On Generalized Perfect Rings

Pınar AYDOĞDU

Hacettepe University / TURKEY

(Joint work with D. Herbera)

12-15 June, 2017
Definitions [A. Amini, B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

- Let F and M be right R-modules such that F_R is flat. A module epimorphism $f : F \to M$ is said to be a G-flat cover of M if $\text{Ker}(f)$ is a small submodule of F.

A ring R is called right generalized perfect (right G-perfect, for short) if every right R-module has a G-flat cover.

A ring R is called G-perfect if it is both left and right G-perfect.
Definitions[A. Amini, B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

- Let F and M be right R-modules such that F_R is flat. A module epimorphism $f : F \to M$ is said to be a $\textit{G-flat cover}$ of M if $\text{Ker}(f)$ is a small submodule of F.
- A ring R is called $\textit{right generalized perfect}$ (right G-perfect, for short) if every right R-module has a G-flat cover.
Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

- Let F and M be right R-modules such that F_R is flat. A module epimorphism $f : F \rightarrow M$ is said to be a G-flat cover of M if $\text{Ker}(f)$ is a small submodule of F.
- A ring R is called right generalized perfect (right G-perfect, for short) if every right R-module has a G-flat cover.
- A ring R is called G-perfect if it is both left and right G-perfect.
\begin{itemize}
 \item \{ perfect rings \} \subseteq \{ G\text{-perfect rings} \}
 \item \{ Von Neumann regular rings \} \subseteq \{ G\text{-perfect rings} \}
 \item \{ G\text{-perfect rings} \} is closed under finite products and quotients.
\end{itemize}
Definition (due to Auslander and Enochs)

Let \mathcal{C} be a class of right R-modules, and let M_R be a right R-module. A module homomorphism $f : C \to M$ is a \mathcal{C}-precover of M if it satisfies that

(i) $C \in \mathcal{C}$;
(ii) any diagram with $C' \in \mathcal{C}$

\[
\begin{array}{ccc}
C' & \rightarrow & M \\
\downarrow & & \downarrow \\
C & \xrightarrow{f} & M \\
\end{array}
\]

can be completed to a commutative diagram. The homomorphism $f : C \to M$ is said to be right minimal if for any $g \in \text{End}_R(C)$, $f = fg$ implies g bijective.
Definition (due to Auslander and Enochs)

Let C be a class of right R-modules, and let M_R be a right R-module.

A module homomorphism $f : C \rightarrow M$ is a C-precover of M if it satisfies that

(i) $C \in C$;
(ii) any diagram with $C' \in C$

\[
\begin{array}{c}
C' \\
\downarrow \\
\vdots \\
C \\
\downarrow \\
f \\
\rightarrow \\
M \\
\rightarrow \\
0
\end{array}
\]

can be completed to a commutative diagram.

The homomorphism f is a C-cover if, in addition, it is right minimal.

Recall that $f : C \rightarrow M$ is said to be right minimal if for any $g \in \text{End}_R(C)$, $f = fg$ implies g bijective.
Any flat precover is onto.
- Any flat precover is onto.
- Any module has a flat cover in the sense of Enochs.
• Any flat precover is onto.
• Any module has a flat cover in the sense of Enochs.
• In the case of perfect rings projective covers, flat covers and \(G \)-flat covers coincide.
Any flat precovers are onto.

Any module has a flat cover in the sense of Enochs.

In the case of perfect rings, projective covers, flat covers and G-flat covers coincide.

In the case of von Neumann regular rings, flat covers are G-flat covers.
\[\mathcal{E} = \{ B \in \text{Mod-}R \mid \text{Ext}^1_R(L, B) = 0 \text{ for any flat } L_R \} \] is called the class of (Enochs) cotor\text{s}ion modules.
$\mathcal{C} = \{ B \in \text{Mod-}R | \text{Ext}^1_R(L, B) = 0 \text{ for any flat } L_R \}$ is called the class of (Enochs) cotorsion modules.

- Kernel of any flat cover is a cotorsion module.
\[\mathcal{E} = \{ B \in \text{Mod-}R | \text{Ext}_R^1(L, B) = 0 \text{ for any flat } L \} \] is called the class of (Enochs) cotorsion modules.

