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Background

Definition
Let R be a ring and M a right R-module.

M is called a Ci-module if it has the following Ci properties for i = 1, 2, 3.

C1: Every submodule of M is essential in a direct summand of M.

C2: Whenever A and B are submodules of M with A ∼= B and B ⊆⊕ M,
then A ⊆⊕ M.

C3: Whenever A and B are direct summands of M with A ∩ B = 0, then
A + B ⊆⊕ M.
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Background

Definition
A module M is called a Di-module if it satisfies the following
Di-conditions.

D1: For every submodule A of M, there is a decomposition
M = M1 ⊕M2 such that M1 ⊆ A and A ∩M2 � M2.

D2: Whenever A and B are submodules of M with M/A ∼= B and
B ⊆⊕ M, then A ⊆⊕ M.

D3: Whenever A and B are direct summands of M with A + B = M,
then A ∩ B ⊆⊕ M.



Background

Definition
M is called continuous if it is C1 and C2, and quasi-continuous if it is
C1 and C3.

C2 ⇒ C3

quasi-injective ⇒ continuous

Definition
A module M is called discrete if it is both a D1- and a D2 -module,
quasi-discrete if it is both a D1- and a D3-module.

quasi-projective ⇒ D2 ⇒ D3
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C4-Modules via Perspective Submodules

Proposition [Amin et al., 2015]

If M is a C3-module, then for every decomposition M = A⊕B and every
homomorphism f : A→ B with ker f ⊆⊕ A, then Imf ⊆⊕ B.

[Amin et al., 2015]

The following are equivalent for a module M:

(1) If M = A⊕ B and f : A→ B is a monomorphism, then Imf ⊆⊕ B.

(2) If M = A⊕ B and f : A→ B is a homomorphism with ker f ⊆⊕ A,
then Imf ⊆⊕ B.
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C4-Modules via Perspective Submodules

Definition [Ding et al., 2017]

A module M is called a C4-module if it satisfies any of the equivalent
conditions in the above.

C3 ⇒ C4

Definition

A module M is called (summand-) square-free if whenever N ⊆ M and
N = Y1 ⊕ Y2 with Y1

∼= Y2 (and Y1, Y2 ⊆⊕ M), then Y1 = Y2 = 0.

summand-square-free ⇒ C4
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C4-Modules via Perspective Submodules

Definition
Two direct summands A and B of a module M are perspective exactly
when there exists a common direct sum complement C , i.e.,

M = A⊕ C = B ⊕ C .

Theorem 1.1
The following are equivalent for a module M:

(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with A ∩ B = 0,
then A⊕ B ⊆⊕ M.

(3) If A and B are perspective direct summands of M with
A ∩ B ⊆⊕ M, then A + B ⊆⊕ M.



C4-Modules via Perspective Submodules

Definition
Two direct summands A and B of a module M are perspective exactly
when there exists a common direct sum complement C , i.e.,

M = A⊕ C = B ⊕ C .

Theorem 1.1
The following are equivalent for a module M:

(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with A ∩ B = 0,
then A⊕ B ⊆⊕ M.

(3) If A and B are perspective direct summands of M with
A ∩ B ⊆⊕ M, then A + B ⊆⊕ M.



C4-Modules via Perspective Submodules

Theorem 1.2
Let M = ⊕i∈IMi be a module, where Mi is fully invariant in M for every
i ∈ I . Then M is a C4-module if and only if each Mi is a C4-module.



C4-Modules via Perspective Submodules

Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r -
ACC on summands, for short) if, M has no strictly ascending chains of
non-zero summands

A1 $ A2 $ · · ·
B1 $ B2 $ · · ·

with Ai
∼= Bi and Ai ∩ Bi = 0 for all i > 1.

ACC on summands ⇒ r - ACC on summands

summand-square-free ⇒ r - ACC on summands
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C4-Modules via Perspective Submodules

Theorem 1.4
If M is a C4-module that satisfies the restricted ACC on summands,
then M = A⊕ B ⊕ K where A ∼= B is a C2-module and K is a
summand-square-free module.



Endomorphism Rings of C4-Modules

Let M be a right R-module and S = EndR(M).

I If SS is a right C2-module, then MR is C2; the converse is true if
ker(α) is generated by M whenever α is such that rS(α) is a direct
summand of SS [Nicholson and Yousif, 2003].

I If SS is a right C3-module, then MR is C3 [Amin et al., 2015]; the
converse is true if for every pair of idempotents e, f ∈ S with
eS ∩ fS = 0 we have eM ∩ fM = 0 by [Mazurek et al., 2015].

I If SS is a right C4-module, then MR is C4; the converse is true if for
every pair of idempotents e, f ∈ S with eS ∩ fS = 0 we have
eM ∩ fM = 0 [Ding et al., 2017].
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Endomorphism Rings of C4-Modules

Theorem 2.1

Let M be a right R-module with S = EndR(M). Then S is a right
C4-ring, if M is a C4-module and one of the following is satisfied.

(1) M is k-local-retractable.

