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An opposite notion of relative injectivity which is introduced by
(Aydoğdu and López-Permouth), studied by many authors.

A module M is said to be A-subinjective if for every extension B of
A any homomorphism ϕ : A → M can be extended to a
homomorphism φ : B → M (see, Aydoğdu and López-Permouth ).
It is easy to see that M is injective if and only if M is A-subinjective
for each module A.
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The idea and notion of subinjectivity can be used in order to study
opposites of some other homological objects such as, absolutely
pure and flat modules.

The purpose of this talk is to mention the study of an alternative
perspective on the analysis of the absolute purity of a module.
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Proposition
The following statements are equivalent for a right module N.

(1) N is absolutely pure.

(2) N ⊗ M → E(N)⊗ M is a monomorphism for each finitely
presented left module M.

(3) N ⊗ M → E(N)⊗ M is a monomorphism for each left module M.
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Definition
Given a right module M and a left module N, M is absolutely N-pure if
for every right module K with M ≤ K the map i ⊗ 1N : M ⊗ N → K ⊗ N
is a monomorphism, where i : M → K is the inclusion map and 1N is
the identity map on N. The subpurity domain of a module MR, S(M), is
defined to be the collection of all modules RN such that M is absolutely
N-pure.

A right module M is absolutely pure if and only if
S(M) = R − MOD.

S(M) consists of the class of left flat modules.

A right R-module M is called test for flatness by subpurity (t.f.b.s.)
if S(MR) consists of only flat left R-modules.
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Example
The ring of integers Z is t.f.b.s.

Proposition
⋂

M∈MOD−R S(M) = {N ∈ R − MOD|N is flat}.
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Proposition
Every ring has a t.f.b.s. module.

Proposition
The following statements are equivalent for a ring R.

(1) R is von Neumann regular.

(2) Every right R-module is t.f.b.s.

(3) There exists a right absolutely pure t.f.b.s. R-module.
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In order to investigate when the ring is t.f.b.s. as a right module over
itself, we need the following definition.

Definition
A ring R is called right S-ring if every finitely generated flat right ideal is
projective.

Theorem
A ring R is right t.f.b.s. and a right S-ring if and only if R is right
semihereditary

Corollary
A commutative domain is Prüfer if and only if it is t.f.b.s.
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Definition
A module A is said to be a test module for injectivity by subinjectivity
(or t.i.b.s) if whenever a module M is A-subinjective implies M is
injective (see, Alizade, Büyükaşık and Er).

Proposition
If N is right t.i.b.s., then N is right t.f.b.s.

There are t.f.b.s. modules which are not t.i.b.s.

Example
Every semihereditary ring is a t.f.b.s. as a right module over itself. On
the other hand, RR is t.i.b.s. if and only if R is right hereditary and right
Noetherian (see, Alizade, Büyükaşık, and Er).
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In searching the converse of above Proposition, we have the following.

Proposition
Let R be a right Noetherian ring. If M is a t.f.b.s. right R-module and
E(M) is finitely generated, then M is right t.i.b.s.

Proposition
The following are equivalent for a ring R.

(1) RR is t.f.b.s. and Noetherian.

(2) RR is t.i.b.s.
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Theorem
Let R be a right Noetherian ring. Every simple right module is t.f.b.s. or
absolutely-pure (=injective) if and only if

(1) R is a right V -ring; or

(2) R ∼= A × B, where A is right Artinian with a unique non-injective
simple right module and Soc(AA) is homogeneous and B is
semisimple.
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Proposition

Let R be a right Noetherian ring. Every simple right module is t.f.b.s. or
absolutely pure if and only if every simple right module is t.i.b.s. or
injective.

Proposition

Let R be an arbitrary ring. Suppose that every simple module is t.i.b.s.
or injective. Then R is a right V -ring or right Noetherian.

Corollary
The following are equivalent for a ring R.

(1) Every simple module is t.i.b.s. or injective.

(2) (i) R is a right V -ring, or
(ii) R ∼= A × B, where A is right Artinian with a unique
non-injective simple right R-module and Soc(AA) is homogeneous
and B is semisimple.
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Theorem
Let R be a right Noetherian ring. Suppose that every right R-module is
t.f.b.s. or absolutely pure. Then R ∼= A×B, where B is semisimple, and

(1) A is right hereditary right Artinian serial with homogeneous socle,
J(A)2 = 0 and A has a unique noninjective simple right A-module,
or;

(2) A is a QF-ring that is isomorphic to a matrix ring over a local ring,
or;

(3) A is right SI with Soc(AA) = 0.
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Proposition
The following are equivalent for a commutative domain R.

(1) R is Prüfer.

(2) R is t.f.b.s.

(3) Every nonzero finitely generated ideal is t.f.b.s.

(4) A finitely generated R-module M is t.f.b.s. when Hom(M,R) 6= 0.
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Now we shall give a characterization of t.f.b.s. modules over
commutative hereditary Noetherian rings. We begin with the following.

Theorem
Let R be a commutative hereditary Noetherian ring and F a flat
module. Then F is t.f.b.s. if and only if Hom(F ,S) 6= 0 for each
singular simple R-module S.
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Theorem
Let R be a commutative hereditary Noetherian ring and N be an
R-module. The following are equivalent.

(1) N is t.f.b.s.

(2) N/Z (N) is t.f.b.s.

(3) Hom(N/Z (N),S) 6= 0 for every singular simple R-module S.

(4) N/Z (N)⊗ S 6= 0 for every singular simple R-module S.
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Corollary
Let R be a Principal Ideal Domain. Then an R-module G is t.f.b.s. if
and only if G/T (G) 6= p(G/T (G)) for every irreducible element p in R.

Corollary
Let G be a finitely generated abelian group. Then the following are
equivalent.

(1) G is t.f.b.s.

(2) G is t.i.b.s.

(3) T (G) 6= G.
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