Commutators in Division Algebras

Mehdi Aaghabali

School of Mathematics, The University of Edinburgh,
James Clerk Maxwell Building
Edinburgh, UK
Contents

1 Introduction and Basic Definitions

2 Generating Properties of Commutators

3 Commutativity Conditions on Commutators

4 Algebraic Conditions on Commutators
A Question!

Consider a special property P in a ring:

- Commutativity
- Algebraicity

Whether one can specify a set or a substructure S, such that the property P for S implies the property P for the whole ring.
\textbf{Set of Generators}

\begin{itemize}
 \item Question 1:
 \begin{align*}
 \text{Let } A \text{ be an algebraic structure generated by set } S. \text{ Whether property } P \text{ for } S \text{ implies property } P \text{ for } A?
 \end{align*}
 \item Question 2:
 \begin{align*}
 \text{Let } A \text{ be an algebraic structure generated by set } S. \text{ Whether property } P \text{ for } S \text{ implies property } Q \text{ for } A?
 \end{align*}
\end{itemize}
Candidates for S

- **General Division Algebras**
 - Multiplicative and additive commutators
 - Subgroups D' and $[D, D]$.
 - Normal subgroups of D^*.

- **Division Algebras with Involutions**
 - Symmetric elements
 - Skew-symmetric elements
 - Unitary elements.
Some Basic Definitions

Let \(D \) be a division algebra over its center \(F \).

Definition

- Denote by \(D' \) the multiplicative subgroup of \(D^* \) generated by the all multiplicative commutators of \(D \).

Definition

- Denote by \([D,D]\) the additive subgroup of commutators generated by the all additive commutators of \(D \).

Definition

- Denote by \(T(D) \) the vector space generated by the all multiplicative commutators over \(F \).
Some Definitions

Let D be division ring with center F.

Definition
- We say A is **radical** over B if for every element $a \in A$ there exists integer $n = n(a)$ such that $a^n \in B$.

Definition
- Element $a \in A$ is called **periodic** if there exists integer n such that $a^n = 1$.

Definition
- Element $a \in A$ is called **algebraic** of degree n over center if satisfies a polynomial $f(x) \in F[x]$ of degree n.
Commutators in Division Rings

and

Their Generating Role
Commutators as Generators

"first course in non-commutative rings" due to T.Y. LAM

Theorem (Corollary 13.19, p. 211)

Let D be a non-commutative division ring with center F. Then D is generated as an F-algebra by all **additive commutators** of D.

Theorem (Corollary 13.9, p. 207)

A non-commutative division ring D is generated as a **division ring** by all of its **multiplicative commutators**.

Conjecture (M.A, Akbari-Arianejad-Madadi)

A division ring D with center F is generated as a **vector space** over F by all of its **multiplicative commutators**.
Theorem (M.A., Akbari-Ariannejad-Madadi)

If D is algebraic with characteristic zero, then $T(D) = D$.
Let K/F be a field extension with $\text{dim}_F K = n$. For $a \in K$, define

$$L_a : K \to K,$$

where $L_a(b) = ab$.

Definition

The Trace function is defined for all $a \in K$ by

$$T_{K/F}(a) = \text{Tr}(L_a).$$
Theorem

Let K/F be a field extension with $\dim_F K = n$ and

$$f(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_1x + b_0$$

be the minimal polynomial of $a \in K$. Then

$$T_{K/F}(a) = -\frac{n}{m}b_{m-1}.$$
Wedderburn’s Theorem

Theorem (Wedderburn)

Let D be a division ring with center F.

$a \in D^\ast$ be algebraic with minimal polynomial $f(x) \in F[x]$ of degree n.

Then

$$f(x) = (x - a_1) \ldots (x - a_n) \in D[x].$$

Remark

Note that linear factors are not unique!
Trace Formula

Let \(a \in D^* \) be algebraic with minimal polynomial

\[
f(x) = (x - a) \ldots (x - a_{n-1}) \in D[x].
\]

Then

\[
T_{F(a)/F(a)} = a + a_1 + \ldots + a_{n-1} = a + d_1 a d_1^{-1} + \ldots d_{n-1} a d_{n-1}^{-1}
\]

\[
= a(1 + a^{-1} d_1 a d_1^{-1} + a^{-1} d_2 a d_2^{-1} + \ldots + a^{-1} d_{n-1} a d_{n-1}^{-1})
\]

\[
= ad,
\]

where \(d \in F(a) \cap T(D) \).