(2) For any α ∈ S , ker(α) is generated by M.

(3) For every pair of perspective idempotents e, f ∈ S with eS ∩ fS = 0,
we have eM ∩ fM = 0.



Endomorphism Rings of C4-Modules

Proposition 2.2

Let M be a right R-module with S = EndR(M). Then the following are
equivalent:

(1) M is a C4-module.

(2) For every pair of perspective idempotents e, f ∈ S with
eM ∩ fM = 0, there exists an idempotent g of S such that
eM = gM and fM ⊆ (1− g)M.

Proposition 2.3

A right R-module M is C4 if and only if for any idempotents
e, f ∈ EndR(M), if kere = kerf = ker(e − f ), then (1− e)fM ⊆⊕ M.
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Right C4 rings

Proposition 3.1

Let Ri (i ∈ I ) be any collection of rings, and let R be the direct product∏
i∈I Ri . Then R is a right C4-ring if and only if every Ri is a right

C4-ring.

Proposition 3.2

If R is a right C4-ring, then so is eRe for any idempotent e ∈ R such
that ReR = R.
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Right C4 rings

Example 3.3

The condition ReR = R is not superfluous in Proposition 3.2: Let R be
the algebra of matrices, over a field F , of the form

a x 0 0 0 0
0 b 0 0 0 0
0 0 c y 0 0
0 0 0 a 0 0
0 0 0 0 b z
0 0 0 0 0 c


I e := e11 + e22 + e33 + e44 + e55, where eij are the matrices with

(i , j)-entry 1 and all other entries zero.

I e is an idempotent of R such that ReR 6= R.

I R is a quasi-Frobenius ring by [Koike, 1995] ⇒ R is right C4.

I eRe ∼=
(
F F
0 F

)
is not a right C4-ring.
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Right C4 rings

I Let R be a ring and M an R-R-bimodule.
Then the trivial extension R ∝ M is a ring whose underlying group is
R ×M with the multiplication defined by

(r ,m)(s, n) = (rs, rn + ms)

where r , s ∈ R and m, n ∈ M.

Proposition 3.4

Let R be a ring and M an R-R-bimodule.

1) If R ∝ M is a right C4-ring, and for any idempotents e, f ∈ R,
eR ∩ fR = 0 implies eM ∩ fM = 0, then R is a right C4-ring.

2) If R is a right C4-ring, and eM(1− e) = 0 for any idempotent
e ∈ R, then R ∝ M is a right C4-ring.
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D4-Modules via Perspective Submodules

Proposition [Yousif et al., 2014]

If M is a D3-module, then for every decomposition M = A⊕B and every
homomorphism f : A→ B with Imf ⊆⊕ B, then ker f ⊆⊕ A.

[Yousif et al., 2014]

The following are equivalent for a module M:

(1) If M = A⊕ B with A,B ⊆ M and f : A→ B is an epimorphism,
then ker f ⊆⊕ A.

(2) If M = A⊕ B with A,B ⊆ M and f : A→ B is a homomorphism
with Imf ⊆⊕ B, then ker f ⊆⊕ A.
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D4-Modules via Perspective Submodules

Definition [Ding et al., 2017]

A module M is called a D4-module if it satisfies any of the equivalent
conditions in the above theorem.

D3 ⇒ D4

Definition [Ding et al., 2017]

A module M is called summand-dual-square-free if M has no proper
direct summands A and B with M = A + B and M/A ∼= M/B.

summand-dual-square-free ⇒ D4
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D4-Modules via Perspective Submodules

Theorem 4.1
The following conditions on a module M are equivalent:

(1) M is a D4-module.

(2) If A and B are perspective direct summands of M with A + B = M,
then A ∩ B ⊆⊕ M.

(3) If A and B are perspective direct summands of M with
A + B ⊆⊕ M, then A ∩ B ⊆⊕ M.



D4-Modules via Perspective Submodules

Proposition 4.2

The following conditions on a module M are equivalent:

(1) M is a D4- and summand-square-free module.

(2) M is a C4- and summand-dual-square-free module.

Corollary 4.3

RR is summand-square-free if and only if RR is C4 and
summand-dual-square-free .
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D4-Modules via Perspective Submodules

Definition 4.4
A module M is said to satisfy the restricted DCC on summands if, M has
no strictly descending chains of non-zero summands

A1 % A2 % · · ·
B1 % B2 % · · ·

with M/Ai
∼= M/Bi and Ai + Bi ⊆⊕ M for all i > 1.



D4-Modules via Perspective Submodules

Theorem 4.5
If M is a D4-module that satisfies the restricted DCC on summands,
then M = A⊕ B ⊕ K where A ∼= B, A and B are D2-modules, and K is
a summand-dual-square-free module.

Corollary 4.6

If R is I -finite, then RR = A⊕ B ⊕ K with A ∼= B and K a
summand-dual-square-free module. Moreover, if R is also a right C4-ring,
then RR = A⊕ B ⊕ K where A ∼= B are C2-modules and K is both a
summand-dual-square-free as well as a summand-square-free module.
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