- Kernel of any flat cover is a cotorsion module.
- Any \(M_R \) fits into an exact sequence

\[0 \rightarrow B \rightarrow L \xrightarrow{g} M \]

where \(L \) is flat and \(B \) is cotorsion. \(g \) is a flat precover.
Example due to A. Amini, B. Amini, Ershad, Sharif-2007

Let R be a regular ring which is not a right V-ring.
Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \nsubseteq E = E(M)$.

Case 1

$\text{Soc}(E/M) = 0$. $\pi: E \to E/M$ and $i: E/M \to E$ are both G-flat covers of E/M. But $E \ncong E/M$.

Case 2

$\text{Soc}(E/M) \neq 0$. There is $K_R \subseteq E$ such that K/M is a simple R-module. $\pi: K \to K/M$ and $i: K/M \to K/M$ are both G-flat covers of K/M. But $K \ncong K/M$.

Example due to A. Amini, B. Amini, Ershad, Sharif-2007
Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \nsubseteq E = E(M)$.

1. **Case 1** $\text{Soc}(E/M) = 0$. $\pi : E \to E/M$ and $i : E/M \to E/M$ are both G-flat covers of E/M. But $E \ncong E/M$.

2. **Case 2** $\text{Soc}(E/M) \neq 0$. There is $K_R \subseteq E_R$ such that K/M is a simple R-module. $\pi : K \to K/M$ and $i : K/M \to K/M$ are both G-flat covers of K/M. But $K \ncong K/M$.

Example due to A. Amini, B. Amini, Ershad, Sharif-2007
Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \not\subseteq E = E(M)$.

- **Case 1** $\text{Soc}(E/M) = 0$. $\pi : E \rightarrow E/M$ and $i : E/M \rightarrow E/M$ are both G-flat covers of E/M. But $E \not\cong E/M$.

- **Case 2** $\text{Soc}(E/M) \neq 0$. There is $K_R \subseteq E_R$ such that K/M is a simple R-module. $\pi : K \rightarrow K/M$ and $i : K/M \rightarrow K/M$ are both G-flat covers of K/M. But $K \not\cong K/M$.
Some results from A. Amini, B. Amini, Ershad, Sharif-2007

- R is right G-perfect $\implies J(R)$ is right T-nilpotent.
- R is right duo and right G-perfect $\implies R/J(R)$ is von Neumann regular.

Conjecture: R is right G-perfect \implies semiregular ???

Our Answer: No!!
Some results from A. Amini, B. Amini, Ershad, Sharif-2007

- R is right G-perfect $\implies J(R)$ is right T-nilpotent.
- R is right duo and right G-perfect $\implies R/J(R)$ is von Neumann regular.

Conjecture: R is right G-perfect \implies semiregular ???

Our Answer: No!!
Some results from A. Amini,B. Amini, Ershad, Sharif-2007

- R is right G-perfect $\implies J(R)$ is right T-nilpotent.
- R is right duo and right G-perfect $\implies R/J(R)$ is von Neumann regular.

Conjecture: R is right G-perfect \implies semiregular ???

Our Answer: No!!!
A pair $(\mathcal{X}, \mathcal{Y})$ of subclasses of $\text{Mod-} R$ is said to be a torsion pair if

(i) $\text{Hom}_R(X, Y) = \{0\}$ for any $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

(ii) If X_R is a right R-module such that $\text{Hom}_R(X, Y) = \{0\}$ for any $Y \in \mathcal{Y}$ then $X \in \mathcal{X}$.

(iii) If Y_R is a right R-module such that $\text{Hom}_R(X, Y) = \{0\}$ for any $X \in \mathcal{X}$ then $Y \in \mathcal{Y}$.

