On images of linear maps with skew derivations

Münevver Pınar Eroğlu

Dokuz Eylül University, izmir, Turkey

This is a joint work with Tsiu-Kwen Lee

Noncommutative rings and their applications, V, 2017

Münevver Pınar Eroğlu On images of linear maps with skew derivations

• By a ring *R* we mean an associative ring.

- By a ring *R* we mean an associative ring.
- For $a, b \in R$, the **commutator** of a and b is denoted by

$$[a,b] = ab - ba$$

- By a ring *R* we mean an associative ring.
- For $a, b \in R$, the **commutator** of a and b is denoted by

$$[a,b] = ab - ba$$

• For additive subgroups A, B of R, let

[A, B]

denote the additive subgroup of *R* generated by all elements [a, b] for $a \in A$ and $b \in B$.

An additive map $\delta \colon R \to R$ is called a **derivation** if

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in R$.

An additive map $\delta \colon R \to R$ is called a **derivation** if

$$\delta(xy) = \delta(x)y + x\delta(y)$$

for all $x, y \in R$.

Definition

For $b \in R$, the map $x \mapsto bx - xb$ for $x \in R$ is a derivation of R which is called an **inner derivation**, denoted by ad(b).

An additive map $\delta \colon R \to R$ is called a **derivation** if

 $\delta(xy) = \delta(x)y + x\delta(y)$

for all $x, y \in R$.

Definition

For $b \in R$, the map $x \mapsto bx - xb$ for $x \in R$ is a derivation of R which is called an **inner derivation**, denoted by ad(b).

A derivation of *R* is called *outer* if it is not inner.

MOTIVATION

Definition

Let *C* be a field and *A* be a *C*-algebra. An additive map $f: A \to A$ is called *C*-linear map if

$$f(\beta x) = \beta f(x)$$

for all $x \in A$ and $\beta \in C$.

MOTIVATION

Definition

Let *C* be a field and *A* be a *C*-algebra. An additive map $f: A \to A$ is called *C*-linear map if

$$f(\beta x) = \beta f(x)$$

for all $x \in A$ and $\beta \in C$.

Theorem

(Skolem-Noether) Let *R* be a finite dimensional central simple *C*-algebra and $\delta: R \to R$ be a derivation.

 δ is **inner** if and only if δ is *C*-linear.

MOTIVATION

Definition

Let *C* be a field and *A* be a *C*-algebra. An additive map $f: A \to A$ is called *C*-linear map if

$$f(\beta x) = \beta f(x)$$

for all $x \in A$ and $\beta \in C$.

Theorem

(Skolem-Noether) Let *R* be a finite dimensional central simple *C*-algebra and $\delta: R \to R$ be a derivation.

 δ is **inner** if and only if δ is *C*-linear.

Corollary

(Eroğlu and Lee, 2017)

 δ is inner if and only if $\delta(R) \subseteq [R, R]$.

Münevver Pınar Eroğlu On images of linear maps with skew derivations

<u>Characterize</u> derivations δ of *R* and positive integers *n* such that

 $\delta^n(R)\subseteq [R,R].$

<u>Characterize</u> derivations δ of *R* and positive integers *n* such that

 $\delta^n(R)\subseteq [R,R].$

Question 1. In case *R* is a prime ring with a nonzero derivation δ and Martindale symmetric ring of quotients *Q*, characterize

$$\phi(x) = \sum_{i,j} a_{ij} \delta^j(x) b_{ij}$$

for $x \in R$ where a_{ij}, b_{ij} are finitely many elements in Q such that

 $\phi(\mathbf{R})\subseteq [\mathbf{R},\mathbf{R}].$

DEFINITION

Definition

An associative ring R is called **prime** if aRb = 0 implies a = 0 or b = 0 for $a, b \in R$.

An associative ring R is called **prime** if aRb = 0 implies a = 0 or b = 0 for $a, b \in R$.

Denote by Q the *Martindale symmetric ring of quotients* of R with the center C that is called the **extended centroid** of R.

Q is also a prime ring and C is a field.

An associative ring *R* is called **prime** if aRb = 0 implies a = 0 or b = 0 for $a, b \in R$.

Denote by Q the *Martindale symmetric ring of quotients* of R with the center C that is called the **extended centroid** of R.

Q is also a prime ring and C is a field.

It is known that any derivation $\delta : R \to R$ can be uniquely extended to a derivation of Q, denoted by δ also.

Let

$$Q[t;\delta] := \{a_0 + a_1t + \dots + a_nt^n \mid a_0, \dots, a_n \in Q, n \ge 0\},\$$

be the Ore extension of Q by δ .

