Skew cyclic codes: Hamming distance and decoding algorithms ${ }^{1}$

J. Gómez-Torrecillas ${ }^{\dagger}$, F. J. Lobillo ${ }^{\dagger}$, G. Navarro ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Algebra and CITIC, University of Granada
${ }^{\ddagger}$ Department of Computer Sciences and AI, and CITIC, University of Granada
\section*{UNIVERSIDAD DE GRANADA}

NCRA V, Lens, June 14, 2017

[^0]Based on:

- GLN, Generating idempotents in ideal codes, ACM Communications in Computer Algebra, Vol 48, No. 3, Issue 189, September 2014, ISSAC poster abstracts, pp. 113-115.
- GLN, A new perspective of cyclicity in convolutional codes, IEEE Transactions on Information Theory 62 (5) (2016), 2702-2706.
- GLN, A Sugiyama-like decoding algorithm for convolutional codes, 2016. arXiv:1607.07187.
- GLN, Ideal codes over separable ring extensions, IEEE Transactions on Information Theory 63 (5) (2017), 2796-2813.

Index

(1) Motivation: Cyclic Convolutional Codes
(2) Skew Reed-Solomon codes
(3) Decoding

Convolutional codes

\mathbb{F} a finite field, $k \leq n$ positive integers. A rate k / n convolutional transducer G transforms
into information sequences $\mathbf{u}=\ldots \mathbf{u}_{-1} \mathbf{u}_{\mathbf{0}} \mathbf{u}_{\mathbf{1}} \ldots\left(\mathbf{u}_{i} \in \mathbb{F}^{k}\right)$ code sequences $\mathbf{v}=\ldots \mathbf{v}_{-1} \mathbf{v}_{\mathbf{0}} \mathbf{v}_{\mathbf{1}} \ldots\left(\mathbf{v}_{i} \in \mathbb{F}^{n}\right)$.

Convolutional codes

\mathbb{F} a finite field, $k \leq n$ positive integers. A rate k / n convolutional transducer G transforms
into

$$
\text { information sequences } \mathbf{u}=\ldots \mathbf{u}_{-1} \mathbf{u}_{0} \mathbf{u}_{1} \ldots\left(\mathbf{u}_{i} \in \mathbb{F}^{k}\right)
$$

$$
\text { code sequences } \mathbf{v}=\ldots \mathbf{v}_{-\mathbf{1}} \mathbf{v}_{\mathbf{0}} \mathbf{v}_{\mathbf{1}} \ldots\left(\mathbf{v}_{i} \in \mathbb{F}^{n}\right)
$$

Requirements: Write $\mathbf{u}=\sum_{i=-i_{0}}^{\infty} \mathbf{u}_{i} t^{i} \in \mathbb{F}^{k}((t)) \cong \mathbb{F}((t))^{k}, \mathbf{v}=\sum_{j=-j_{0}}^{\infty} \mathbf{v}_{i} t^{j} \in \mathbb{F}^{n}((t)) \cong \mathbb{F}((t))^{n}$. Then

$$
\mathbf{v}=\mathbf{u} G,
$$

where G is an $k \times n$ full rank matrix with entries in $\mathbb{F}(t)$.

Convolutional codes

\mathbb{F} a finite field, $k \leq n$ positive integers. A rate k / n convolutional transducer G transforms
into

$$
\text { information sequences } \mathbf{u}=\ldots \mathbf{u}_{-1} \mathbf{u}_{0} \mathbf{u}_{1} \ldots\left(\mathbf{u}_{i} \in \mathbb{F}^{k}\right)
$$

$$
\text { code sequences } \mathbf{v}=\ldots \mathbf{v}_{-1} \mathbf{v}_{\mathbf{0}} \mathbf{v}_{\mathbf{1}} \ldots\left(\mathbf{v}_{i} \in \mathbb{F}^{n}\right)
$$

Requirements: Write $\mathbf{u}=\sum_{i=-i_{0}}^{\infty} \mathbf{u}_{i} t^{i} \in \mathbb{F}^{k}((t)) \cong \mathbb{F}((t))^{k}, \mathbf{v}=\sum_{j=-j_{0}}^{\infty} \mathbf{v}_{i} t^{j} \in \mathbb{F}^{n}((t)) \cong \mathbb{F}((t))^{n}$. Then

$$
\mathbf{v}=\mathbf{u} G,
$$

where G is an $k \times n$ full rank matrix with entries in $\mathbb{F}(t)$.