In this case, \mathcal{X} is said to be a torsion class and \mathcal{Y} is a torsion-free class. The objects of \mathcal{X} are called torsion modules and the objects in \mathcal{Y} are called torsion-free modules.
Basic Definitions

Let \((\mathcal{X}, \mathcal{Y})\) be a torsion pair. If \(M_R\) is a right \(R\)-module, the largest submodule of \(M_R\) that is an object of \(\mathcal{X}\) called the torsion submodule of \(M\) and is denoted by \(t(M)\). \(t\) is indeed a functor and a radical. So that, there is an exact sequence

\[
0 \to t(M) \to M \to M/t(M) \to 0
\]

where \(M/t(M) \in \mathcal{Y}\).
Basic Definitions

- A class of modules \mathcal{X} is torsion if and only if it is closed under isomorphisms, extensions, coproducts and quotients.
- Dually, a class of modules \mathcal{Y} is a torsion-free class if it is closed under isomorphism, extensions, submodules and products.

Notice that if a class of modules \mathcal{Y} is closed by products, coproducts, subobjects, quotients and extensions then \mathcal{Y} is a torsion class and a torsion free class at the same time. Therefore, one has a triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ such that $(\mathcal{X}, \mathcal{Y})$ and $(\mathcal{Y}, \mathcal{Z})$ are torsion pairs. Such a triple is called a TTF-triple.
Basic Definitions

- A class of modules \mathcal{X} is torsion if and only if it is closed under isomorphisms, extensions, coproducts and quotients.
- Dually, a class of modules \mathcal{Y} is a torsion-free class if it is closed under isomorphism, extensions, submodules and products.
- Notice that if a class of modules \mathcal{Y} is closed by products, coproducts, subobjects, quotients and extensions then \mathcal{Y} is a torsion class and a torsion free class at the same time. Therefore, one has a triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ such that $(\mathcal{X}, \mathcal{Y})$ and $(\mathcal{Y}, \mathcal{Z})$ are torsion pairs. Such a triple is called a TTF-triple.
Let $0 \to M \xrightarrow{h} N \xrightarrow{f} K \to 0$ be an exact sequence of right R-modules and let $L \xrightarrow{g} K \to 0$ be an onto homomorphism. We consider the pullback of f and g to obtain a commutative diagram with exact rows and columns:

$$
\begin{array}{c}
0 & 0 \\
\downarrow & \downarrow \\
X = X = \text{Ker}g \\
\downarrow^{\varepsilon_2} & \downarrow \\
0 & 0
\end{array}
$$

$$
\begin{array}{c}
0 \to M \xrightarrow{\varepsilon_1} L' \xrightarrow{\pi_2} L \to 0 \\
\downarrow^{\varepsilon_2} & \downarrow^{\pi_1} & \downarrow^g \\
0 \to M \xrightarrow{h} N \xrightarrow{f} K \to 0 \\
\downarrow & \downarrow \\
0 & 0
\end{array}
$$

(1)
In (1),

- $L' = \{(x, y) \in N \oplus L | f(x) = g(y)\}$.
- The maps $\pi_1 : L' \to N$ and $\pi_2 : L' \to L$ are restrictions of the canonical projections $\pi_1 : N \oplus L \to N$ and $\pi_2 : N \oplus L \to L$, respectively.
- The homomorphism $\varepsilon_1 : M \to L'$ is defined by $\varepsilon_1(x) = (h(x), 0)$ for each $x \in M$, and $\varepsilon_2 : X \to L'$ is defined by $\varepsilon_2(y) = (0, y)$ for each $y \in X$.
Let \((\mathcal{X}, \mathcal{Y})\) be a torsion pair in \(\text{Mod-}R\) such that the associated torsion radical \(t\) is exact. Assume that in diagram (1), \(M \in \mathcal{X}\) and \(K, L \in \mathcal{Y}\).

- If \(X\) is small in \(L\), then \(\varepsilon_2(X)\) is small in \(L'\).
- In particular, if \(L_R\) and \(M_R\) are flat, then \(\pi_1: L' \to N\) is a \(G\)-flat cover of \(N\).
- \(g\) is right minimal if and only if \(\pi_1\) is right minimal.
Useful facts on TTF-triples