Let

$$Q[t;\delta] := \{a_0 + a_1t + \dots + a_nt^n \mid a_0, \dots, a_n \in Q, n \ge 0\},\$$

be the Ore extension of Q by δ .

For $f(t) \in Q[t; \delta]$, we denote

$$f(\delta) = (a_0)_L \operatorname{id}_R + (a_1)_L \delta + \dots + (a_n)_L \delta^n.$$

Let

$$Q[t;\delta] := \{a_0 + a_1t + \dots + a_nt^n \mid a_0, \dots, a_n \in Q, n \ge 0\},\$$

be the Ore extension of Q by δ .

For $f(t) \in Q[t; \delta]$, we denote

$$f(\delta) = (a_0)_L \operatorname{id}_R + (a_1)_L \delta + \dots + (a_n)_L \delta^n.$$

Question 2. In case *R* is a prime ring with a nonzero derivation δ and Martindale symmetric ring of quotients *Q*, characterize

$$f(t) = a_0 + a_1t + \dots + a_nt^n \in Q[t;\delta]$$

such that $f(\delta)(R) \subseteq [R, R]$.

Let R_F be the Martindale left ring of quotients of R. A derivation $\delta: R \to R$ is called **quasi-algebraic** if there exist $b_1, \ldots, b_{n-1}, b \in R_F$ such that

(1)
$$\delta^n(x) + b_1 \delta^{n-1}(x) + \dots + b_{n-1} \delta(x) = bx - xb$$

for all $x \in R$.

Let R_F be the Martindale left ring of quotients of R. A derivation $\delta: R \to R$ is called **quasi-algebraic** if there exist $b_1, \ldots, b_{n-1}, b \in R_F$ such that

(1)
$$\delta^n(x) + b_1 \delta^{n-1}(x) + \dots + b_{n-1} \delta(x) = bx - xb$$

for all $x \in R$.

The least integer *n* is called *quasi-algebraic degree* of δ and is denoted by $out - deg(\delta)$.

Let R_F be the Martindale left ring of quotients of R. A derivation $\delta: R \to R$ is called **quasi-algebraic** if there exist $b_1, \ldots, b_{n-1}, b \in R_F$ such that

(1)
$$\delta^n(x) + b_1 \delta^{n-1}(x) + \dots + b_{n-1} \delta(x) = bx - xb$$

for all $x \in R$.

The least integer *n* is called *quasi-algebraic degree* of δ and is denoted by *out* $- deg(\delta)$.

 $out - deg(\delta) = 1$ if and only if δ is X-inner.

For a quasi-algebraic derivation δ of *R*, we define;

Münevver Pınar Eroğlu On images of linear maps with skew derivations

For a quasi-algebraic derivation δ of *R*, we define;

p(t) = t if $out - deg(\delta) = 1$;

For a quasi-algebraic derivation δ of *R*, we define;

$$p(t) = t$$
 if $out - deg(\delta) = 1$;

 $p(t) = t^{p^s} + \alpha_1 t^{p^{s-1}} + \dots + \alpha_s t$ if char R = p > 0 and R satisfies (1) where $\alpha_i \in C$.

For a quasi-algebraic derivation δ of *R*, we define;

p(t) = t if $out - deg(\delta) = 1$; $p(t) = t^{p^s} + \alpha_1 t^{p^{s-1}} + \dots + \alpha_s t$ if char R = p > 0 and R satisfies (1) where $\alpha_i \in C$.

In either case, p(t) is called the **associated polynomial** of δ .

For a quasi-algebraic derivation δ of *R*, we define;

$$p(t) = t$$
 if $out - deg(\delta) = 1$;
 $p(t) = t^{p^s} + \alpha_1 t^{p^{s-1}} + \dots + \alpha_s t$ if $char R = p > 0$ and R satisfies (1)
where $\alpha_i \in C$.

In either case, p(t) is called the **associated polynomial** of δ .

Note that $p(\delta) = ad(b)$ for some $b \in Q$.

We remark that Question 1 and 2 are meaningful only when $[R, R] \neq R$.

We remark that Question 1 and 2 are meaningful only when $[R, R] \neq R$.

Question 1. and 2. Characterize

$$\phi(x) = \sum_{i,j} a_{ij} \delta^j(x) b_{ij}$$

such that $\phi(R) \subseteq [R, R]$

We remark that Question 1 and 2 are meaningful only when $[R, R] \neq R$.

