Classical left regular left quotient ring of a ring and its semisimplicity criteria

V. V. Bavula (University of Sheffield) *

*V. V. Bavula, The classical left regular left quotient ring of a ring and its semisimplicity criteria, Arxiv:math.RA:1504.07257.

talk-ClasLeftRegQuotRing.tex

1

R is a ring with 1, R^{\ast} is its group of units,

 $\mathcal{C} = \mathcal{C}_R$ is the set of regular elements of R,

 $Q = Q_{l,cl}(R) := C^{-1}R$ is the **left quotient ring** (the **classical left ring of fractions**) of R (if it exists),

 $\operatorname{Ore}_{l}(R)$ is the set of **left Ore sets** S (i.e. for all $s \in S$ and $r \in R$: $Sr \cap Rs \neq \emptyset$),

 $ass(S) := \{r \in R | sr = 0 \text{ for some } s \in S\}, an ideal of R,$

 $Den_l(R, \mathfrak{a})$ is the set of **left denominator sets** S of R with $ass(S) = \mathfrak{a}$ where \mathfrak{a} is an ideal of R (i.e. $S \in Ore_l(R)$, and rs = 0 implies s'r = 0for some $s' \in S$),

Given $S \in \text{Den}_l(R)$, $S^{-1}R := \{s^{-1}r \mid s \in S, r \in R\}$, the **localization** of R at S,

2

Let $X \subseteq R$, a subset,

$$\operatorname{ann}_l(X) = \{r \in R \,|\, rX = 0\}$$

is the **left annihilator** of X, it is a left ideal of R,

A ring R is a **left Goldie ring** if

(i) R satisfies ACC for left annihilators,

(ii) R contains no infinite direct sums of left ideals.

Thm (Goldie, 1958, 1960). A ring *R* has a semisimple left quotient ring iff *R* is a semiprime left Goldie ring.

Lessieur and Croisot (1959): prime case.

 $\cdot r: R \to R$, $x \mapsto xr$,

 ${}^{\prime}\mathcal{C}_R := \{r \in R \, | \, \text{ker}(\cdot r) = 0\}$ is the set of left regular elements of R

 $\mathcal{C}_R \subseteq '\mathcal{C}_R$

The ring $Q_{l,cl}(R) := C_R^{-1}R$ is called the classical left regular left quotient ring of R

Goal: To give <u>semisimplicity criteria</u> for $Q_{l,cl}(R)$

A subset S of R is called a **multiplicative set** if $1 \in S$, $SS \subseteq S$ and $0 \notin S$

Let $S \subseteq T$ be multiplicative sets in R such that $S \subseteq T$

S is called **dense** (or **left dense**) in T if for each element $t \in T$ there exists an element $r \in R$ such that $rt \in S$

For a left ideal I of R, let $C_I := \{i \in I \mid i : I \rightarrow I, x \mapsto xi$, is an injection $\}$

Thm 1 (First Criterion) Let R be a ring, $C' = C_R$ and $\mathfrak{a} := \operatorname{ass}_R(C)$. The following statements are equivalent.

1. $'Q := 'Q_{l,cl}(R)$ is a semisimple Artinian ring.

2. (a) \mathfrak{a} is a semiprime ideal of R,

(b) the set $\overline{C} := \pi(C)$ is a dense subset of $C_{\overline{R}}$ where $\pi : R \to \overline{R} := R/\mathfrak{a}, \ r \mapsto \overline{r} := r + \mathfrak{a}$,

(c) udim $(\overline{R}\overline{R}) < \infty$, and

(d) $C_V \neq \emptyset$ for all uniform left ideals V of \overline{R} .

3. \mathfrak{a} is a semiprime ideal of R, \overline{C} is a dense subset of $\mathcal{C}_{\overline{R}}$ and $Q_{l,cl}(\overline{R})$ is a semisimple Artinian ring.

If one of the equivalent conditions holds then $\overline{C} \in \text{Den}_l(\overline{R}, 0)$, \overline{C} is a dense subset of $\mathcal{C}_{\overline{R}}$ and $\overline{Q} \simeq \overline{C}^{-1}\overline{R} \simeq Q_{l,cl}(\overline{R})$. Furthermore, the ring \overline{Q} is a simple ring iff the ideal \mathfrak{a} is a prime ideal.

5

The set max. $Den_l(R)$ of maximal left denominator sets is a non-empty set

The next semisimplicity criterion for the ring ${}^{\prime}Q_{l,cl}(R)$ is given via the set ${}^{\prime}\mathcal{M}$ of maximal denominator sets of R that contain ${}^{\prime}\mathcal{C}_{R}$

Thm 2 (Second Criterion) Let R be a ring, $\mathfrak{a} = \operatorname{ass}_R({}^{\prime}\mathcal{C}_R)$. The following statements are equivalent.

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2. ' \mathcal{M} is a finite nonempty set, $\bigcap_{S \in \mathcal{M}} \operatorname{ass}_R(S) = \mathfrak{a}$, for each $S \in \mathcal{M}$, the ring $S^{-1}R$ is a simple Artinian ring and the set ' $\overline{\mathcal{C}} := \{c + \mathfrak{a} \mid c \in \mathcal{C}_R\}$ is a dense subset of $\mathcal{C}_{R/\mathfrak{a}}$ in R/\mathfrak{a} .

