Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg

Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017
Last Time

1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\det(X - X') \neq 0$ when $X \neq X'$.

2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

3. Hamilton’s quaternions provide such a family of fully diverse space-time codes.
Outline

Division Algebras
 Cyclic Algebras
 Crossed Product Algebras
Quotients of Space-Time Codes
 2 × 2 Space-Time Coded Modulation
Cyclic Algebras: Definition

• Consider the quadratic extension $\mathbb{Q}(i) = \{a + ib, \ a, b \in \mathbb{Q}\}$ (or more generally K a number field).
Cyclic Algebras: Definition

- Consider the quadratic extension \(\mathbb{Q}(i) = \{a + ib, \ a, b \in \mathbb{Q}\} \) (or more generally \(K \) a number field).
- Let \(L/\mathbb{Q}(i) \) be a cyclic extension of degree \(n \), of Galois group \(\langle \sigma \rangle \).
Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i) = \{a + ib, \ a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L/\mathbb{Q}(i)$ be a cyclic extension of degree n, of Galois group $\langle \sigma \rangle$.
- A cyclic algebra \mathcal{A} is defined by
 \[\mathcal{A} = \{(x_0, x_1, \ldots, x_{n-1}) \mid x_i \in L \} \]
Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i) = \{a + ib, \ a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L/\mathbb{Q}(i)$ be a cyclic extension of degree n, of Galois group $\langle \sigma \rangle$.
- A cyclic algebra \mathcal{A} is defined by
 \[\mathcal{A} = \{(x_0, x_1, \ldots, x_{n-1}) | x_i \in L\}\]
 in the basis $\{1, e, \ldots, e^{n-1}\}$ with $e^n = \gamma \in \mathbb{Q}(i)$.
Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i) = \{a + ib, \ a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L/\mathbb{Q}(i)$ be a cyclic extension of degree n, of Galois group $\langle \sigma \rangle$.
- A cyclic algebra \mathcal{A} is defined by

$$\mathcal{A} = \{(x_0, x_1, \ldots, x_{n-1}) \mid x_i \in L\}$$

in the basis $\{1, e, \ldots, e^{n-1}\}$ with $e^n = \gamma \in \mathbb{Q}(i)$.

- Multiplication rule: $\lambda e = e\sigma(\lambda)$, $\sigma : L \to L$, the generator of the Galois group of $L/\mathbb{Q}(i)$.
Cyclic Algebras: Coding \((n = 2)\)

1. For \(n = 2\), compute the \textit{multiplication} by \(x\) of \(y \in A\):

\[
xy = (x_0 + ex_1)(y_0 + ey_1)
\]

\[
= x_0y_0 + e\sigma(x_0)y_1 + ex_1y_0 + \gamma \sigma(x_1)y_1 \\
= [x_0y_0 + \gamma \sigma(x_1)y_1] + e[\sigma(x_0)y_1 + x_1y_0]
\]

\[
\lambda e = e\sigma(\lambda) \\
e^2 = \gamma
\]
Cyclic Algebras: Coding (n = 2)

1. For $n = 2$, compute the multiplication by x of $y \in \mathcal{A}$:

$$xy = (x_0 + ex_1)(y_0 + ey_1)$$

$$= x_0y_0 + e\sigma(x_0)y_1 + ex_1y_0 + \gamma\sigma(x_1)y_1$$

$$\lambda e = e\sigma(\lambda)$$

$$e^2 = \gamma$$

$$= [x_0y_0 + \gamma\sigma(x_1)y_1] + e[\sigma(x_0)y_1 + x_1y_0]$$

2. In the basis $\{1, e\}$, we have

$$xy = \begin{pmatrix} x_0 & \gamma\sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}.$$
Cyclic Algebras: Coding \((n = 2)\)

1. For \(n = 2\), compute the \textit{multiplication} by \(x\) of \(y \in \mathcal{A}\):

\[
xy = (x_0 + ex_1)(y_0 + ey_1)
= x_0y_0 + e\sigma(x_0)y_1 + ex_1y_0 + \gamma\sigma(x_1)y_1
= [x_0y_0 + \gamma\sigma(x_1)y_1] + e[\sigma(x_0)y_1 + x_1y_0]
\]

\[
\lambda e = e\sigma(\lambda) \quad e^2 = \gamma
\]

2. In the basis \(\{1, e\}\), we have

\[
xy = \begin{pmatrix} x_0 & \gamma\sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}.
\]

3. Correspondence between \(x\) and its \textit{multiplication matrix}.

\[
x = x_0 + ex_1 \in \mathcal{A} \leftrightarrow \begin{pmatrix} x_0 & \gamma\sigma(x_1) \\ x_1 & \sigma(x_0) \end{pmatrix}.
\]
Cyclic Algebras: Encoding