Definition

A rate k / n convolutional code \mathcal{D} over \mathbb{F} is the image of a rate k / n convolutional transducer G, that is

$$
\mathcal{D}=\left\{\mathbf{u} G: \mathbf{u} \in \mathbb{F}^{k}((t))\right\} \subseteq \mathbb{F}^{n}((t)) .
$$

Convolutional codes

\mathbb{F} a finite field, $k \leq n$ positive integers. A rate k / n convolutional transducer G transforms
into

$$
\text { information sequences } \mathbf{u}=\ldots \mathbf{u}_{-1} \mathbf{u}_{0} \mathbf{u}_{1} \ldots\left(\mathbf{u}_{i} \in \mathbb{F}^{k}\right)
$$

$$
\text { code sequences } \mathbf{v}=\ldots \mathbf{v}_{-\mathbf{1}} \mathbf{v}_{\mathbf{0}} \mathbf{v}_{\mathbf{1}} \ldots\left(\mathbf{v}_{i} \in \mathbb{F}^{n}\right)
$$

Requirements: Write $\mathbf{u}=\sum_{i=-i_{0}}^{\infty} \mathbf{u}_{i} t^{i} \in \mathbb{F}^{k}((t)) \cong \mathbb{F}((t))^{k}, \mathbf{v}=\sum_{j=-j_{0}}^{\infty} \mathbf{v}_{i} t^{j} \in \mathbb{F}^{n}((t)) \cong \mathbb{F}((t))^{n}$. Then

$$
\mathbf{v}=\mathbf{u} G,
$$

where G is an $k \times n$ full rank matrix with entries in $\mathbb{F}(t)$.

Definition

A rate k / n convolutional code \mathcal{D} over \mathbb{F} is the image of a rate k / n convolutional transducer G, that is

$$
\mathcal{D}=\left\{\mathbf{u} G: \mathbf{u} \in \mathbb{F}^{k}((t))\right\} \subseteq \mathbb{F}^{n}((t)) .
$$

Definition (Vector space version)

A rate k / n convolutional code over \mathbb{F} is a k-dimensional vector subspace of $\mathbb{F}(t)^{n}$.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.
Solution: Piret's (1976) idea is skewing the multiplication of $A[t]$.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.
Solution: Piret's (1976) idea is skewing the multiplication of $A[t]$. Technically, this means to define cyclic convolutional codes as suitable left ideals of a skew polynomial ring $A[t ; \sigma]$.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.
Solution: Piret's (1976) idea is skewing the multiplication of $A[t]$. Technically, this means to define cyclic convolutional codes as suitable left ideals of a skew polynomial ring $A[t ; \sigma]$.
This idea has been further developed, (e.g. considering more general finite \mathbb{F}-algebras A) by Roos (1979), Gluesing-Luerssen/Schmale (2004), López-Permouth/Szabo (2013), GLN (2014, 2017), among others.

Cyclic convolutional codes (module version)

Lemma

The map $\mathcal{D} \mapsto \mathcal{D} \cap \mathbb{F}^{n}[t]$ is a bijection between the set of rate k / n convolutional codes and the set of submodules of rank k of $\mathbb{F}^{n}[t] \cong \mathbb{F}[t]^{n}$ that are direct summands.

