C4- and D4-Modules via Perspective Submodules

Meltem Altun-Özarslan
Hacettepe University, Ankara, Turkey

Joint work with Y. Ibrahim, A. C.. Ozcan, and M. Yousif

Noncommutative Rings and their Applications
12-15 June 2017

Outline

(1) Background
(2) C4-Modules via Perspective Submodules
(3) Endomorphism Rings of C4-Modules

4 Right C 4 rings
(5) D4-Modules via Perspective Submodules

Definition

Let R be a ring and M a right R-module.
M is called a Ci-module if it has the following Ci properties for $i=1,2,3$.

C1: Every submodule of M is essential in a direct summand of M.
$C 2$: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq{ }^{\oplus} M$,
then $A \subseteq{ }^{\oplus} M$.

C3: Whenever A and B are direct summands of M with $A \cap B=0$, then $A+B \subseteq{ }^{\oplus} M$.

Definition

Let R be a ring and M a right R-module.
M is called a Ci-module if it has the following Ci properties for $i=1,2,3$.

C1: Every submodule of M is essential in a direct summand of M.

C2: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq{ }^{\oplus} M$, then $A \subseteq{ }^{\oplus} M$.

C3: Whenever A and B are direct summands of M with $A \cap B=0$, then $A+B \subseteq{ }^{\oplus} M$.

Definition

Let R be a ring and M a right R-module.
M is called a Ci-module if it has the following Ci properties for $i=1,2,3$.

C1: Every submodule of M is essential in a direct summand of M.
$C 2$: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq{ }^{\oplus} M$, then $A \subseteq{ }^{\oplus} M$.

C3: Whenever A and B are direct summands of M with $A \cap B=0$, then $A+B \subseteq{ }^{\oplus} M$

Definition

Let R be a ring and M a right R-module.
M is called a Ci-module if it has the following Ci properties for $i=1,2,3$.

C1: Every submodule of M is essential in a direct summand of M.
$C 2$: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq{ }^{\oplus} M$, then $A \subseteq{ }^{\oplus} M$.

C3: Whenever A and B are direct summands of M with $A \cap B=0$, then $A+B \subseteq{ }^{\oplus} M$.

Definition

A module M is called a Di-module if it satisfies the following Di-conditions.
$D 1$: For every submodule A of M, there is a decomposition $M=M_{1} \oplus M_{2}$ such that $M_{1} \subseteq A$ and $A \cap M_{2} \ll M_{2}$.

D2: Whenever A and B are submodules of M with $M / A \cong B$ and $B \subseteq{ }^{\oplus} M$, then $A \subseteq{ }^{\oplus} M$.

D3: Whenever A and B are direct summands of M with $A+B=M$, then $A \cap B \subseteq{ }^{\oplus}$.

Definition

M is called continuous if it is $C 1$ and $C 2$, and quasi-continuous if it is C1 and C3.

$$
C 2 \Rightarrow C 3
$$

quasi-injective \Rightarrow continuous
Definition
A module M is called discrete if it is both a D1- and a $D 2$-module, quasi-discrete if it is both a D1- and a D3-module.

Definition

M is called continuous if it is $C 1$ and $C 2$, and quasi-continuous if it is $C 1$ and C3.

$$
\begin{gathered}
C 2 \Rightarrow C 3 \\
\text { quasi-injective } \Rightarrow \text { continuous }
\end{gathered}
$$

Definition

A module M is called discrete if it is both a D1- and a $D 2$-module, quasi-discrete if it is both a D1- and a D3-module.

$$
\text { quasi-projective } \Rightarrow D 2 \Rightarrow D 3
$$

Proposition [Amin et al., 2015]
If M is a C3-module, then for every decomposition $M=A \oplus B$ and every homomorphism $f: A \rightarrow B$ with ker $f \subseteq{ }^{\oplus} A$, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.
[Amin et al., 2015]
The following are equivalent for a module M :

டC4-Modules via Perspective Submodules

Proposition [Amin et al., 2015]

If M is a C3-module, then for every decomposition $M=A \oplus B$ and every homomorphism $f: A \rightarrow B$ with ker $f \subseteq{ }^{\oplus} A$, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.