Let R and S be rings such that there is an exact sequence

$$0 \rightarrow I \rightarrow R \xrightarrow{\varphi} S \rightarrow 0$$

where φ is a ring morphism such that RS becomes a flat module. Consider the following classes of modules

$$\mathcal{X} = \{X \in \text{Mod}-R \mid XI = X\}$$
$$\mathcal{Y} = \{Y \in \text{Mod}-R \mid YI = \{0\}\}$$
$$\mathcal{Z} = \{Z \in \text{Mod}-R \mid \text{ann}_Z(I) = \{0\}\}$$

then $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is a TTF-triple such that the torsion pair $(\mathcal{X}, \mathcal{Y})$ is hereditary and $\text{Ext}^i_R(X, Y) = 0$ for any $i \geq 0$, $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. Moreover, the torsion radical associated to the torsion class \mathcal{X} is naturally equivalent to the exact functor $- \otimes R I$, and the torsion radical associated to the class \mathcal{Y} is naturally equivalent to the functor $\text{Hom}_R(S, -)$.
Useful facts on **TTF-triples**

Let R and S be rings such that there is an exact sequence

$$0 \to I \to R \xrightarrow{\varphi} S \to 0$$

where φ is a ring morphism such that RS becomes a flat module. Consider the following classes of modules

$$\mathcal{X} = \{ X \in \text{Mod-}R \mid XI = X \}$$

$$\mathcal{Y} = \{ Y \in \text{Mod-}R \mid YI = \{0\} \}$$

$$\mathcal{Z} = \{ Z \in \text{Mod-}R \mid \text{ann}_Z(I) = \{0\} \}$$

then $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is a TTF-triple such that the torsion pair $(\mathcal{X}, \mathcal{Y})$ is hereditary and $\text{Ext}^i_R(X, Y) = 0$ for any $i \geq 0$, $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

Moreover, the torsion radical associated to the torsion class \mathcal{X} is naturally equivalent to the exact functor $- \otimes_R I$, and the torsion radical associated to the class \mathcal{Y} is naturally equivalent to the functor $\text{Hom}_R(S, -)$.
Useful facts on TTF-triples

Let \(R \) and \(S \) be rings such that there is an exact sequence

\[
0 \rightarrow I \rightarrow R \xrightarrow{\varphi} S \rightarrow 0
\]

where \(\varphi \) is a ring morphism such that \(_R S \) becomes a flat module. Consider the following classes of modules

\[
\mathcal{X} = \{ X \in \text{Mod-}R \mid XI = X \}
\]

\[
\mathcal{Y} = \{ Y \in \text{Mod-}R \mid YI = \{0\} \}
\]

\[
\mathcal{Z} = \{ Z \in \text{Mod-}R \mid \text{ann}_Z(I) = \{0\} \}
\]

then \((\mathcal{X}, \mathcal{Y}, \mathcal{Z})\) is a TTF-triple such that the torsion pair \((\mathcal{X}, \mathcal{Y})\) is hereditary and \(\text{Ext}^i_R(X, Y) = 0 \) for any \(i \geq 0, X \in \mathcal{X} \) and \(Y \in \mathcal{Y} \). Moreover, the torsion radical associated to the torsion class \(\mathcal{X} \) is naturally equivalent to the exact functor \(- \otimes_R I\), and the torsion radical associated to the class \(\mathcal{Y} \) is naturally equivalent to the functor \(\text{Hom}_R(S, -) \).
Corollary

Let R and S be rings such that there is an exact sequence

$$0 \to I \to R \xrightarrow{\varphi} S \to 0$$

where φ is a ring morphism such that S becomes a flat R-module on the right and on the left. Then:

(i) M_R is flat if and only if $M \otimes_R S$ is a flat right S-module and MI is a flat right R-module.

(ii) Let M be a right S-module, then M is cotorsion as a right R-module if and only if it is cotorsion as an S-module.
Proposition[A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.
Proposition[A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.

(i) The map $\varphi : R \to S$ defined by $\varphi(x_1, x_2, \ldots, x_n, x, x, \ldots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{\mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots)$ for any $i \in \mathbb{N}$.

(ii) I is a two-sided, countably generated idempotent ideal of R which is pure and projective on both sides. Therefore, S is flat as a right and as a left R-module.

(iii) For any $i \in \mathbb{N}$, the canonical projection into the i-th component $\pi_i : R \to T$ has kernel $(1 - e_i)R$ so that T is projective as a right and as a left R-module via the R-module structure induced by π_i.