Definition (Module version)

A rate k / n convolutional code is a rank k direct summand of $\mathbb{F}^{n}[t]$.
Thus, a cyclic structure could be introduced by taking $\mathbb{F}^{n} \cong A:=\mathbb{F}[x] /\left\langle x^{n}-1\right\rangle$, and suitable ideals of $A[t]$ as cyclic convolutional codes. But...

Problem: Piret (1976) observed that no non-block codes are obtained in this way.
Solution: Piret's (1976) idea is skewing the multiplication of $A[t]$. Technically, this means to define cyclic convolutional codes as suitable left ideals of a skew polynomial ring $A[t ; \sigma]$.
This idea has been further developed, (e.g. considering more general finite \mathbb{F}-algebras A) by Roos (1979), Gluesing-Luerssen/Schmale (2004), López-Permouth/Szabo (2013), GLN (2014, 2017), among others.

Main difficulty/opportunity: Dealing with idempotents in $A[t ; \sigma]$.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Features:

$\circ \mathbb{F}(t)[x ; \sigma]$ is a left and right Euclidean domain.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Features:

- $\mathbb{F}(t)[x ; \sigma]$ is a left and right Euclidean domain.
- $\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}\left(\mathbb{F}(t)^{\sigma}\right)$.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Features:

- $\mathbb{F}(t)[x ; \sigma]$ is a left and right Euclidean domain.
- $\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}\left(\mathbb{F}(t)^{\sigma}\right)$.
- When the generator of the code is carefully chosen, we get an MDS code with respect to the Hamming distance.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Features:

$\circ \mathbb{F}(t)[x ; \sigma]$ is a left and right Euclidean domain.

- $\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}\left(\mathbb{F}(t)^{\sigma}\right)$.
- When the generator of the code is carefully chosen, we get an MDS code with respect to the Hamming distance.
- Efficient decoding schemes (like Sugiyama, or Peterson-Gorenstein-Zierler) are adapted to this non-commutative setting.

Cyclic convolutional codes (vector space version).

Would we define a cyclic convolutional code as an ideal of $\mathbb{F}(t)[x] /\left\langle x^{n}-1\right\rangle \cong \mathbb{F}(t)^{n}$?
If so, then we get nothing but cyclic block codes (the factors of $x^{n}-1$ have coefficients in \mathbb{F}).
Proposal: (GLN (2016)). A cyclic convolutional could be a left ideal of $\mathcal{R}=\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle$, where σ is an \mathbb{F}-automorphism of order n of $\mathbb{F}(t)$.

Features:

- $\mathbb{F}(t)[x ; \sigma]$ is a left and right Euclidean domain.
- $\mathbb{F}(t)[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}\left(\mathbb{F}(t)^{\sigma}\right)$.
- When the generator of the code is carefully chosen, we get an MDS code with respect to the Hamming distance.
- Efficient decoding schemes (like Sugiyama, or Peterson-Gorenstein-Zierler) are adapted to this non-commutative setting.
- The theory (including the algorithms) work for any field L.

Skew cyclic codes

So, let L be a field, and $\sigma: L \rightarrow L$ a field automorphism of finite order n. Set $K=L^{\sigma}$. Consider the ring $\mathcal{R}=L[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}(K)$.
Note: The multiplication rule in $L[x ; \sigma]$ is $x a=\sigma(a) x$ for all $a \in L$.

Skew cyclic codes

So, let L be a field, and $\sigma: L \rightarrow L$ a field automorphism of finite order n. Set $K=L^{\sigma}$. Consider the ring $\mathcal{R}=L[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}(K)$.
Note: The multiplication rule in $L[x ; \sigma]$ is $x a=\sigma(a) x$ for all $a \in L$.
We have the isomorphism of L-vector spaces $\mathfrak{p}: L^{n} \rightarrow \mathcal{R}$ sending ($c_{0}, c_{1}, \ldots, c_{n-1}$) onto $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$.
Note: The classical identification of equivalence classes and its representatives is (and will be) made.