- In general:

\[
x \leftrightarrow \begin{pmatrix}
x_0 & \gamma \sigma(x_{n-1}) & \gamma \sigma^2(x_{n-2}) & \ldots & \gamma \sigma^{n-1}(x_1) \\
x_1 & \sigma(x_0) & \gamma \sigma^2(x_{n-1}) & \ldots & \gamma \sigma^{n-1}(x_2) \\
\vdots & & \ddots & \ddots & \ddots \\
x_{n-2} & \sigma(x_{n-3}) & \sigma^2(x_{n-4}) & \ldots & \gamma \sigma^{n-1}(x_{n-1}) \\
x_{n-1} & \sigma(x_{n-2}) & \sigma^2(x_{n-3}) & \ldots & \sigma^{n-1}(x_0)
\end{pmatrix}.
\]
Cyclic Algebras: Encoding

- In general:

\[x \leftrightarrow \begin{pmatrix}
 x_0 & \gamma \sigma(x_{n-1}) & \gamma \sigma^2(x_{n-2}) & \ldots & \gamma \sigma^{n-1}(x_1) \\
 x_1 & \sigma(x_0) & \gamma \sigma^2(x_{n-1}) & \ldots & \gamma \sigma^{n-1}(x_2) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{n-2} & \sigma(x_{n-3}) & \sigma^2(x_{n-4}) & \ldots & \gamma \sigma^{n-1}(x_{n-1}) \\
 x_{n-1} & \sigma(x_{n-2}) & \sigma^2(x_{n-3}) & \ldots & \sigma^{n-1}(x_0)
\end{pmatrix}. \]

- Every \(x_i \in L \) encodes \(n \) information symbols.
Cyclic Division Algebras

- **Remember**: Given $L/\mathbb{Q}(i)$, a cyclic algebra \mathcal{A} is defined by

$$\mathcal{A} = \{(x_0, x_1, \ldots, x_{n-1}) \mid x_i \in L\}$$

in the basis $\{1, e, \ldots, e^{n-1}\}$ with $e^n = \gamma \in \mathbb{Q}(i)$.
Cyclic Division Algebras

- **Remember**: Given $L/\mathbb{Q}(i)$, a cyclic algebra \mathcal{A} is defined by
 \[
 \mathcal{A} = \{(x_0, x_1, \ldots, x_{n-1}) \mid x_i \in L\}
 \]
 in the basis \{1, e, \ldots, e^{n-1}\} with $e^n = \gamma \in \mathbb{Q}(i)$.

- **Proposition**: If γ and its powers $\gamma^2, \ldots, \gamma^{n-1}$ are not algebraic norms (there is no $x \in L$ with $N_{L/\mathbb{Q}(i)}(x) = \gamma^j$, $j = 1, \ldots, n-1$), then the cyclic algebra \mathcal{A} is a division algebra.
A Recipe

To obtain *space-time codes*:

1. Take a *cyclic extension* $L/\mathbb{Q}(i)$ of degree n (\# antennas).
To obtain *space-time codes*:

1. Take a *cyclic extension* \(L/\mathbb{Q}(i) \) of degree \(n \) (\# antennas).
2. Build a *cyclic division algebra*.
A Recipe

To obtain \textit{space-time codes}:

1. Take a \textit{cyclic extension} \(L/\mathbb{Q}(i) \) of degree \(n \) (\# antennas).
2. Build a \textit{cyclic division algebra}.
3. This gives \textit{fully diverse} codes and a practical encoding for every \(n \).

[F. Oggier, G. Rekaya, J.-C. Belfiore, E. Viterbo, “Perfect Space-Time Block Codes.”]
An Example: the Golden Code

- The *Golden number* is \(\theta = \frac{1+\sqrt{5}}{2} \), a root of \(x^2 - x - 1 = 0 \) (\(\sigma(\theta) = \frac{1-\sqrt{5}}{2} \) is the other root).
An Example: the Golden Code

- The **Golden number** is $\theta = \frac{1+\sqrt{5}}{2}$, a root of $x^2 - x - 1 = 0$ ($\sigma(\theta) = \frac{1-\sqrt{5}}{2}$ is the other root).
- Take $L = \mathbb{Q}(i, \theta)$, the cyclic extension $L/\mathbb{Q}(i)$ and *the cyclic algebra* which is division

$$\mathcal{A} = \{ y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, \ u, v, w, z \in \mathbb{Q}(i) \}$$
An Example: the Golden Code

- The **Golden number** is \(\theta = \frac{1+\sqrt{5}}{2} \), a root of \(x^2 - x - 1 = 0 \)

 \((\sigma(\theta) = \frac{1-\sqrt{5}}{2} \) is the other root).