Proposition[A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.

(i) The map $\varphi : R \rightarrow S$ defined by $\varphi(x_1, x_2, \ldots, x_n, x, x, \ldots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{\mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots)$ for any $i \in \mathbb{N}$.

(ii) I is a two-sided, countably generated idempotent ideal of R which is pure and projective on both sides. Therefore, S is flat as a right and as a left R-module.
Proposition[A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S \}.$$

Then, the following statements hold.

(i) The map $\varphi : R \rightarrow S$ defined by $\varphi(x_1, x_2, \ldots, x_n, x, x, \ldots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{i \in \mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, \ldots, 0, 1^{(i)}, 0, 0, \ldots)$ for any $i \in \mathbb{N}$.

(ii) I is a two-sided, countably generated idempotent ideal of R which is pure and projective on both sides. Therefore, S is flat as a right and as a left R-module.

(iii) For any $i \in \mathbb{N}$, the canonical projection into the i-th component $\pi_i : R \rightarrow T$ has kernel $(1-e_i)R$ so that T is projective as a right and as a left R-module via the R-module structure induced by π_i.
Remark

Let R be a ring as in the Proposition. Then there is a TTF-triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ associated to the pure exact sequence

$$0 \rightarrow I \rightarrow R \xrightarrow{\varphi} S \rightarrow 0$$

where $\mathcal{X} = \{ X \in \text{Mod} - R \mid X = \bigoplus_{i \in \mathbb{N}} Xe_i \}$,
$\mathcal{Y} = \{ Y \in \text{Mod} - R \mid YI = \{0\} \}$
$\mathcal{Z} = \{ Z \in \text{Mod} - R \mid \text{ann}_Z(I) = \{0\} \}$. Also, for any $i \in \mathbb{N}$, the split sequence

$$0 \rightarrow R(1 - e_i) \rightarrow R \xrightarrow{\pi_i} T \rightarrow 0$$

yields a corresponding (split) TTF-triple $(\mathcal{X}_i, \mathcal{Y}_i, \mathcal{Z}_i)$.
Proposition[A, Herbera-2016]

(i) $J(R)$ contains $J = \bigoplus_{\mathbb{N}} J(T)$. Moreover, J is essential on both sides into $J(R)$. In particular, $J(R) = 0$ if and only if $J(T) = 0$.

(ii) R is von Neumann regular if and only if S and T are von Neumann regular.

(iii) Let M_R be a right R-module. Then M_R is flat if and only if $M \otimes_R S$ is a flat right S-module and, for any $i \in \mathbb{N}$, Me_i is a flat right T-module.
Main Theorem [A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Assume T is von Neumann regular and that S is right G-perfect. Then

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) \mid n \in \mathbb{N}, x_i \in T, x \in S\}$$

is a right G-perfect ring such that $J(R) = 0$. Moreover, if S is a ring such that flat covers are G-flat covers, then also R satisfies this property.
Proof

- By the properties of R, it readily follows that $J(R) = 0$.

- Let N be any right R-module. There is a pure exact sequence

$$
0 \rightarrow NI \xrightarrow{\sim} \bigoplus_{i \in N} Ne_i \rightarrow Nf \rightarrow N/NI \rightarrow 0
$$

- Since T is von Neumann regular, for any $i \in N$, Ne_i is a flat T-module.

- Hence NI is flat as a right R-module.
Proof

- By the properties of R, it readily follows that $J(R) = 0$.
- Let N be any right R-module. There is a pure exact sequence

$$0 \longrightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \longrightarrow N \xrightarrow{f} N/NI \longrightarrow 0.$$
Proof

- By the properties of R, it readily follows that $J(R) = 0$.
- Let N be any right R-module. There is a pure exact sequence

\[
0 \longrightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \longrightarrow N \overset{f}{\longrightarrow} N/NI \longrightarrow 0.
\]

- Since T is von Neumann regular, for any $i \in \mathbb{N}$, Ne_i is a flat T-module.
Proof

- By the properties of R, it readily follows that $J(R) = 0$.
- Let N be any right R-module. There is a pure exact sequence

$$0 \rightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \rightarrow N \overset{f}{\rightarrow} N/NI \rightarrow 0.$$

- Since T is von Neumann regular, for any $i \in \mathbb{N}$, Ne_i is a flat T-module.
- Hence NI is flat as a right R-module.
...Proof...

