniques from algebraic number theory, central simple
algebras, and lattice theory.
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Keywords

space-time coding, coding for wireless communications, number fields, lattices,
division algebras
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Neat Homomorphisms over Dedekind Domains

S. Ozdemir
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a joint work with
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Dokuz Eylul University, Izmir, Turkey

Abstract

The study of neat homomorphisms, due to [1] and [2], originated with
a generalization of neat subgroups and torsion free covers of modules. One
characterization of neat homomorphisms given in [2] is as follows. A homo-
morphism f : M → N of modules is neat in the sense of Enochs (we call
E-neat homomorphism) if and only if there are no proper extensions of f in
the injective envelope of M . In [3], Zöschinger gave some characterizations
of E-neat homomorphisms for abelian groups. Considering one of these char-
acterizations, we define Z-neat homomorphisms in general for modules over
arbitrary rings. We call a homomorphism f : M → N of modules Z-neat if
Im f is closed in N and ker f ⊆ Rad M . In this presentation, we prove that
E-neat homomorphisms and Z-neat homomorphisms coincide over Dedekind
domains.

Keywords
Neat homomorphisms, Dedekind domains.
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Semisimple Hopf actions and factorization
through group actions
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a joint work with
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Abstract

Let H be a Hopf algebra over a field F acting on an algebra A. Let
I ⊆ AnnH(A) be a Hopf ideal of H, then one says that the action of H on A
factors through the quotient Hopf algebra H/I. If there exists I ⊆ AnnH(A)
such that H/I ∼= F [G], for some group G, we say that the action of H on
A factors through a group action. In 2014, Etingof and Walton have shown
that any semisimple Hopf action on a commutative domain factors through
a group action [2]. Also in 2014, using their previous result, Cuadra, Etingof
and Walton showed that any action of a semisimple Hopf algebra H on the
nth Weyl algebra A = An(F ), with char(F ) = 0, factors through a group
action [1].

In this talk we will briefly present a generalization of Cuadra, Etingof
and Walton’s result. Namely, that any action of a semisimple Hopf algebra
H on an iterated Ore extension of derivation type in characteristic zero
factors through a group action [3]. We also present a work in progress on
semisimple Hopf algebra actions on the quantum polynomial algebras which
do not factor through a group actions.

This talk is all based on my upcoming Ph.D. Thesis under the supervision
of Christian Lomp.

Keywords

Semisimple Hopf Algebras, Hopf actions, Factorization.
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On Dual Automorphism Modules
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Abstract

Let M and N be two right R-modules. We call M dual automorphism
N -invariant if whenever K1 is a small submodule of M and K2 is a small
submodule ofN , then any epimorphism p : M/K1 → N/K2 with small kernel
lifts to a homomorphism ϕ : M → N . Let π1 : P1 → M and π2 : P2 → N
be projective covers. We prove that M is dual automorphism N -invariant if
and only if σ(Ker(π1)) ≤ Ker(π2) for any isomorphism σ : P1 → P2. We
call M an s-ADS-module if for every decomposition M = S ⊕ T of M and
every supplement T ′ of S with T ′ + T = M and (T ∩ T ′) � M , we have
M = S⊕T ′. It is shown that an amply supplemented R-module M is s-ADS
if and only if for each decomposition M = A ⊕ B, A and B are relatively
dual automorphism invariant.

Keywords Dual automorphism-invariant module, pseudo-projective module,
ADS-modules
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Southeast University, Nanjing, China

a joint work with
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Abstract

Let R be an associative ring with identity. An R-module M is called
an NCS module if C(M) ∩ S(M) = {0}, where C(M) and S(M) denote
the set of all closed submodules and the set of all small submodules of M
respectively. It is clear that the NCS condition is a generalization of the
well-known CS condition. Properties of the NCS conditions of modules and
rings are explored in this article. In the end, it is proved that a ring R
is right Σ-CS if and only if R is right perfect and right countably Σ-NCS.
Recall that a ring R is called right Σ-CS if every direct sum of copies of RR

is a CS module. And a ring R is called right countably Σ-NCS if every direct
sum of countable copies of RR is an NCS module.

Keywords

NCS modules, NCS rings, CS rings, Σ-CS rings, countably Σ-NCS rings.
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Abstract

Let R be a commutative ring with unity, M a module over R and let
S be a G−set for a finite group G. We denote a set MS to be the set
of elements expressed as the formal finite sum of the form

∑
s∈S

mss where

ms ∈M . The setMS is a module over the group ring RG under addition and
scalar multiplication similar to the RG–module MG. (MS)RG generalizes
the notion of RG–module MG defined by Kosan, Lee and Zhou in [6]. In this
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paper, we establish some properties of (MS)RG. In particular, we describe
a method for decomposing a given RG–module MS as a direct sum of RG–
submodules. In addition, we prove the semisimplicity problem of (MS)RG

with regard to the properties of MR, S and G.
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Abstract

In this talk, we will generalize the classical Reed Mueller codes using
iterated skew polynomial rings instead of classical commutative polynomial
rings.
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Abstract

In this talk we will present the following result: if F is any field and R
any F -subalgebra of the algebra Mn(F ) of n × n matrices over F with Lie
nilpotence index m, then

dimFR ≤M(m+ 1, n)

where M(m+ 1, n) is the maximum of 1
2

[
n2 −

∑m+1
i=1 k2i

]
+ 1 subject to the

constraint
∑m+1

i=1 ki = n and k1, k2, . . . , km+1 nonnegative integers. The
case m = 1 reduces to a classical theorem of Schur (1905), later generalized
by Jacobson (1944) to all fields, which asserts that if F is an algebraically
closed field of characteristic zero, and R is any commutative F -subalgebra of

Mn(F ), then dimFR ≤
⌊

n2

4

⌋
+ 1. Examples constructed from block upper

triangular matrices show that the upper bound of M(m + 1, n) cannot be
lowered for any choice of m and n.
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