RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF ABSOLUTE PURITY

Gizem Kafkas Demirci Joint work with Engin Büyükaşık Izmir Institute of Technology, Izmir

Outline

(1) Introduction

Subpurity domain of a module

Rings whose simple modules are absolutely pure or t.f.b.s.

Outline

(1) Introduction
(2) Subpurity domain of a module

Outline

(1) Introduction
(2) Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.

Outline

(1) Introduction

2 Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.f.b.s.

Outline

(1) Introduction

2 Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.f.b.s.
(5) t.f.b.s. modules over commutative rings

Outline

(1) Introduction

2 Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.f.s.s.
(5) t.f.f.s. modules over commutative rings
(6) References

Outline

9 Introduction

(2) Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
4. Rings whose modules are absolutely pure or t.f.b.s.
(5) t.f.b.s. modules over commutative rings

6 References

- An opposite notion of relative injectivity which is introduced by (Aydoğdu and López-Permouth), studied by many authors.
- An opposite notion of relative injectivity which is introduced by (Aydoğdu and López-Permouth), studied by many authors.
- A module M is said to be A-subinjective if for every extension B of A any homomorphism $\varphi: A \rightarrow M$ can be extended to a homomorphism $\phi: B \rightarrow M$ (see, Aydoğdu and López-Permouth). It is easy to see that M is injective if and only if M is A-subinjective for each module A.
- The idea and notion of subinjectivity can be used in order to study opposites of some other homological objects such as, absolutely pure and flat modules.
- The idea and notion of subinjectivity can be used in order to study opposites of some other homological objects such as, absolutely pure and flat modules.
- The purpose of this talk is to mention the study of an alternative perspective on the analysis of the absolute purity of a module.

Proposition

The following statements are equivalent for a right module N.
(1) N is absolutely pure.
(2) $N \otimes M \rightarrow E(N) \otimes M$ is a monomorphism for each finitely presented left module M.
(3) $N \otimes M \rightarrow E(N) \otimes M$ is a monomorphism for each left module M.

Outline

2 Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.b.s.
(5) t.f.b.s. modules over commutative rings
(6) References

Definition

Given a right module M and a left module N, M is absolutely N-pure if for every right module K with $M \leq K$ the map $i \otimes 1_{N}: M \otimes N \rightarrow K \otimes N$ is a monomorphism, where $i: M \rightarrow K$ is the inclusion map and 1_{N} is the identity map on N. The subpurity domain of a module $M_{R}, \mathcal{S}(M)$, is defined to be the collection of all modules ${ }_{R} N$ such that M is absolutely N -pure.

Definition

Given a right module M and a left module N, M is absolutely N-pure if for every right module K with $M \leq K$ the map $i \otimes 1_{N}: M \otimes N \rightarrow K \otimes N$ is a monomorphism, where $i: M \rightarrow K$ is the inclusion map and 1_{N} is the identity map on N. The subpurity domain of a module $M_{R}, \mathcal{S}(M)$, is defined to be the collection of all modules ${ }_{R} N$ such that M is absolutely N-pure.

- A right module M is absolutely pure if and only if $\mathcal{S}(M)=R-M O D$.

Definition

Given a right module M and a left module N, M is absolutely N-pure if for every right module K with $M \leq K$ the map $i \otimes 1_{N}: M \otimes N \rightarrow K \otimes N$ is a monomorphism, where $i: M \rightarrow K$ is the inclusion map and 1_{N} is the identity map on N. The subpurity domain of a module $M_{R}, \mathcal{S}(M)$, is defined to be the collection of all modules ${ }_{R} N$ such that M is absolutely N-pure.

- A right module M is absolutely pure if and only if $\mathcal{S}(M)=R-M O D$.
- $\mathcal{S}(M)$ consists of the class of left flat modules.

Definition

Given a right module M and a left module N, M is absolutely N-pure if for every right module K with $M \leq K$ the map $i \otimes 1_{N}: M \otimes N \rightarrow K \otimes N$ is a monomorphism, where $i: M \rightarrow K$ is the inclusion map and 1_{N} is the identity map on N. The subpurity domain of a module $M_{R}, \mathcal{S}(M)$, is defined to be the collection of all modules ${ }_{R} N$ such that M is absolutely N-pure.

- A right module M is absolutely pure if and only if $\mathcal{S}(M)=R-M O D$.
- $\mathcal{S}(M)$ consists of the class of left flat modules.
- A right R-module M is called test for flatness by subpurity (t.f.b.s.) if $\mathcal{S}\left(M_{R}\right)$ consists of only flat left R-modules.

Definition

Given a right module M and a left module N, M is absolutely N-pure if for every right module K with $M \leq K$ the map $i \otimes 1_{N}: M \otimes N \rightarrow K \otimes N$ is a monomorphism, where $i: M \rightarrow K$ is the inclusion map and 1_{N} is the identity map on N. The subpurity domain of a module $M_{R}, \mathcal{S}(M)$, is defined to be the collection of all modules ${ }_{R} N$ such that M is absolutely N-pure.

- A right module M is absolutely pure if and only if $\mathcal{S}(M)=R-M O D$.
- $\mathcal{S}(M)$ consists of the class of left flat modules.
- A right R-module M is called test for flatness by subpurity (t.f.b.s.) if $\mathcal{S}\left(M_{R}\right)$ consists of only flat left R-modules.

Example

The ring of integers \mathbb{Z} is t.f.b.s.
Proposition
$\bigcap_{M \in M O D-R} \mathcal{S}(M)=\{N \in R-M O D \mid N$ is flat $\}$.

Proposition

Every ring has a t.f.f.b.s. module.