Question 1. and 2. Characterize

$$\phi(x) = \sum_{i,j} a_{ij} \delta^j(x) b_{ij}$$

such that $\phi(R) \subseteq [R, R]$ and characterize

$$f(t) = a_0 + a_1t + \dots + a_nt^n \in Q[t;\delta]$$

such that $f(\delta)(R) \subseteq [R, R]$.

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring. Then $[R, R] \neq R$.

Münevver Pınar Eroğlu On images of linear maps with skew derivations

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring. Then $[R, R] \neq R$.

We now are ready to answer Question 2. as follows:

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring. Then $[R, R] \neq R$.

We now are ready to answer Question 2. as follows:

Theorem

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ and $f(t) \in Q[t; \delta]$.

 $f(\delta)(\mathbf{R}) \subseteq [\mathbf{R}, \mathbf{R}]$ if and only if δ is quasi-algebraic and p(t)|f(t).

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring. Then $[R, R] \neq R$.

We now are ready to answer Question 2. as follows:

Theorem

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ and $f(t) \in Q[t; \delta]$.

 $f(\delta)(R) \subseteq [R, R]$ if and only if δ is quasi-algebraic and p(t)|f(t).

For A(t), $B(t) \in Q[t; \delta]$ with $A(t) \neq 0$ by A(t)|B(t) we mean there exists some $q(t) \in Q[t; \delta]$ such that B(t) = A(t)q(t).

The answer to Question 1 is as follows:

Theorem

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ . Suppose that

$$\phi(x) = \sum_{i,j} a_{ij} \delta^j(x) b_{ij}$$

for $x \in R$, where a_{ij}, b_{ij} are finitely many elements in Q. Then

The answer to Question 1 is as follows:

Theorem

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ . Suppose that

$$\phi(x) = \sum_{i,j} a_{ij} \delta^j(x) b_{ij}$$

for $x \in R$, where a_{ij}, b_{ij} are finitely many elements in Q. Then

 $\phi(R) \subseteq [R, R]$ if and only if either $\sum_{i,j} b_{ij}a_{ij}t^j = 0$ or δ is quasi-algebraic and $p(t)|\sum_i (\sum_i b_{ij}a_{ij})t^j$.

Corollary

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ . Given a positive integer *n*,

 $\delta^n(R) \subseteq [R, R]$ if and only if δ^ℓ is X-inner for some $\ell \leq n$.

Corollary

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ . Given a positive integer *n*,

 $\delta^n(R) \subseteq [R,R]$ if and only if δ^ℓ is X-inner for some $\ell \leq n$.

Corollary

(Eroğlu and Lee, 2017) Let *R* be a simple GPI-ring with a nonzero derivation δ . Suppose that $f(\delta)$ is a derivation of *R*. Then

 $f(\delta)$ is X-inner if and only if δ is quasi-algebraic and p(t)|f(t).

Let σ be an automorphism of R. An additive map $D: R \to R$ is called a σ -derivation (or a skew derivation) of R if

$$D(xy) = D(x)y + \sigma(x)D(y)$$

for all $x, y \in R$.

Let σ be an automorphism of R. An additive map $D: R \to R$ is called a σ -derivation (or a skew derivation) of R if

$$D(xy) = D(x)y + \sigma(x)D(y)$$

for all $x, y \in R$.

If $\sigma \neq id$, then the map $\sigma - id$ is a σ -derivation.

Let σ be an automorphism of R. An additive map $D: R \to R$ is called a σ -derivation (or a skew derivation) of R if

$$D(xy) = D(x)y + \sigma(x)D(y)$$

for all $x, y \in R$.

If $\sigma \neq id$, then the map $\sigma - id$ is a σ -derivation. For $b \in O$,

$$D(x) = bx - \sigma(x)b$$

is a σ -derivation and it is called an **inner** σ -derivation of *R*.

THANKS FOR ATTENDING :)

Münevver Pınar Eroğlu On images of linear maps with skew derivations

- K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc., New York, **196**, (1996).
- C.-L. Chuang and T.-K. Lee, *Ore extensions which are* GPI-*rings*, Manuscripta Math. **124**, (2007), 45-58.
- M. P. Eroğlu and T.-K. Lee, *The images of polynomials of derivations*, Comm. Algebra, **45** (10) (2017), 4550-4556.
- V.K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17, (1978), 220-238. (Engl. Transl., Algebra and Logic 17, (1978), 154-168.)
- V.K. Kharchenko, Differential identities of semiprime rings, Algebra i Logika 18, (1979), 86-119. (Engl. Transl., Algebra and Logic 18, (1979), 58-80.)
- W.K. Nicholson and J.F. Watters, *On tensor products and extended centroids*, Proc. Amer. Math. Soc. **88**, (1983), 215-217.