C4- and D4-Modules via Perspective Submodules

Meltem Altun-Özarslan

Hacettepe University, Ankara, Turkey

Joint work with Y. Ibrahim, A. Ç. Özcan, and M. Yousif

Noncommutative Rings and their Applications
12 - 15 June 2017
Outline

1. Background
2. C4-Modules via Perspective Submodules
3. Endomorphism Rings of C4-Modules
4. Right C4 rings
5. D4-Modules via Perspective Submodules
Let R be a ring and M a right R-module.

M is called a Ci-module if it has the following Ci properties for $i = 1, 2, 3$.

$C1$: Every submodule of M is essential in a direct summand of M.

$C2$: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq^{\oplus} M$, then $A \subseteq^{\oplus} M$.

$C3$: Whenever A and B are direct summands of M with $A \cap B = 0$, then $A + B \subseteq^{\oplus} M$.
Let R be a ring and M a right R-module.

M is called a *Ci-module* if it has the following Ci properties for $i = 1, 2, 3$.

C1: Every submodule of M is essential in a direct summand of M.

C2: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq \oplus M$, then $A \subseteq \oplus M$.

C3: Whenever A and B are direct summands of M with $A \cap B = 0$, then $A + B \subseteq \oplus M$.
Definition

Let R be a ring and M a right R-module.

M is called a *Ci-module* if it has the following Ci properties for $i = 1, 2, 3$.

- **C1:** Every submodule of M is essential in a direct summand of M.

- **C2:** Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq {}^\oplus M$, then $A \subseteq {}^\oplus M$.

- **C3:** Whenever A and B are direct summands of M with $A \cap B = 0$, then $A + B \subseteq {}^\oplus M$.
Definition

Let R be a ring and M a right R-module.

M is called a Ci-module if it has the following Ci properties for $i = 1, 2, 3$.

$C1$: Every submodule of M is essential in a direct summand of M.

$C2$: Whenever A and B are submodules of M with $A \cong B$ and $B \subseteq \oplus M$, then $A \subseteq \oplus M$.

$C3$: Whenever A and B are direct summands of M with $A \cap B = 0$, then $A + B \subseteq \oplus M$.

A module M is called a *Di-module* if it satisfies the following *Di*-conditions.

D1: For every submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 \ll M_2$.

D2: Whenever A and B are submodules of M with $M/A \cong B$ and $B \subseteq \oplus M$, then $A \subseteq \oplus M$.

D3: Whenever A and B are direct summands of M with $A + B = M$, then $A \cap B \subseteq \oplus M$.
Definition

M is called continuous if it is C_1 and C_2, and quasi-continuous if it is C_1 and C_3.

\[C_2 \Rightarrow C_3 \]

quasi-injective \Rightarrow continuous

Definition

A module M is called discrete if it is both a D_1- and a D_2-module, quasi-discrete if it is both a D_1- and a D_3-module.

\[\text{quasi-projective} \Rightarrow D_2 \Rightarrow D_3 \]
Definition

M is called *continuous* if it is C_1 and C_2, and *quasi-continuous* if it is C_1 and C_3.

$$C_2 \Rightarrow C_3$$

quasi-injective \Rightarrow continuous

Definition

A module M is called *discrete* if it is both a D_1- and a D_2-module, *quasi-discrete* if it is both a D_1- and a D_3-module.

quasi-projective \Rightarrow $D_2 \Rightarrow D_3$
Proposition [Amin et al., 2015]

If M is a C_3-module, then for every decomposition $M = A \oplus B$ and every homomorphism $f : A \rightarrow B$ with $\ker f \subseteq \oplus A$, then $\text{Im} f \subseteq \oplus B$.

[Amin et al., 2015]

The following are equivalent for a module M:

(1) If $M = A \oplus B$ and $f : A \rightarrow B$ is a monomorphism, then $\text{Im} f \subseteq \oplus B$.

(2) If $M = A \oplus B$ and $f : A \rightarrow B$ is a homomorphism with $\ker f \subseteq \oplus A$, then $\text{Im} f \subseteq \oplus B$.
Proposition [Amin et al., 2015]

If M is a $C3$-module, then for every decomposition $M = A \oplus B$ and every homomorphism $f : A \rightarrow B$ with $\ker f \subseteq \oplus A$, then $\text{Im} f \subseteq \oplus B$.