Proposition

The following statements are equivalent for a ring R.
(1) R is von Neumann regular.
(2) Every right R-module is t.f.f.s.s.
(3) There exists a right absolutely pure t.f.f.s. R-module.

In order to investigate when the ring is t.f.b.s. as a right module over itself, we need the following definition.

Definition

A ring R is called right S-ring if every finitely generated flat right ideal is projective.

Theorem
A ring R is right t.f.f.s.s. and a right S-ring if and only if R is right semihereditary

Corollary
A commutative domain is Prüfer if and only if it is t.f.f.s.s.

Definition

A module A is said to be a test module for injectivity by subinjectivity (or t.i.b.s) if whenever a module M is A-subinjective implies M is injective (see, Alizade, Büyükaşık and Er).

Proposition

If N is right t.i.b.s., then N is right t.f.f.s.
There are t.f.b.s. modules which are not t.i.b.s.

Example

Every semihereditary ring is a t.f.b.s. as a right module over itself. On the other hand, R_{R} is t.i.b.s. if and only if R is right hereditary and right Noetherian (see, Alizade, Büyükaşık, and Er).

In searching the converse of above Proposition, we have the following.

Proposition

Let R be a right Noetherian ring. If M is a t.f.f.s.s. right R-module and $E(M)$ is finitely generated, then M is right t.i.b.s.

Proposition

The following are equivalent for a ring R.
(1) R_{R} is t.f.f.s.s. and Noetherian.
(2) R_{R} is t.i.b.s.

Outline

(1) Introduction
2) Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.
4. Rings whose modules are absolutely pure or t.f.b.s.
(5) t.f.b.s. modules over commutative rings

6 References

Theorem

Let R be a right Noetherian ring. Every simple right module is t.f.f.s. or absolutely-pure (=injective) if and only if
(1) R is a right V-ring; or
(2) $R \cong A \times B$, where A is right Artinian with a unique non-injective simple right module and $\operatorname{Soc}\left(A_{A}\right)$ is homogeneous and B is semisimple.

Proposition

Let R be a right Noetherian ring. Every simple right module is t.f.f.s. or absolutely pure if and only if every simple right module is t.i.b.s. or injective.

Proposition

Let R be an arbitrary ring. Suppose that every simple module is t.i.b.s. or injective. Then R is a right V-ring or right Noetherian.

Corollary

The following are equivalent for a ring R.
(1) Every simple module is t.i.b.s. or injective.
(2) (i) R is a right V-ring, or
(ii) $R \cong A \times B$, where A is right Artinian with a unique non-injective simple right R-module and $\operatorname{Soc}\left(A_{A}\right)$ is homogeneous and B is semisimple.

Outline

(2) Subpurity domain of a module
(3) Rings whose simple modules are absolutely pure or t.f.b.s.

4 Rings whose modules are absolutely pure or t.f.f.s.
(5) t.f.b.s. modules over commutative rings
(6) References

Theorem

Let R be a right Noetherian ring. Suppose that every right R-module is t.f.b.s. or absolutely pure. Then $R \cong A \times B$, where B is semisimple, and
(1) A is right hereditary right Artinian serial with homogeneous socle, $J(A)^{2}=0$ and A has a unique noninjective simple right A-module, or;
(2) A is a QF-ring that is isomorphic to a matrix ring over a local ring, or;
(3) A is right $S I$ with $\operatorname{Soc}\left(A_{A}\right)=0$.

Outline

2 Subpurity domain of a module
(5) Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.b.s.

5 t.f.b.s. modules over commutative rings
(6) References

Proposition

The following are equivalent for a commutative domain R.
(1) R is Prüfer.
(2) R is t.f.f.s.
(3) Every nonzero finitely generated ideal is t.f.b.s.
(4) A finitely generated R-module M is t.f.f.s. when $\operatorname{Hom}(M, R) \neq 0$.

Now we shall give a characterization of t.f.b.s. modules over commutative hereditary Noetherian rings. We begin with the following.

Theorem
Let R be a commutative hereditary Noetherian ring and F a flat module. Then F is t.f.f.s.s. if and only if $\operatorname{Hom}(F, S) \neq 0$ for each singular simple R-module S.

Theorem

Let R be a commutative hereditary Noetherian ring and N be an R-module. The following are equivalent.
(1) N is t.f.f.s.
(2) $N / Z(N)$ is t.f.b.s.
(3) $\operatorname{Hom}(N / Z(N), S) \neq 0$ for every singular simple R-module S.
(4) $N / Z(N) \otimes S \neq 0$ for every singular simple R-module S.

Corollary

Let R be a Principal Ideal Domain. Then an R-module G is t.f.f.s.s. if and only if $G / T(G) \neq p(G / T(G))$ for every irreducible element p in R.

Corollary

Let G be a finitely generated abelian group. Then the following are equivalent.
(1) G is t.f.b.s.
(2) G is t.i.b.s.
(3) $T(G) \neq G$.

Outline

2 Subpurity domain of a module
(Rings whose simple modules are absolutely pure or t.f.b.s.
(4) Rings whose modules are absolutely pure or t.f.b.s.
t. t.f.b.s. modules over commutative rings
(6) References

References

R. Alizade, E. Büyükaşık, and N. Er: Rings and modules characterized by opposites of injectivity., J. Algebra 409 (2014), 182198.

围 P. Aydoğdu and S. R. López-Permouth, An alternative perspective on injectivity of modules, J. Algebra 338 (2011), 207219.

圊 Y. Durğun: An alternative perspective on flatness of modules. J. Algebra Appl. (2015), Doi: 10.1142/S0219498816501450.