Theorem (M.A., Akbari-Arianejad-Madadi)

Let \(a \in D \) be algebraic and \(T_{F(a)/F(a)} \neq 0 \), then \(a^{-1} \in T(D) \).
\textbf{T(D) as Lie Ideal}

\textbf{Theorem (M. Aaghabali)}

- Let D be an \textbf{algebraic} non-commutative division ring with center F. Then $T(D)$ is a \textbf{non-central Lie ideal} of D.

\textbf{Theorem (M. Aaghabali)}

- Let D be a \textbf{centrally finite} division ring over F. Then $T(D) = D$.

Theorem (M.A., Akbari-Ariannejad-Madadi)

Let D be a division ring with center F. If $\dim_F T(D) = n < \infty$, then $\dim_F D < \infty$.
Commutators in Division Rings

Commutators in Division Rings

and

Commutativity Conditions
Two Important Commutativity Conditions

Theorem (Wedderburn’s Little Theorem)

- Every finite division ring is commutative.

Theorem (Kaplansky)

- If D is a division ring radical over its center, then D is commutative.
Finiteness Conditions

Theorem (Herstein-Procesi-Schacher)

If D is a division ring with center F whose all additive commutators are radical over the center, then

$$\dim_F D \leq 4$$
Conjecture (Herstein)

- Every division ring whose all multiplicative commutators are radical over its center must be commutative.

- **General case is still open!**

- **Herstein (1978):** Statement holds when commutators are periodic.

- **Herstein (1978):** Statement holds for centrally finite division rings.

\[\dim_{F} D = n^2 \leq \infty. \]
Commutativity Conditions

- **Herstein (1980):** Statement holds for division rings with uncountable centers.

- **Putcha-Yaqub (1974):** The conjecture is true if the radical degree is a power of 2.

- **Mahdavi-Akbari (1996):** The conjecture is true if the radical degree is a power of 6.
Herstein Conjecture (Special Case)

Theorem (Mahdavi (1995))

Let D be an algebraic division algebra over its center F. If D' is radical over the center, then D is commutative.

Theorem (Mahdavi (1995))

Let D be a division algebra over its center F. If D' is radical over the center, then D is commutative.
Theorem (M.A., Akbari-Ariannejad-Madadi)

Let D be a division algebra over its center F. If $T(D)$ is radical over the center, then D is commutative.
Jacobson Theorem

Theorem (Jacobson)

- Every division algebra algebraic over a finite field is commutative.

Theorem (Mahdavi (1996))

- Every division algebra whose multiplicative group of commutators is algebraic over a finite field is commutative.
Noether-Jacobson Theorem

Theorem (Noether-Jacobson)
- Every non-commutative algebraic division ring over its center contains a non-central separable element.

Theorem (Mahdavi (1995))
- Every non-commutative algebraic division ring over its center contains a non-central separable element in its multiplicative subgroup of commutators.
Commutators in Division Rings

and

Algebraicity Conditions
Let D be a division ring:

- **Multiplicative Commutators**
- **Additive Commutators**
- **Subgroups** D' and $[D, D]$

Whether one can deduce algebraicity of D over center if mentioned sets and structures are algebraic over the center.
Algebraicity of D' and $[D, D]$

Theorem (Akbari-Mahdavi (1996))

- Let D' be algebraic over the center, then D is algebraic over the center.

Theorem (Akbari-Ariannejad-Mehraabaadi (1998))

- Let $[D, D]$ be algebraic over the center, then D is algebraic over the center, provided $\text{char}(D) = 0$.
Algebraic commutators

Theorem (M.A., Akbari-Ariannejad-Madadi)

- Let \(D \) be a division algebra over its center \(F \). If all multiplicative commutators are algebraic over \(F \), then \(D \) is algebraic provided that \(F \) is UNCOUNTABLE.