[Amin et al., 2015]

The following are equivalent for a module M :
(1) If $M=A \oplus B$ and $f: A \rightarrow B$ is a monomorphism, then $\operatorname{Im} f \subseteq^{\oplus} B$.
(2) If $M=A \oplus B$ and $f: A \rightarrow B$ is a homomorphism with $\operatorname{ker} f \subseteq^{\oplus} A$, then $\operatorname{Im} f \subseteq{ }^{\oplus} B$.

டC4-Modules via Perspective Submodules

Definition [Ding et al., 2017]
A module M is called a C4-module if it satisfies any of the equivalent conditions in the above.

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N=Y_{1} \oplus Y_{2}$ with $Y_{1} \cong Y_{2}$ (and $\left.Y_{1}, Y_{2} \subseteq{ }^{\oplus} M\right)$, then $Y_{1}=Y_{2}=0$.

டC4-Modules via Perspective Submodules

Definition [Ding et al., 2017]
A module M is called a C4-module if it satisfies any of the equivalent conditions in the above.

$$
C 3 \Rightarrow C 4
$$

டC4-Modules via Perspective Submodules

Definition [Ding et al., 2017]

A module M is called a C4-module if it satisfies any of the equivalent conditions in the above.

$$
C 3 \Rightarrow C 4
$$

Definition

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N=Y_{1} \oplus Y_{2}$ with $Y_{1} \cong Y_{2}$ (and $Y_{1}, Y_{2} \subseteq{ }^{\oplus} M$), then $Y_{1}=Y_{2}=0$.

Definition [Ding et al., 2017]

A module M is called a C4-module if it satisfies any of the equivalent conditions in the above.

$$
C 3 \Rightarrow C 4
$$

Definition

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N=Y_{1} \oplus Y_{2}$ with $Y_{1} \cong Y_{2}$ (and $Y_{1}, Y_{2} \subseteq{ }^{\oplus} M$), then $Y_{1}=Y_{2}=0$.

$$
\text { summand-square-free } \Rightarrow C 4
$$

டC4-Modules via Perspective Submodules

Definition

Two direct summands A and B of a module M are perspective exactly when there exists a common direct sum complement C, i.e.,

$$
M=A \oplus C=B \oplus C .
$$

Definition

Two direct summands A and B of a module M are perspective exactly when there exists a common direct sum complement C, i.e.,

$$
M=A \oplus C=B \oplus C
$$

Theorem 1.1

The following are equivalent for a module M :
(1) M is a $C 4$-module.
(2) If A and B are perspective direct summands of M with $A \cap B=0$, then $A \oplus B \subseteq \oplus$.
(3) If A and B are perspective direct summands of M with $A \cap B \subseteq{ }^{\oplus} M$, then $A+B \subseteq{ }^{\oplus} M$.

Theorem 1.2
Let $M=\oplus_{i \in I} M_{i}$ be a module, where M_{i} is fully invariant in M for every $i \in I$. Then M is a $C 4$-module if and only if each M_{i} is a C4-module.

\llcorner C4-Modules via Perspective Submodules

Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r ACC on summands, for short) if, M has no strictly ascending chains of non-zero summands

$$
\begin{array}{lll}
A_{1} & \varsubsetneqq & A_{2} \varsubsetneqq \cdots \\
B_{1} & \varsubsetneqq & B_{2} \varsubsetneqq \cdots
\end{array}
$$

with $A_{i} \cong B_{i}$ and $A_{i} \cap B_{i}=0$ for all $i \geqslant 1$.

\llcorner C4-Modules via Perspective Submodules

Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r ACC on summands, for short) if, M has no strictly ascending chains of non-zero summands

$$
\begin{array}{lll}
A_{1} & \varsubsetneqq & A_{2} \varsubsetneqq \cdots \\
B_{1} & \varsubsetneqq & B_{2} \varsubsetneqq \\
\varsubsetneqq
\end{array}
$$

with $A_{i} \cong B_{i}$ and $A_{i} \cap B_{i}=0$ for all $i \geqslant 1$.
$A C C$ on summands $\Rightarrow r-A C C$ on summands
summand-square-free $\Rightarrow r$ - ACC on summands

Theorem 1.4

If M is a $C 4$-module that satisfies the restricted ACC on summands, then $M=A \oplus B \oplus K$ where $A \cong B$ is a $C 2$-module and K is a summand-square-free module.