[Amin et al., 2015]

The following are equivalent for a module M:

1. If $M = A \oplus B$ and $f : A \rightarrow B$ is a monomorphism, then $\text{Im} f \subseteq \oplus B$.
2. If $M = A \oplus B$ and $f : A \rightarrow B$ is a homomorphism with $\ker f \subseteq \oplus A$, then $\text{Im} f \subseteq \oplus B$.
A module M is called a C4-module if it satisfies any of the equivalent conditions in the above.

C3 \Rightarrow C4

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N = Y_1 \oplus Y_2$ with $Y_1 \cong Y_2$ (and $Y_1, Y_2 \subseteq \oplus M$), then $Y_1 = Y_2 = 0$.

summand-square-free \Rightarrow C4
Definition [Ding et al., 2017]

A module M is called a $C4$-module if it satisfies any of the equivalent conditions in the above.

$C3 \Rightarrow C4$

Definition

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N = Y_1 \oplus Y_2$ with $Y_1 \cong Y_2$ (and $Y_1, Y_2 \subseteq \oplus M$), then $Y_1 = Y_2 = 0$.

summand-square-free $\Rightarrow C4$
Definition [Ding et al., 2017]

A module M is called a $C4$-module if it satisfies any of the equivalent conditions in the above.

$C3 \Rightarrow C4$

Definition

A module M is called (summand-) square-free if whenever $N \subseteq M$ and $N = Y_1 \oplus Y_2$ with $Y_1 \cong Y_2$ (and $Y_1, Y_2 \subseteq \oplus M$), then $Y_1 = Y_2 = 0$.

summand-square-free \Rightarrow $C4$
Definition [Ding et al., 2017]

A module M is called a \textit{C4-module} if it satisfies any of the equivalent conditions in the above.

$C3 \Rightarrow C4$

Definition

A module M is called (\textit{summand-}) \textit{square-free} if whenever $N \subseteq M$ and $N = Y_1 \oplus Y_2$ with $Y_1 \cong Y_2$ (and $Y_1, Y_2 \subseteq \oplus M$), then $Y_1 = Y_2 = 0$.

\textit{summand-square-free} \Rightarrow \textit{C4}
Definition

Two direct summands A and B of a module M are *perspective* exactly when there exists a common direct sum complement C, i.e.,

$$M = A \oplus C = B \oplus C.$$

Theorem 1.1

The following are equivalent for a module M:

1. M is a C_4-module.
2. If A and B are perspective direct summands of M with $A \cap B = 0$, then $A \oplus B \subseteq \langle M \rangle$.
3. If A and B are perspective direct summands of M with $A \cap B \subseteq \langle M \rangle$, then $A + B \subseteq \langle M \rangle$.
Definition

Two direct summands A and B of a module M are *perspective* exactly when there exists a common direct sum complement C, i.e.,

$$M = A \oplus C = B \oplus C.$$

Theorem 1.1

The following are equivalent for a module M:

1. M is a $C4$-module.
2. If A and B are perspective direct summands of M with $A \cap B = 0$, then $A \oplus B \subseteq \oplus M$.
3. If A and B are perspective direct summands of M with $A \cap B \subseteq \oplus M$, then $A + B \subseteq \oplus M$.

Theorem 1.2

Let $M = \bigoplus_{i \in I} M_i$ be a module, where M_i is fully invariant in M for every $i \in I$. Then M is a $C4$-module if and only if each M_i is a $C4$-module.
Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r-ACC on summands, for short) if, M has no strictly ascending chains of non-zero summands

\[
A_1 \subseteq A_2 \subseteq \cdots \quad B_1 \subseteq B_2 \subseteq \cdots
\]

with $A_i \cong B_i$ and $A_i \cap B_i = 0$ for all $i \geq 1$.

ACC on summands \Rightarrow r-ACC on summands

summand-square-free \Rightarrow r-ACC on summands
Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r-ACC on summands, for short) if, M has no strictly ascending chains of non-zero summands

$$A_1 \subsetneq A_2 \subsetneq \cdots$$
$$B_1 \subsetneq B_2 \subsetneq \cdots$$

with $A_i \cong B_i$ and $A_i \cap B_i = 0$ for all $i \geq 1$.