Skew cyclic codes

So, let L be a field, and $\sigma: L \rightarrow L$ a field automorphism of finite order n. Set $K=L^{\sigma}$. Consider the ring $\mathcal{R}=L[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}(K)$.
Note: The multiplication rule in $L[x ; \sigma]$ is $x a=\sigma(a) x$ for all $a \in L$.
We have the isomorphism of L-vector spaces $\mathfrak{p}: L^{n} \rightarrow \mathcal{R}$ sending $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ onto $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$.
Note: The classical identification of equivalence classes and its representatives is (and will be) made.

Definition

A k-dimensional L-linear code $\mathcal{C} \subseteq L^{n}$ of dimension n is said to be a skew cyclic code if $\mathfrak{p}(\mathcal{C})$ is a left ideal of \mathcal{R}.

Note: We will identify \mathcal{C} with $\mathfrak{p}(\mathcal{C})$. Since every left ideal of \mathcal{R} is principal, we will often speak of the "skew code generated by a polynomial", aggravating the abuse of language.

Skew cyclic codes

So, let L be a field, and $\sigma: L \rightarrow L$ a field automorphism of finite order n. Set $K=L^{\sigma}$. Consider the ring $\mathcal{R}=L[x ; \sigma] /\left\langle x^{n}-1\right\rangle \cong M_{n}(K)$.
Note: The multiplication rule in $L[x ; \sigma]$ is $x a=\sigma(a) x$ for all $a \in L$.
We have the isomorphism of L-vector spaces $\mathfrak{p}: L^{n} \rightarrow \mathcal{R}$ sending $\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ onto $c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$.
Note: The classical identification of equivalence classes and its representatives is (and will be) made.

Definition

A k-dimensional L-linear code $\mathcal{C} \subseteq L^{n}$ of dimension n is said to be a skew cyclic code if $\mathfrak{p}(\mathcal{C})$ is a left ideal of \mathcal{R}.

Note: We will identify \mathcal{C} with $\mathfrak{p}(\mathcal{C})$. Since every left ideal of \mathcal{R} is principal, we will often speak of the "skew code generated by a polynomial", aggravating the abuse of language.

Note: When $L=\mathbb{F}$ is a finite field, these codes lie in the realm of the theory developed by Boucher/Chaussade/Geiselmann/Loidreau/Ulmer (2007, 2009), among others, where the name is taken.

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.
Construction method of Skew RS codes

- Choose a normal basis $\left\{\alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ of the field extension L / K.

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.
Construction method of Skew RS codes

- Choose a normal basis $\left\{\alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ of the field extension L / K.
- Set $\beta=\alpha^{-1} \sigma(\alpha)$

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.

Construction method of Skew RS codes

- Choose a normal basis $\left\{\alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ of the field extension L / K.
- Set $\beta=\alpha^{-1} \sigma(\alpha)$
- $x^{n}-1$ decomposes as the least common left multiple

$$
x^{n}-1=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-1}(\beta)\right]_{\ell}
$$

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.

Construction method of Skew RS codes

- Choose a normal basis $\left\{\alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ of the field extension L / K.
- Set $\beta=\alpha^{-1} \sigma(\alpha)$
- $x^{n}-1$ decomposes as the least common left multiple

$$
x^{n}-1=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-1}(\beta)\right]_{\ell}
$$

- For $1 \leq k<n$, the left ideal \mathcal{C} of \mathcal{R} generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

is an SCC of length n and dimension k. We call them Reed-Solomon skew codes.

Skew RS codes

Idea: Choosing carefully generator polynomials of skew codes, we get very concrete results.

Construction method of Skew RS codes

- Choose a normal basis $\left\{\alpha, \sigma(\alpha), \ldots, \sigma^{n-1}(\alpha)\right\}$ of the field extension L / K.
- Set $\beta=\alpha^{-1} \sigma(\alpha)$
- $x^{n}-1$ decomposes as the least common left multiple

$$
x^{n}-1=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-1}(\beta)\right]_{\ell}
$$

- For $1 \leq k<n$, the left ideal \mathcal{C} of \mathcal{R} generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

is an SCC of length n and dimension k. We call them Reed-Solomon skew codes.