Theorem below is a semisimplicity criterion for ${}^{\prime}Q_{l,cl}(R)$ given via the **set** $\operatorname{Min}_{R}(\mathfrak{a})$ **of minimal primes** of the ideal \mathfrak{a} , it describes explicitly the set ${}^{\prime}\mathcal{M}$ in Theorem 2

Thm 3 (Third Criterion) Let R be a ring, $C' = C_R$ and $\mathfrak{a} = \operatorname{ass}_R(C)$. The following statements are equivalent.

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2.(a) \mathfrak{a} is semiprime ideal of R and the set Min_R(\mathfrak{a}) is a finite set.
 - (b) For each $\mathfrak{p} \in Min_R(\mathfrak{a})$, the set $S_{\mathfrak{p}} := \{c \in R \mid c + \mathfrak{p} \in C_{R/\mathfrak{p}}\}$ is a left denominator set of the ring R with $ass_R(S_{\mathfrak{p}}) = \mathfrak{p}$.
 - (c) For each $\mathfrak{p} \in Min_R(\mathfrak{a})$, the ring $S_{\mathfrak{p}}^{-1}R$ is a simple Artinian ring.
 - (d) The set $\overline{C} = \{c + \mathfrak{a} | c \in C\}$ is a dense subset of $C_{R/\mathfrak{a}}$.

Theorem below is a semisimplicity criterion for the ring $Q_{l,cl}(R)$ in terms of left Goldie rings.

Thm 4 (Fourth Criterion) *The following statements are equivalent.*

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2.(a) \mathfrak{a} is a semiprime ideal of R and the set $Min_R(\mathfrak{a})$ is finite.
 - (b) For each $\mathfrak{p} \in Min_R(\mathfrak{a})$, the ring R/\mathfrak{p} is a left Goldie ring.
 - (c) The set \overline{C} is a dense subset of $C_{\overline{R}}$.

Theorem below is a useful semisimplicity criterion for the ring $Q_{l,cl}(R)$ as often we have plenty of simple Artinian localizations of a ring.

Thm 5 *The following statements are equivalent.*

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2. There are left denominator sets S_1, \ldots, S_n of the ring R such that
 - (a) the rings $S_i^{-1}R$ are simple Artinian rings,
 - (b) $\mathfrak{a} = \bigcap_{i=1}^{n} \operatorname{ass}_{R}(S_{i})$, and
 - (c) $\overline{\mathcal{C}}$ is a dense subset of $\mathcal{C}_{\overline{R}}$.

Semisimplicity criteria for the ring $Q_{l,cl}(R)$. The next theorem shows that the a.c.c. condition on *left* annihilators in Goldie's Theorem can be replaced by the a.c.c. condition on *right* annihilators (or even by a weaker condition) and adding some extra condition.

Thm 6 Let R be a ring, $C = C_R$ and $C' = C_R$. The following statements are equivalent.

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2. R is a semiprime ring, $udim(_RR) < \infty$, the ring R satisfies the a.c.c. on right annihilators and $C_U \neq \emptyset$ for all uniform left ideals U of R.
- 3. The ring R is a semiprime ring, $\operatorname{udim}(_R R) < \infty$, the set {ker $(c_R \cdot) | c \in C$ } satisfies the

a.c.c. and $C_U \neq \emptyset$ for all uniform left ideals U of R.

4. The ring R is a semiprime ring, $udim(_RR) < \infty$, the set {ker $(r_R \cdot) | r \in R$ } satisfies the a.c.c. and $C_U \neq \emptyset$ for all uniform left ideals U of R.

Below is another semisimplicity criterion for the ring $Q_{l,cl}(R)$ via C_R .

Thm 7 Let R be a ring. The following statements are equivalent.

- 1. $Q_{l,cl}(R)$ is a semisimple Artinian ring.
- 2. *R* is a semiprime ring, $udim(_RR) < \infty$, $C_R = C_R$ and $C_U \neq \emptyset$ for all uniform left ideals *U* of *R*.

The rings $Q_{l,cl}(\mathbb{I}_1)$ and $Q'_{r,cl}(\mathbb{I}_1)$. Let K be a field of characteristic zero,

 $A_n = K\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle$ be the Weyl algebra

 $\mathbb{I}_n = K\langle x_1, \ldots, x_n, \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}, \int_1, \ldots, \int_n \rangle$ be the algebra of polynomial integro-differential operators.

The ring $Q(A_n) := Q_{l,cl}(A_n)$ is a division ring and $Q(A_n) = 'Q_{l,cl}(A_n)$.

Lemma 8 For all *K*-algebras *A* and $n \ge 1$, the rings $Q_{l,cl}(\mathbb{I}_n \otimes A)$ and $Q_{r,cl}(\mathbb{I}_n \otimes A)$ do not exist.

Thm 9 ${}^{\prime}Q_{l,cl}(\mathbb{I}_1) \simeq Q(A_1)$ and $Q'_{r,cl}(\mathbb{I}_1) \simeq Q(A_1)$ are division rings.

Explicit descriptions of the sets ${'}{\mathcal C}_{{\mathbb I}_1}$ and ${\mathcal C}_{{\mathbb I}_1}'$ are given

This and some other results demonstrate that on many occasions the ring $Q_{l,cl}(R)$ has 'somewhat better properties' than $Q_{l,cl}(R)$ which for $R = \mathbb{I}_n$ even **does not exist**

Conjecture. $Q_{l,cl}(\mathbb{I}_n) \simeq Q_{l,cl}(A_n)$ is a division ring.