$\text{ACC on summands} \Rightarrow r$ - ACC on summands

summand-square-free $\Rightarrow r$ - ACC on summands
Theorem 1.4

If M is a C_4-module that satisfies the restricted ACC on summands, then $M = A \oplus B \oplus K$ where $A \cong B$ is a C_2-module and K is a summand-square-free module.
Let M be a right R-module and $S = \text{End}_R(M)$.

- If S is a right C_2-module, then M_R is C_2; the converse is true if $\ker(\alpha)$ is generated by M whenever α is such that $r_S(\alpha)$ is a direct summand of S [Nicholson and Yousif, 2003].

- If S is a right C_3-module, then M_R is C_3 [Amin et al., 2015]; the converse is true if for every pair of idempotents $e, f \in S$ with $eS \cap fS = 0$ we have $eM \cap fM = 0$ by [Mazurek et al., 2015].

- If S is a right C_4-module, then M_R is C_4; the converse is true if for every pair of idempotents $e, f \in S$ with $eS \cap fS = 0$ we have $eM \cap fM = 0$ [Ding et al., 2017].
Let M be a right R-module and $S = \text{End}_R(M)$.

- If S_S is a right C_2-module, then M_R is C_2; the converse is true if $\ker(\alpha)$ is generated by M whenever α is such that $r_S(\alpha)$ is a direct summand of S_S [Nicholson and Yousif, 2003].

- If S_S is a right C_3-module, then M_R is C_3 [Amin et al., 2015]; the converse is true if for every pair of idempotents $e, f \in S$ with $eS \cap fS = 0$ we have $eM \cap fM = 0$ by [Mazurek et al., 2015].

- If S_S is a right C_4-module, then M_R is C_4; the converse is true if for every pair of idempotents $e, f \in S$ with $eS \cap fS = 0$ we have $eM \cap fM = 0$ [Ding et al., 2017].
Theorem 2.1

Let M be a right R-module with $S = \text{End}_R(M)$. Then S is a right $C4$-ring, if M is a $C4$-module and one of the following is satisfied.

1. M is k-local-retractable.
2. For any $\alpha \in S$, $\text{ker}(\alpha)$ is generated by M.
3. For every pair of perspective idempotents $e, f \in S$ with $eS \cap fS = 0$, we have $eM \cap fM = 0$.
Proposition 2.2

Let M be a right R-module with $S = \text{End}_R(M)$. Then the following are equivalent:

(1) M is a $C4$-module.

(2) For every pair of perspective idempotents $e, f \in S$ with $eM \cap fM = 0$, there exists an idempotent g of S such that $eM = gM$ and $fM \subseteq (1 - g)M$.

Proposition 2.3

A right R-module M is $C4$ if and only if for any idempotents $e, f \in \text{End}_R(M)$, if $\text{kere} = \text{kerf} = \text{ker}(e - f)$, then $(1 - e)fM \subseteq \oplus M.$
Proposition 2.2

Let M be a right R-module with $S = \text{End}_R(M)$. Then the following are equivalent:

1. M is a $C4$-module.
2. For every pair of perspective idempotents $e, f \in S$ with $eM \cap fM = 0$, there exists an idempotent g of S such that $eM = gM$ and $fM \subseteq (1 - g)M$.

Proposition 2.3

A right R-module M is $C4$ if and only if for any idempotents $e, f \in \text{End}_R(M)$, if $\ker e = \ker f = \ker (e - f)$, then $(1 - e)fM \subseteq \oplus M$.
Proposition 3.1

Let \(R_i \ (i \in I) \) be any collection of rings, and let \(R \) be the direct product \(\prod_{i \in I} R_i \). Then \(R \) is a right \(C4 \)-ring if and only if every \(R_i \) is a right \(C4 \)-ring.

Proposition 3.2

If \(R \) is a right \(C4 \)-ring, then so is \(eRe \) for any idempotent \(e \in R \) such that \(ReR = R \).
Proposition 3.1
Let $R_i (i \in I)$ be any collection of rings, and let R be the direct product $\prod_{i \in I} R_i$. Then R is a right C4-ring if and only if every R_i is a right C4-ring.

Proposition 3.2
If R is a right C4-ring, then so is eRe for any idempotent $e \in R$ such that $ReR = R$.
Example 3.3

The condition $ReR = R$ is not superfluous in Proposition 3.2: Let R be the algebra of matrices, over a field F, of the form

$$
\begin{pmatrix}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c \\
\end{pmatrix}
$$

$\Rightarrow e := e_{11} + e_{22} + e_{33} + e_{44} + e_{55}$, where e_{ij} are the matrices with (i,j)-entry 1 and all other entries zero.