ᄂEndomorphism Rings of C4-Modules

Let M be a right R-module and $S=\operatorname{End}_{R}(M)$.

- If S_{S} is a right C2-module, then M_{R} is $C 2$; the converse is true if $\operatorname{ker}(\alpha)$ is generated by M whenever α is such that $r_{S}(\alpha)$ is a direct summand of S $_{S}$ [Nicholson and Yousif, 2003].
- If S_{S} is a right C3-module, then M_{R} is C3 [Amin et al., 2015]; the converse is true if for every pair of idempotents $e, f \in S$ with eS $\cap f S=0$ we have $\mathrm{e} M \cap f M=0$ by [Mazurek et al., 2015]
- If S_{S} is a right C4-module, then M_{R} is $C 4$; the converse is true if for every pair of idempotents $e, f \in S$ with $e S \cap f S=0$ we have $e M \cap f M=0$ [Ding et al., 2017]

Let M be a right R-module and $S=\operatorname{End}_{R}(M)$.

- If S_{S} is a right $C 2$-module, then M_{R} is $C 2$; the converse is true if $\operatorname{ker}(\alpha)$ is generated by M whenever α is such that $r_{S}(\alpha)$ is a direct summand of S_{S} [Nicholson and Yousif, 2003].
- If S_{S} is a right C3-module, then M_{R} is C3 [Amin et al., 2015]; the converse is true if for every pair of idempotents $e, f \in S$ with $e S \cap f S=0$ we have $e M \cap f M=0$ by [Mazurek et al., 2015].
- If S_{S} is a right C4-module, then M_{R} is $C 4$; the converse is true if for every pair of idempotents $e, f \in S$ with $e S \cap f S=0$ we have $e M \cap f M=0$ [Ding et al., 2017].

Theorem 2.1
Let M be a right R-module with $S=\operatorname{End}_{R}(M)$. Then S is a right C4-ring, if M is a C4-module and one of the following is satisfied.
(1) M is k-local-retractable.
(2) For any $\alpha \in S, \operatorname{ker}(\alpha)$ is generated by M.
(3) For every pair of perspective idempotents $e, f \in S$ with $e S \cap f S=0$, we have $e M \cap f M=0$.

Proposition 2.2

Let M be a right R-module with $S=\operatorname{End}_{R}(M)$. Then the following are equivalent:
(1) M is a $C 4$-module.
(2) For every pair of perspective idempotents $e, f \in S$ with $e M \cap f M=0$, there exists an idempotent g of S such that $e M=g M$ and $f M \subseteq(1-g) M$.

Proposition 2.2

Let M be a right R-module with $S=\operatorname{End}_{R}(M)$. Then the following are equivalent:
(1) M is a $C 4$-module.
(2) For every pair of perspective idempotents $e, f \in S$ with $e M \cap f M=0$, there exists an idempotent g of S such that $e M=g M$ and $f M \subseteq(1-g) M$.

Proposition 2.3

A right R-module M is $C 4$ if and only if for any idempotents $e, f \in \operatorname{End}_{R}(M)$, if $k e r e=k e r f=k e r(e-f)$, then $(1-e) f M \subseteq{ }^{\oplus} M$.

\llcorner Right C4 rings

Proposition 3.1

Let $R_{i}(i \in I)$ be any collection of rings, and let R be the direct product $\prod_{i \in I} R_{i}$. Then R is a right $C 4$-ring if and only if every R_{i} is a right C4-ring.

If R is a right C4-ring, then so is eRe for any idempotent $e \in R$ such that $R e R=R$.

Proposition 3.1

Let $R_{i}(i \in I)$ be any collection of rings, and let R be the direct product $\prod_{i \in I} R_{i}$. Then R is a right $C 4$-ring if and only if every R_{i} is a right C4-ring.

Proposition 3.2

If R is a right C4-ring, then so is $e R e$ for any idempotent $e \in R$ such that $R e R=R$.