Theorem

The Hamming minimum distance of \mathcal{C} is $\delta=n-k+1$. Thus, it is an MDS code.

Parity check matrix

A parity check matrix of the skew RS code is given by

$$
H=\left(\begin{array}{cccc}
N_{0}(\beta) & N_{0}(\sigma(\beta)) & \ldots & N_{0}\left(\sigma^{n-k-1}(\beta)\right) \\
N_{1}(\beta) & N_{1}(\sigma(\beta)) & \ldots & N_{1}\left(\sigma^{n-k-1}(\beta)\right) \\
N_{2}(\beta) & N_{2}(\sigma(\beta)) & \ldots & N_{2}\left(\sigma^{n-k-1}(\beta)\right) \\
\vdots & \vdots & \ddots & \vdots \\
N_{n-1}(\beta) & N_{n-1}(\sigma(\beta)) & \ldots & N_{n-1}\left(\sigma^{n-k-1}(\beta)\right)
\end{array}\right) .
$$

Here, for $\gamma \in L$,

$$
N_{j}(\gamma)=\gamma \sigma(\gamma) \ldots \sigma^{j-1}(\gamma)
$$

is the remainder of the left division of x^{j} by $x-\gamma$, that is

$$
x^{j}=q(x)(x-\gamma)+N_{j}(\gamma) .
$$

Transmission and syndromes

Our skew RS code \mathcal{C} is generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

Transmission and syndromes

Our skew RS code \mathcal{C} is generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

Set $\tau=\left\lfloor\frac{\delta-1}{2}\right\rfloor=\left\lfloor\frac{n-k}{2}\right\rfloor$ which is the maximum number of errors that the code can correct.

Transmission and syndromes

Our skew RS code \mathcal{C} is generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

Set $\tau=\left\lfloor\frac{\delta-1}{2}\right\rfloor=\left\lfloor\frac{n-k}{2}\right\rfloor$ which is the maximum number of errors that the code can correct.

$$
\begin{array}{ccc}
m \longrightarrow c=m g & \longrightarrow & y=c+e \\
\sum_{i=0}^{k-1} m_{i} x^{i} & \sum_{i=0}^{n-1} c_{i} x^{i} & \sum_{i=0}^{n-1} c_{i} x^{i}+\sum_{j=1}^{\nu} e_{j} x^{k_{j}} \quad \nu \leq \tau \\
\text { message } & & \text { received }
\end{array}
$$

Transmission and syndromes

Our skew RS code \mathcal{C} is generated by

$$
g=\left[x-\beta, x-\sigma(\beta), x-\sigma^{2}(\beta), \ldots, x-\sigma^{n-k-1}(\beta)\right]_{\ell}
$$

Set $\tau=\left\lfloor\frac{\delta-1}{2}\right\rfloor=\left\lfloor\frac{n-k}{2}\right\rfloor$ which is the maximum number of errors that the code can correct.

$$
\begin{array}{ccc}
m \longrightarrow c=m g & \longrightarrow y=c+e \\
\sum_{i=0}^{k-1} m_{i} x^{i} & \sum_{i=0}^{n-1} c_{i} x^{i} & \sum_{i=0}^{n-1} c_{i} x^{i}+\sum_{j=1}^{\nu} e_{j} x^{k_{j}}
\end{array} \quad \nu \leq \tau
$$

From the received polynomial $y=\sum_{j=0}^{n-1} y_{j} x^{j}$ we can compute the syndromes

$$
S_{i}=\sum_{j=0}^{n-1} y_{j} N_{j}\left(\sigma^{i}(\beta)\right), \quad i=0, \ldots, n-1
$$

