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Convolutional codes
F a finite field, k ≤ n positive integers. A rate k/n convolutional transducer G transforms

information sequences u = . . .u−1u0u1 . . . (ui ∈ Fk)
into

code sequences v = . . .v−1v0v1 . . . (vi ∈ Fn).

Requirements: Write u =
∑∞
i=−i0 uit

i ∈ Fk((t)) ∼= F((t))k, v =
∑∞
j=−j0 vit

j ∈ Fn((t)) ∼= F((t))n.
Then

v = uG,

where G is an k × n full rank matrix with entries in F(t).

Definition
A rate k/n convolutional code D over F is the image of a rate k/n convolutional transducer G, that
is

D = {uG : u ∈ Fk((t))} ⊆ Fn((t)).

Definition (Vector space version)
A rate k/n convolutional code over F is a k–dimensional vector subspace of F(t)n.
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Cyclic convolutional codes (module version)

Lemma
The map D 7→ D ∩ Fn[t] is a bijection between the set of rate k/n convolutional codes and the set of
submodules of rank k of Fn[t] ∼= F[t]n that are direct summands.

Definition (Module version)
A rate k/n convolutional code is a rank k direct summand of Fn[t].

Thus, a cyclic structure could be introduced by taking Fn ∼= A := F[x]/〈xn − 1〉, and suitable ideals
of A[t] as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.

Solution: Piret’s (1976) idea is skewing the multiplication of A[t]. Technically, this means to
define cyclic convolutional codes as suitable left ideals of a skew polynomial ring A[t;σ].
This idea has been further developed, (e.g. considering more general finite F–algebras A) by Roos
(1979), Gluesing-Luerssen/Schmale (2004), López-Permouth/Szabo (2013), GLN (2014, 2017),
among others.

Main difficulty/opportunity: Dealing with idempotents in A[t;σ].
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Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of F(t)[x]/〈xn − 1〉 ∼= F(t)n?

If so, then we get nothing but cyclic block codes (the factors of xn − 1 have coefficients in F).

Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of R = F(t)[x;σ]/〈xn − 1〉,
where σ is an F–automorphism of order n of F(t).

Features:

◦ F(t)[x;σ] is a left and right Euclidean domain.

◦ F(t)[x;σ]/〈xn − 1〉 ∼=Mn(F(t)σ).

◦ When the generator of the code is carefully chosen, we get an MDS code with respect to the
Hamming distance.

◦ Efficient decoding schemes (like Sugiyama, or Peterson-Gorenstein-Zierler) are adapted to this
non-commutative setting.

◦ The theory (including the algorithms) work for any field L.
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Skew cyclic codes

So, let L be a field, and σ : L→ L a field automorphism of finite order n. Set K = Lσ. Consider
the ring R = L[x;σ]/〈xn − 1〉 ∼=Mn(K).
Note: The multiplication rule in L[x;σ] is xa = σ(a)x for all a ∈ L.

We have the isomorphism of L–vector spaces p : Ln → R sending (c0, c1, . . . , cn−1) onto
c0 + c1x+ · · ·+ cn−1x

n−1.
Note: The classical identification of equivalence classes and its representatives is (and will be)
made.

Definition
A k–dimensional L–linear code C ⊆ Ln of dimension n is said to be a skew cyclic code if p(C) is a
left ideal of R.

Note: We will identify C with p(C). Since every left ideal of R is principal, we will often speak of
the “skew code generated by a polynomial”, aggravating the abuse of language.

Note: When L = F is a finite field, these codes lie in the realm of the theory developed by
Boucher/Chaussade/Geiselmann/Loidreau/Ulmer (2007, 2009), among others, where the name is
taken.
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Skew RS codes
Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.

Construction method of Skew RS codes
Choose a normal basis {α, σ(α), . . . , σn−1(α)} of the field extension L/K.
Set β = α−1σ(α)

xn − 1 decomposes as the least common left multiple

xn − 1 =
[
x− β, x− σ(β), x− σ2(β), . . . , x− σn−1(β)

]
`

For 1 ≤ k < n, the left ideal C of R generated by

g =
[
x− β, x− σ(β), x− σ2(β), . . . , x− σn−k−1(β)

]
`

is an SCC of length n and dimension k. We call them Reed-Solomon skew codes.
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Parity check matrix

A parity check matrix of the skew RS code is given by

H =


N0(β) N0(σ(β)) . . . N0(σ

n−k−1(β))
N1(β) N1(σ(β)) . . . N1(σ

n−k−1(β))
N2(β) N2(σ(β)) . . . N2(σ

n−k−1(β))
...