Example 3.3

The condition $R e R=R$ is not superfluous in Proposition 3.2: Let R be the algebra of matrices, over a field F, of the form


```
> e:= e e}11+\mp@subsup{e}{22}{}+\mp@subsup{e}{33}{}+\mp@subsup{e}{44}{}+\mp@subsup{e}{55}{}\mathrm{ , where }\mp@subsup{e}{ij}{}\mathrm{ are the matrices with
    (i,j)-entry 1 and all other entries zero.
    >}e\mathrm{ is an idempotent of R such that ReR}\not=R\mathrm{ .
    >}\mathrm{ is a quasi-Frobenius ring by [Koike, 1995] }=>R\mathrm{ is right C4.
    |eRe\cong(\begin{array}{lll}{F}&{F}\\{0}&{F}\end{array})\mathrm{ is not a right (4-ring}
```


Example 3.3

The condition $R e R=R$ is not superfluous in Proposition 3.2: Let R be the algebra of matrices, over a field F, of the form

$$
\left(\begin{array}{llllll}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right)
$$

Example 3.3

The condition $R e R=R$ is not superfluous in Proposition 3.2: Let R be the algebra of matrices, over a field F, of the form

$$
\left(\begin{array}{llllll}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right)
$$

- $e:=e_{11}+e_{22}+e_{33}+e_{44}+e_{55}$, where $e_{i j}$ are the matrices with (i, j)-entry 1 and all other entries zero.
- e is an idempotent of R such that $R e R \neq R$.
- R is a quasi-Frobenius ring by [Koike, 1995] $\Rightarrow R$ is right $C 4$.
- $e R e \cong\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ is not a right C4-ring.
- Let R be a ring and M an R - R-bimodule.

Then the trivial extension $R \propto M$ is a ring whose underlying group is $R \times M$ with the multiplication defined by

$$
(r, m)(s, n)=(r s, r n+m s)
$$

where $r, s \in R$ and $m, n \in M$.

- Let R be a ring and M an R - R-bimodule.

Then the trivial extension $R \propto M$ is a ring whose underlying group is $R \times M$ with the multiplication defined by

$$
(r, m)(s, n)=(r s, r n+m s)
$$

where $r, s \in R$ and $m, n \in M$.

Proposition 3.4

Let R be a ring and M an R - R-bimodule.

1) If $R \propto M$ is a right $C 4$-ring, and for any idempotents $e, f \in R$, $e R \cap f R=0$ implies $e M \cap f M=0$, then R is a right C4-ring.
2) If R is a right $C 4$-ring, and $e M(1-e)=0$ for any idempotent $e \in R$, then $R \propto M$ is a right C4-ring.

டD4-Modules via Perspective Submodules

Proposition [Yousif et al., 2014]

If M is a $D 3$-module, then for every decomposition $M=A \oplus B$ and every homomorphism $f: A \rightarrow B$ with $\operatorname{Im} f \subseteq{ }^{\oplus} B$, then $\operatorname{ker} f \subseteq{ }^{\oplus} A$.

Proposition [Yousif et al., 2014]

If M is a $D 3$-module, then for every decomposition $M=A \oplus B$ and every homomorphism $f: A \rightarrow B$ with $\operatorname{Im} f \subseteq{ }^{\oplus} B$, then $\operatorname{ker} f \subseteq{ }^{\oplus} A$.

[Yousif et al., 2014]

The following are equivalent for a module M :
(1) If $M=A \oplus B$ with $A, B \subseteq M$ and $f: A \rightarrow B$ is an epimorphism, then $\operatorname{ker} f \subseteq \subseteq^{\oplus} A$.
(2) If $M=A \oplus B$ with $A, B \subseteq M$ and $f: A \rightarrow B$ is a homomorphism with $\operatorname{Im} f \subseteq \subseteq^{\oplus} B$, then $\operatorname{ker} f \subseteq \subseteq^{\oplus} A$.

டD4-Modules via Perspective Submodules

Definition [Ding et al., 2017]

A module M is called a D4-module if it satisfies any of the equivalent conditions in the above theorem.

$$
D 3 \Rightarrow D 4
$$

Definition [Ding et al., 2017]
 direct summands A and B with $M=A+B$ and $M / A \cong M / B$

Definition [Ding et al., 2017]

A module M is called a D4-module if it satisfies any of the equivalent conditions in the above theorem.

$$
D 3 \Rightarrow D 4
$$

Definition [Ding et al., 2017]

A module M is called summand-dual-square-free if M has no proper direct summands A and B with $M=A+B$ and $M / A \cong M / B$.

$$
\text { summand-dual-square-free } \Rightarrow D 4
$$

டD4-Modules via Perspective Submodules

Theorem 4.1

The following conditions on a module M are equivalent:
(1) M is a $D 4$-module.
(2) If A and B are perspective direct summands of M with $A+B=M$, then $A \cap B \subseteq{ }^{\oplus}$.
(3) If A and B are perspective direct summands of M with $A+B \subseteq \subseteq^{\oplus} M$, then $A \cap B \subseteq{ }^{\oplus} M$.