Error locator and error evaluator

We thus know the syndrome polynomial, defined as

$$
S=\sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i}
$$

Error locator and error evaluator

We thus know the syndrome polynomial, defined as

$$
S=\sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i} .
$$

Define the locator polynomial

$$
\lambda=\left[1-\sigma^{k_{1}}(\beta) x, 1-\sigma^{k_{2}}(\beta) x, \ldots, 1-\sigma^{k_{\nu}}(\beta) x\right]_{r}
$$

Error locator and error evaluator

We thus know the syndrome polynomial, defined as

$$
S=\sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i} .
$$

Define the locator polynomial

$$
\lambda=\left[1-\sigma^{k_{1}}(\beta) x, 1-\sigma^{k_{2}}(\beta) x, \ldots, 1-\sigma^{k_{\nu}}(\beta) x\right]_{r}
$$

For $1 \leq j \leq \nu$ we thus know that there is p_{j} of degree $\nu-1$ such that $\lambda=\left(1-\sigma^{k_{j}}(\beta) x\right) p_{j}$.

Error locator and error evaluator

We thus know the syndrome polynomial, defined as

$$
S=\sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i} .
$$

Define the locator polynomial

$$
\lambda=\left[1-\sigma^{k_{1}}(\beta) x, 1-\sigma^{k_{2}}(\beta) x, \ldots, 1-\sigma^{k_{\nu}}(\beta) x\right]_{r}
$$

For $1 \leq j \leq \nu$ we thus know that there is p_{j} of degree $\nu-1$ such that $\lambda=\left(1-\sigma^{k_{j}}(\beta) x\right) p_{j}$. Define the evaluator polynomial

$$
\begin{equation*}
\omega=\sum_{j=1}^{\nu} e_{j} \sigma^{k_{j}}(\alpha) p_{j} \tag{1}
\end{equation*}
$$

Error locator and error evaluator

We thus know the syndrome polynomial, defined as

$$
S=\sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i}
$$

Define the locator polynomial

$$
\lambda=\left[1-\sigma^{k_{1}}(\beta) x, 1-\sigma^{k_{2}}(\beta) x, \ldots, 1-\sigma^{k_{\nu}}(\beta) x\right]_{r}
$$

For $1 \leq j \leq \nu$ we thus know that there is p_{j} of degree $\nu-1$ such that $\lambda=\left(1-\sigma^{k_{j}}(\beta) x\right) p_{j}$. Define the evaluator polynomial

$$
\begin{equation*}
\omega=\sum_{j=1}^{\nu} e_{j} \sigma^{k_{j}}(\alpha) p_{j} \tag{1}
\end{equation*}
$$

Sugiyama's decoding scheme.

If λ is computed, then the error positions k_{1}, \ldots, k_{ν} are derived. With these at hand, we can compute p_{1}, \ldots, p_{ν}. Finally, the error values e_{1}, \ldots, e_{ν} are computed by solving a linear system from (1), whenever ω is known.

The non-commutative key equation

Theorem

These polynomials satisfy the non-commutative key equation

$$
\omega=S \lambda+x^{2 \tau} u
$$

for some u of degree smaller than ν.

The non-commutative key equation

Theorem

These polynomials satisfy the non-commutative key equation

$$
\omega=S \lambda+x^{2 \tau} u
$$

for some u of degree smaller than ν.

Theorem

The non-commutative key equation

$$
\begin{equation*}
x^{2 \tau} u+S \lambda=\omega \tag{2}
\end{equation*}
$$

is a right multiple of the equation

$$
\begin{equation*}
x^{2 \tau} u_{I}+S v_{I}=r_{I} \tag{3}
\end{equation*}
$$

where u_{I}, v_{I} and r_{I} are the Bezout coefficients returned by the REEA with input $x^{2 \tau}$ and S, and I is the index determined by the conditions $\operatorname{deg} r_{I-1} \geq \tau$ and $\operatorname{deg} r_{I}<\tau$. In particular, $\lambda=v_{I} g$ and $\omega=r_{I} g$ for some $g \in L[x ; \sigma]$.