...
. . .

...
Nn−1(β) Nn−1(σ(β)) . . . Nn−1(σ

n−k−1(β))

 .

Here, for γ ∈ L,
Nj(γ) = γσ(γ) . . . σj−1(γ)

is the remainder of the left division of xj by x− γ, that is

xj = q(x)(x− γ) +Nj(γ).
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Transmission and syndromes

Our skew RS code C is generated by

g =
[
x− β, x− σ(β), x− σ2(β), . . . , x− σn−k−1(β)

]
`

Set τ = b δ−12 c = b
n−k
2 c which is the maximum number of errors that the code can correct.

message

k−1∑
i=0

mix
i

m

encoded

n−1∑
i=0

cix
i

c = mg

received

n−1∑
i=0

cix
i +

ν∑
j=1

ejx
kj

y = c+ e

ν ≤ τ

From the received polynomial y =
∑n−1
j=0 yjx

j we can compute the syndromes

Si =

n−1∑
j=0

yjNj(σ
i(β)), i = 0, . . . , n− 1
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Error locator and error evaluator
We thus know the syndrome polynomial, defined as

S =

2τ−1∑
i=0

σi(α)Six
i.

Define the locator polynomial

λ = [1− σk1(β)x, 1− σk2(β)x, . . . , 1− σkν (β)x]r

For 1 ≤ j ≤ ν we thus know that there is pj of degree ν − 1 such that λ = (1− σkj (β)x)pj . Define

the evaluator polynomial

ω =
ν∑
j=1

ejσ
kj (α)pj (1)

Sugiyama’s decoding scheme.
If λ is computed, then the error positions k1, . . . , kν are derived. With these at hand, we can
compute p1, . . . , pν . Finally, the error values e1, . . . , eν are computed by solving a linear system
from (1), whenever ω is known.
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The non-commutative key equation

Theorem
These polynomials satisfy the non-commutative key equation

ω = Sλ+ x2τu,

for some u of degree smaller than ν.

Theorem

The non-commutative key equation
x2τu+ Sλ = ω (2)

is a right multiple of the equation
x2τuI + SvI = rI , (3)

where uI , vI and rI are the Bezout coefficients returned by the REEA with input x2τ and S, and I
is the index determined by the conditions deg rI−1 ≥ τ and deg rI < τ . In particular, λ = vIg and
ω = rIg for some g ∈ L[x;σ].
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Sugiyama-like decoding

If (λ, ω)r = 1, then the last theorem gives that the REEA serves for the computation of the
locator polynomial λ and the evaluator polynomial ω.

As mentioned above, once these polynomials are computed, the error polynomial is computed
by a scheme similar to the Sugiyama algorithm for (commutative) RS codes.
The condition (λ, ω)r = 1 is equivalent to

deg vI = Cardinal{0 ≤ i ≤ n− 1 : 1− σi(β)x left divides vI}
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Sugiyama-like decoding algorithm
Input: A polynomial y =

∑n−1
i=0 yix

i received from the transmission of a codeword c in a skew RS
code C generated by g = [{x− σi(β)}i=0,...,n−k−1]` of error-correcting capacity τ = bn−k2 c.

Output: A codeword c′, or key equation failure.
1: for 0 ≤ i ≤ 2τ − 1 do
2: Si ←

∑n−1
j=0 yjNj(σ

i(β))

3: S ←
∑2τ−1
i=0 σi(α)Six

i

4: If S = 0 then
5: Return y
6: {ui, vi, ri}i=0,...,l ← REEA(x2τ , S)
7: I ← first iteration in REEA with deg ri < τ , pos← ∅
8: for 0 ≤ i ≤ n− 1 do
9: If 1− σi(β)x is a left divisor of vI then

10: pos = pos ∪ {i}
11: If deg vI > Cardinal(pos) then
12: Return key equation failure
13: for j ∈ pos do
14: pj ← right-quotient(vI , 1− σj(β)x)
15: Solve the linear system rI =

∑
j∈pos ejσ

j(α)pj
16: e←

∑
j∈pos ejx

j

17: Return y − e
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Key equation failures

How often occurs the key equation failure?

Well, it never happens if the error values are in “general
position”. More precisely,

Theorem
The key equation failure happens if and only if e1, . . . , eν are linearly dependent over K = Lσ.

On the other hand, we have an algorithm to solve the key equation failure, if we insist.
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