$\Rightarrow e$ is an idempotent of R such that $ReR \neq R$.

$\Rightarrow R$ is a quasi-Frobenius ring by [Koike, 1995] $\Rightarrow R$ is right $C4$.

$\Rightarrow eRe \cong \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ is not a right $C4$-ring.
Example 3.3

The condition \(ReR = R \) is not superfluous in Proposition 3.2: Let \(R \) be the algebra of matrices, over a field \(F \), of the form

\[
\begin{pmatrix}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c
\end{pmatrix}
\]

\(e := e_{11} + e_{22} + e_{33} + e_{44} + e_{55} \), where \(e_{ij} \) are the matrices with \((i,j)\)-entry 1 and all other entries zero.

\(e \) is an idempotent of \(R \) such that \(ReR \neq R \).

\(R \) is a quasi-Frobenius ring by [Koike, 1995] \(\Rightarrow \) \(R \) is right C4.

\(eRe \cong \begin{pmatrix} F & F \\ 0 & F \end{pmatrix} \) is not a right C4-ring.
Right C4 rings

Example 3.3

The condition $ReR = R$ is not superfluous in Proposition 3.2: Let R be the algebra of matrices, over a field F, of the form

$$
\begin{pmatrix}
a & x & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & 0 & c & y & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 \\
0 & 0 & 0 & 0 & b & z \\
0 & 0 & 0 & 0 & 0 & c
\end{pmatrix}
$$

- $e := e_{11} + e_{22} + e_{33} + e_{44} + e_{55}$, where e_{ij} are the matrices with (i,j)-entry 1 and all other entries zero.
- e is an idempotent of R such that $ReR \not= R$.
- R is a quasi-Frobenius ring by [Koike, 1995] $\Rightarrow R$ is right C4.
- $eRe \cong \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ is not a right C4-ring.
Let R be a ring and M an R-R-bimodule. Then the trivial extension $R \rtimes M$ is a ring whose underlying group is $R \times M$ with the multiplication defined by

$$(r, m)(s, n) = (rs, rn + ms)$$

where $r, s \in R$ and $m, n \in M$.

Proposition 3.4

Let R be a ring and M an R-R-bimodule.

1) If $R \rtimes M$ is a right C4-ring, and for any idempotents $e, f \in R$, $eR \cap fR = 0$ implies $eM \cap fM = 0$, then R is a right C4-ring.

2) If R is a right C4-ring, and $eM(1 - e) = 0$ for any idempotent $e \in R$, then $R \rtimes M$ is a right C4-ring.
Let R be a ring and M an R-R-bimodule. Then the trivial extension $R \triangleleft M$ is a ring whose underlying group is $R \times M$ with the multiplication defined by

$$(r, m)(s, n) = (rs, rn + ms)$$

where $r, s \in R$ and $m, n \in M$.

Proposition 3.4

Let R be a ring and M an R-R-bimodule.

1) If $R \triangleleft M$ is a right $C4$-ring, and for any idempotents $e, f \in R$, $eR \cap fR = 0$ implies $eM \cap fM = 0$, then R is a right $C4$-ring.

2) If R is a right $C4$-ring, and $eM(1 - e) = 0$ for any idempotent $e \in R$, then $R \triangleleft M$ is a right $C4$-ring.
Proposition [Yousif et al., 2014]

If M is a $D3$-module, then for every decomposition $M = A \oplus B$ and every homomorphism $f : A \rightarrow B$ with $\text{Im} f \subseteq \oplus B$, then $\ker f \subseteq \oplus A$.

[Yousif et al., 2014]

The following are equivalent for a module M:

1. If $M = A \oplus B$ with $A, B \subseteq M$ and $f : A \rightarrow B$ is an epimorphism, then $\ker f \subseteq \oplus A$.

2. If $M = A \oplus B$ with $A, B \subseteq M$ and $f : A \rightarrow B$ is a homomorphism with $\text{Im} f \subseteq \oplus B$, then $\ker f \subseteq \oplus A$.
Proposition [Yousif et al., 2014]

If \(M \) is a \(D3 \)-module, then for every decomposition \(M = A \oplus B \) and every homomorphism \(f : A \to B \) with \(\text{Im} f \subseteq \oplus B \), then \(\ker f \subseteq \oplus A \).