Let $0 \to X \to L \xrightarrow{h} N/NI \to 0$ be a G-flat cover of the right S-module N/NI. Considering the pullback of h and f yields the following diagram with exact rows and columns:

$$
\begin{array}{cccccc}
0 & \to & NI & \to & L' & \xrightarrow{\pi_2} & L & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & h \\
0 & \to & NI & \to & N & \xrightarrow{f} & N/NI & \to & 0 \\
0 & & 0 & & 0 & & 0 & & 0
\end{array}
$$

$X = \text{Ker} h$
...Proof...

Since the radical associated to the torsion pair \((\mathcal{X}, \mathcal{Y})\) is exact and \(L \in \mathcal{Y}\), \(\pi_1\) is a \(G\)-flat cover of \(N\).
Since the radical associated to the torsion pair \((\mathcal{X}, \mathcal{Y})\) is exact and \(L \in \mathcal{Y}\), \(\pi_1\) is a \(G\)-flat cover of \(N\).

Now assume, in addition, that \(0 \to X \to L \to^h N/NI \to 0\) is a flat cover of the right \(S\)-module \(N \otimes_R S\).
Since the radical associated to the torsion pair \((\mathcal{X}, \mathcal{Y})\) is exact and \(L \in \mathcal{Y}\), \(\pi_1\) is a \(G\)-flat cover of \(N\).

Now assume, in addition, that \(0 \to X \to L \xrightarrow{h} N/NI \to 0\) is a flat cover of the right \(S\)-module \(N \otimes_R S\).

In particular, \(X_S\) is cotorsion.
Since the radical associated to the torsion pair \((\mathcal{X}, \mathcal{Y})\) is exact and \(L \in \mathcal{Y}\), \(\pi_1\) is a \(G\)-flat cover of \(N\).

Now assume, in addition, that \(0 \to X \to L \xrightarrow{h} N/NI \to 0\) is a flat cover of the right \(S\)-module \(N \otimes_R S\).

In particular, \(X_S\) is cotorsion.

\(X_R\) is also a cotorsion module, hence \(0 \to X \to L' \xrightarrow{\pi_1} N \to 0\) is a flat precover of \(N\).
...Proof...

- Since the radical associated to the torsion pair $(\mathcal{X}, \mathcal{Y})$ is exact and $L \in \mathcal{Y}$, π_1 is a G-flat cover of N.
- Now assume, in addition, that $0 \to X \to L \xrightarrow{h} N/NI \to 0$ is a flat cover of the right S-module $N \otimes_R S$.
- In particular, X_S is cotorsion.
- X_R is also a cotorsion module, hence $0 \to X \to L' \xrightarrow{\pi_1} N \to 0$ is a flat precover of N.
- It follows that π_1 is also a flat cover.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since S is artinian, it is G-perfect.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since S is artinian, it is G-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since S is artinian, it is G-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is G-perfect by Main Theorem.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since S is artinian, it is G-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = M_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is G-perfect by Main Theorem.

- By the properties of the ring, $J(R) = 0$ and R is not von Neumann regular.
Example 1 [A, Herbera-2016]

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since S is artinian, it is G-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is G-perfect by Main Theorem.

- By the properties of the ring, $J(R) = 0$ and R is not von Neumann regular.

For a particular realization of such a ring R consider, for example,

$$S = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}.$$ In this case, T can be taken to be $M_2(F)$.
Example 2 [A, Herbera-2016]

Let R be as in Example (1).

- Then, $R \subseteq \prod \mathbb{M}_n(F) = T'$ which is a von Neumann regular ring.

- $R' = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T', x \in R\}$ is also a G-perfect ring.
In general, it is difficult to compute Enochs flat covers. If projective covers exist, then they coincide with Enochs flat covers. So the question is:

Question 1: What is the relation, if any, between G-flat covers and Enochs flat covers?

Question 2: Let R be a semiregular ring with right T-nilpotent Jacobson radical, is it G-perfect?