டD4-Modules via Perspective Submodules

Proposition 4.2

The following conditions on a module M are equivalent:
(1) M is a $D 4$ - and summand-square-free module.
(2) M is a $C 4$ - and summand-dual-square-free module.
R_{R} is summand-square-free if and only if R_{R} is $C 4$ and summand-dual-square-free

டD4-Modules via Perspective Submodules

Proposition 4.2

The following conditions on a module M are equivalent:
(1) M is a $D 4$ - and summand-square-free module.
(2) M is a $C 4$ - and summand-dual-square-free module.

Corollary 4.3

R_{R} is summand-square-free if and only if R_{R} is $C 4$ and summand-dual-square-free .

டD4-Modules via Perspective Submodules

Definition 4.4

A module M is said to satisfy the restricted DCC on summands if, M has no strictly descending chains of non-zero summands

$$
\begin{array}{lll}
A_{1} & \supsetneqq & A_{2} \supsetneqq \cdots \\
B_{1} & \supsetneqq & B_{2} \supsetneqq \cdots
\end{array}
$$

with $M / A_{i} \cong M / B_{i}$ and $A_{i}+B_{i} \subseteq{ }^{\oplus} M$ for all $i \geqslant 1$.

டD4-Modules via Perspective Submodules

Theorem 4.5
If M is a $D 4$-module that satisfies the restricted $D C C$ on summands, then $M=A \oplus B \oplus K$ where $A \cong B, A$ and B are $D 2$-modules, and K is a summand-dual-square-free module.

If R is I-finite, then $R_{R}=A \oplus B \oplus K$ with $A \cong B$ and K a
summand-dual-square-free module. Moreover, if R is also a right $C 4$-ring,
then $R_{R}=A \oplus B \oplus K$ where $A \cong B$ are $C 2$-modules and K is both a
summand-dual-square-free as well as a summand-square-free module.

Theorem 4.5

If M is a $D 4$-module that satisfies the restricted $D C C$ on summands, then $M=A \oplus B \oplus K$ where $A \cong B, A$ and B are $D 2$-modules, and K is a summand-dual-square-free module.

Corollary 4.6
If R is l-finite, then $R_{R}=A \oplus B \oplus K$ with $A \cong B$ and K a summand-dual-square-free module.

Theorem 4.5

If M is a $D 4$-module that satisfies the restricted $D C C$ on summands, then $M=A \oplus B \oplus K$ where $A \cong B, A$ and B are $D 2$-modules, and K is a summand-dual-square-free module.

Corollary 4.6

If R is l-finite, then $R_{R}=A \oplus B \oplus K$ with $A \cong B$ and K a summand-dual-square-free module. Moreover, if R is also a right $C 4$-ring, then $R_{R}=A \oplus B \oplus K$ where $A \cong B$ are $C 2$-modules and K is both a summand-dual-square-free as well as a summand-square-free module.

References

R
I. Amin, Y. Ibrahim and M. Yousif, C3-Modules, Algebra Colloq., 4, 655-670, 2015.

N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, C4-Modules, Comm. Algebra, http://dx.doi.org/10.1080/00927872.2016.1222412.

- W. K. Nicholson and M. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics 158, Cambridge University Press, 2003.

䍰 R. Mazurek, P. P. Nielsen and M. Ziembowski, Commuting idempotents, square-free modules, and the exchange property. J. Algebra, 444, 52-80, 2015.

References

K. Koike, Dual rings and cogenerator rings, Math. J. Okayama Univ, 37(1), 99-103, 1995.
M. Yousif, I. Amin and Y. Ibrahim, D3-Modules, Comm. Algebra, 42:2, 578-592, 2014.
N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, D4-Modules, J. Algebra Appl., Vol. 16, No. 5, 1750166 (25 pages), 2017.
S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, 147, Cambridge Univ. Press., Cambridge, 1990.