[Yousif et al., 2014]

The following are equivalent for a module \(M \):

(1) If \(M = A \oplus B \) with \(A, B \subseteq M \) and \(f : A \to B \) is an epimorphism, then \(\ker f \subseteq \oplus A \).

(2) If \(M = A \oplus B \) with \(A, B \subseteq M \) and \(f : A \to B \) is a homomorphism with \(\text{Im} f \subseteq \oplus B \), then \(\ker f \subseteq \oplus A \).
Definition [Ding et al., 2017]
A module M is called a $D4$-module if it satisfies any of the equivalent conditions in the above theorem.

$D3 \Rightarrow D4$

Definition [Ding et al., 2017]
A module M is called summand-dual-square-free if M has no proper direct summands A and B with $M = A + B$ and $M/A \cong M/B$.

summand-dual-square-free \Rightarrow $D4$
Definition [Ding et al., 2017]
A module M is called a $D4$-module if it satisfies any of the equivalent conditions in the above theorem.

$D3 \Rightarrow D4$

Definition [Ding et al., 2017]
A module M is called summand-dual-square-free if M has no proper direct summands A and B with $M = A + B$ and $M/A \cong M/B$.

summand-dual-square-free $\Rightarrow D4$
Theorem 4.1

The following conditions on a module M are equivalent:

(1) M is a $D4$-module.

(2) If A and B are perspective direct summands of M with $A + B = M$, then $A \cap B \subseteq \bigoplus M$.

(3) If A and B are perspective direct summands of M with $A + B \subseteq \bigoplus M$, then $A \cap B \subseteq \bigoplus M$.
Proposition 4.2

The following conditions on a module M are equivalent:

1. M is a $D4$- and summand-square-free module.
2. M is a $C4$- and summand-dual-square-free module.

Corollary 4.3

R_R is summand-square-free if and only if R_R is $C4$ and summand-dual-square-free.
Proposition 4.2
The following conditions on a module M are equivalent:

1. M is a $D4$- and summand-square-free module.
2. M is a $C4$- and summand-dual-square-free module.

Corollary 4.3
R_R is summand-square-free if and only if R_R is $C4$ and summand-dual-square-free.
Definition 4.4

A module M is said to satisfy the restricted DCC on summands if, M has no strictly descending chains of non-zero summands

$$
\begin{align*}
A_1 & \supsetneq A_2 \supsetneq \cdots \\
B_1 & \supsetneq B_2 \supsetneq \cdots
\end{align*}
$$

with $M/A_i \cong M/B_i$ and $A_i + B_i \subseteq^\oplus M$ for all $i \geq 1$.

Theorem 4.5

If M is a $D4$-module that satisfies the restricted DCC on summands, then $M = A \oplus B \oplus K$ where $A \cong B$, A and B are $D2$-modules, and K is a summand-dual-square-free module.

Corollary 4.6

If R is I-finite, then $R_R = A \oplus B \oplus K$ with $A \cong B$ and K a summand-dual-square-free module. Moreover, if R is also a right $C4$-ring, then $R_R = A \oplus B \oplus K$ where $A \cong B$ are $C2$-modules and K is both a summand-dual-square-free as well as a summand-square-free module.
Theorem 4.5

If M is a $D4$-module that satisfies the restricted DCC on summands, then $M = A \oplus B \oplus K$ where $A \cong B$, A and B are $D2$-modules, and K is a summand-dual-square-free module.

Corollary 4.6

If R is I-finite, then $R_R = A \oplus B \oplus K$ with $A \cong B$ and K a summand-dual-square-free module. Moreover, if R is also a right $C4$-ring, then $R_R = A \oplus B \oplus K$ where $A \cong B$ are $C2$-modules and K is both a summand-dual-square-free as well as a summand-square-free module.
Theorem 4.5
If M is a $D4$-module that satisfies the restricted DCC on summands, then $M = A \oplus B \oplus K$ where $A \cong B$, A and B are $D2$-modules, and K is a summand-dual-square-free module.

Corollary 4.6
If R is I-finite, then $R_R = A \oplus B \oplus K$ with $A \cong B$ and K a summand-dual-square-free module. Moreover, if R is also a right $C4$-ring, then $R_R = A \oplus B \oplus K$ where $A \cong B$ are $C2$-modules and K is both a summand-dual-square-free as well as a summand-square-free module.

References

thank you