- Assume \(a \in D \setminus F \) and consider \(y \in D^* \) arbitrarily.
- Either \(y \in C_D(a) \) or \(y \notin C_D(a) \).
- \(y \notin C_D(a) \), for every \(r \in F \) we have:

\[0 \neq b = ay - ya = a(y + r) - (y + r)a = (a(y + r)a^{-1}(y + r)^{-1} - 1)(y + r)a \]

- For every \(r \in F \), \((y + r)ab^{-1}\) is algebraic over \(F \).

\[f(t) \in F[t]; \quad f((y + r)ab^{-1}) = 0 \]

- Put \(c = ab^{-1} \), then

\[((y + r)c)^n + \alpha_1((y + r)c)^{n-1} + \cdots + \alpha_{n-1}((y + r)c)^1 + \alpha_n = 0 \]
Algebraic commutators

- \((y + r)(c((y + r)c)^{n-1} + \alpha_1 c((y + r)c)^{n-2}) + \cdots + \alpha_{n-1} c) = -\alpha_n\)

- \(-\alpha_n(y + r)^{-1} = c((y + r)c)^{n-1} + \alpha_1 c((y + r)c)^{n-2}) + \cdots + \alpha_{n-1} c\)

- Assume the set of all words of finite length consisting of two letters \(y, c\).
- Consider vector space generated by the set of all such words.
- Clearly, for every \(r \in F\), we have \((y + r)^{-1} \in W\).
- \(\dim_F W\) is countable but \(F\) is uncountable.
Algebraic commutators

- hence we could find that \((y + r_1)^{-1}, \ldots, (y + r_m)^{-1} \) are linearly dependent over \(F \).

Theorem

Let \(D \) be a division algebra and \(K \) be a subfield of \(D \). For \(a \in D \), if \(\text{dim}_K K[a] \geq n \), then for any distinct elements \(\alpha_1, \ldots, \alpha_n \in Z(D) \), \((a - \alpha_1)^{-1}, \ldots, (a - \alpha_n)^{-1} \) are linearly independent.

- thus \(y \) is algebraic.
- now, assume \(y \in C_D(a) \) and \(z \notin C_D(a) \).
- \((y + r)z \notin C_D(a) \), for every \(r \in F \) is algebraic.
- repeating argument for \((y + r)z \) we find that \(y \) is algebraic over \(F \).
Algebraic commutators

Lemma (M.A., Akbari-Ariannejad-Madadi)

- Let D be a division ring with center F, $T(D)$ be Algebraic over F and $Char(D) = 0$. Then for any two Algebraic elements $a, b \in D$, the set $S = \{a + b, aba, a^2b\}$ is Algebraic over F.

Theorem (M.A., Akbari-Ariannejad-Madadi)

- Let D be a division ring with center F and $Char(D) = 0$. Then $T(D)$ is Algebraic over F if and only if D is Algebraic over F.
Algebraic commutators

Theorem (Jacobson)

- Every division ring whose elements are algebraic of bounded degree over its center is centrally finite.

Theorem (Bell-Drensky-Sharifi (2013))

- Every division ring whose elements are left algebraic of bounded degree over a not necessarily central subfield is centrally finite.
Algebraic commutators

Theorem (M.A., Akbari-Bien)

Let D be a division ring with infinite center. If D contains element a such that $xax^{-1}a^{-1}$, for every $x \in D^*$ are left algebraic of bounded degree over a not necessarily central subfield, then D is centrally finite.
Theorem (M.A., Akbari-Bien)

Let D be a division ring with infinite center F and not necessarily central subfield K. If D contains a non-central normal subgroup N left algebraic of bounded degree n over K, then D is centrally finite.
Theorem (M.A., Akbari-Bien)

Let D be a division ring with infinite center and not necessarily central subfield K. Assume that K contains a non-central algebraic element a over the center. If all additive commutators $ax - xa$, for every $x \in D$ are left algebraic of bounded degree over K, then D is centrally finite.
Algebraic commutators

Theorem (M.A., Akbari-Bien)

Let D be a division ring with center F and not necessarily central subfield K. Assume that D' is left algebraic of bounded degree over a K, then D is centrally finite.
Thank you for your attention