Sugiyama-like decoding

- If $(\lambda, \omega)_{r}=1$, then the last theorem gives that the REEA serves for the computation of the locator polynomial λ and the evaluator polynomial ω.

Sugiyama-like decoding

- If $(\lambda, \omega)_{r}=1$, then the last theorem gives that the REEA serves for the computation of the locator polynomial λ and the evaluator polynomial ω.
- As mentioned above, once these polynomials are computed, the error polynomial is computed by a scheme similar to the Sugiyama algorithm for (commutative) RS codes.

Sugiyama-like decoding

- If $(\lambda, \omega)_{r}=1$, then the last theorem gives that the REEA serves for the computation of the locator polynomial λ and the evaluator polynomial ω.
- As mentioned above, once these polynomials are computed, the error polynomial is computed by a scheme similar to the Sugiyama algorithm for (commutative) RS codes.
- The condition $(\lambda, \omega)_{r}=1$ is equivalent to

$$
\operatorname{deg} v_{I}=\operatorname{Cardinal}\left\{0 \leq i \leq n-1: 1-\sigma^{i}(\beta) x \text { left divides } v_{I}\right\}
$$

Sugiyama-like decoding algorithm

Input: A polynomial $y=\sum_{i=0}^{n-1} y_{i} x^{i}$ received from the transmission of a codeword c in a skew RS code \mathcal{C} generated by $g=\left[\left\{x-\sigma^{i}(\beta)\right\}_{i=0, \ldots, n-k-1}\right]_{\ell}$ of error-correcting capacity $\tau=\left\lfloor\frac{n-k}{2}\right\rfloor$.
Output: A codeword c^{\prime}, or key equation failure.
1: for $0 \leq i \leq 2 \tau-1$ do
2: $\quad S_{i} \leftarrow \sum_{j=0}^{n-1} y_{j} N_{j}\left(\sigma^{i}(\beta)\right)$
$S \leftarrow \sum_{i=0}^{2 \tau-1} \sigma^{i}(\alpha) S_{i} x^{i}$
4: If $S=0$ then
Return y
$\left\{u_{i}, v_{i}, r_{i}\right\}_{i=0, \ldots, l} \leftarrow \operatorname{REEA}\left(x^{2 \tau}, S\right)$
$I \leftarrow$ first iteration in REEA with deg $r_{i}<\tau$, pos $\leftarrow \emptyset$
for $0 \leq i \leq n-1$ do
If $1-\sigma^{i}(\beta) x$ is a left divisor of v_{I} then

$$
\text { pos }=p o s \cup\{i\}
$$

If $\operatorname{deg} v_{I}>\operatorname{Cardinal}(p o s)$ then
12: Return key equation failure
13: for $j \in \operatorname{pos}$ do
14: $\quad p_{j} \leftarrow \operatorname{right-quotient}\left(v_{I}, 1-\sigma^{j}(\beta) x\right)$
15: Solve the linear system $r_{I}=\sum_{j \in p o s} e_{j} \sigma^{j}(\alpha) p_{j}$
16: $e \leftarrow \sum_{j \in \text { pos }} e_{j} x^{j}$
17: Return $y-e$

Key equation failures

How often occurs the key equation failure?

Key equation failures

How often occurs the key equation failure? Well, it never happens if the error values are in "general position".

Key equation failures

How often occurs the key equation failure? Well, it never happens if the error values are in "general position". More precisely,

Theorem

The key equation failure happens if and only if e_{1}, \ldots, e_{ν} are linearly dependent over $K=L^{\sigma}$.

Key equation failures

How often occurs the key equation failure? Well, it never happens if the error values are in "general position". More precisely,

Theorem

The key equation failure happens if and only if e_{1}, \ldots, e_{ν} are linearly dependent over $K=L^{\sigma}$.
On the other hand, we have an algorithm to solve the key equation failure, if we insist.

[^0]: ${ }^{1}$ Research supported by grants MTM2013-41992-P and MTM2016-78364-P from Spanish government and FEDER.