- Take \(L = \mathbb{Q}(i, \theta) \), the cyclic extension \(L/\mathbb{Q}(i) \) and the **cyclic algebra** which is division

 \[
 \mathcal{A} = \{ y = (u + v\theta) + e(w + z\theta) \mid e^2 = i, \ u, v, w, z \in \mathbb{Q}(i) \}
 \]

- We define the code \(C \) by

 \[
 \left\{ \begin{pmatrix} x_{11} & x_{12} \\
 x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} a + b\theta & c + d\theta \\
 i(c + d\sigma(\theta)) & a + b\sigma(\theta) \end{pmatrix} : a, b, c, d \in \mathbb{Z}[i] \right\}
 \]
The Golden code: $\gamma = i$ not a norm (I)

- The determinant of $X \in \mathcal{C}$ is

$$\det(X) = \det\begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\sigma(\theta)) & a + b\sigma(\theta) \end{pmatrix} = (a + b\theta)(a + b\sigma(\theta)) - i(c + d\theta)(c + d\sigma(\theta)).$$

- Thus

$$0 = \det(X) \iff i = \frac{(a + b\theta)(a + b\sigma(\theta))}{(c + d\theta)(c + d\sigma(\theta))}.$$

- Make sure $\gamma = i$ is \textit{not a norm}.
The Golden code: $\gamma = i$ not a norm (II)

- To see: $N_{L/Q(i)}(x) \neq i, \forall x \in L$.
The Golden code: $\gamma = i$ not a norm (II)

- To see: $N_{L/Q(i)}(x) \neq i$, $\forall x \in L$.

- Consider

$$\mathbb{Q}_5 = \left\{ a_m \frac{1}{5^m} + a_{m+1} \frac{1}{5^{m-1}} + \ldots + a_1 \frac{1}{5} + a_0 + a_1 5 + \ldots \right\}$$

the field of 5-adic numbers, and

$$\mathbb{Z}_5 = \left\{ a_0 + a_1 5 + a_2 5^2 + \ldots \right\} = \left\{ x \in \mathbb{Q}_5 | \nu_5(x) \geq 0 \right\}$$

its valuation ring.
The Golden code: $\gamma = i$ not a norm (II)

- To see: $N_{L/\mathbb{Q}(i)}(x) \neq i$, $\forall x \in L$.

- Consider
 \[\mathbb{Q}_5 = \left\{ a_{-m} \frac{1}{5^m} + a_{-m+1} \frac{1}{5^{m-1}} + \ldots + a_{-1} \frac{1}{5} + a_0 + a_1 5 + \ldots \right\} \]
 the field of 5-adic numbers, and
 \[\mathbb{Z}_5 = \left\{ a_0 + a_1 5 + a_2 5^2 + \ldots \right\} = \{x \in \mathbb{Q}_5 | \nu_5(x) \geq 0\} \] its valuation ring.

- Then $\mathbb{Q}(i)$ can be embedded into \mathbb{Q}_5 by
 \[i \mapsto 2 + 5\mathbb{Z}_5 \]
 (the polynomial $X^2 + 1$ has roots in \mathbb{Z}_5, because it has roots in \mathbb{F}_5, then use Hensel’s Lemma).
The Golden code: $\gamma = i$ not a norm (II)

- To see: $N_{L/\mathbb{Q}(i)}(x) \neq i$, $\forall x \in L$.

- Consider
 \[\mathbb{Q}_5 = \{ a_m \frac{1}{5^m} + a_{m+1} \frac{1}{5^{m-1}} + \ldots + a_1 \frac{1}{5} + a_0 + a_1 5 + \ldots \} \]
 the field of 5-adic numbers, and
 \[\mathbb{Z}_5 = \{ a_0 + a_1 5 + a_2 5^2 + \ldots \} = \{ x \in \mathbb{Q}_5 | \nu_5(x) \geq 0 \} \]
 its valuation ring.

- Then $\mathbb{Q}(i)$ can be embedded into \mathbb{Q}_5 by
 \[i \mapsto 2 + 5\mathbb{Z}_5 \]
 (the polynomial $X^2 + 1$ has roots in \mathbb{Z}_5, because it has roots in \mathbb{F}_5, then use Hensel’s Lemma).

- Let $x = a + b\sqrt{5} \in K$ with $a, b \in \mathbb{Q}(i)$ then we must show that
 \[N_{L/\mathbb{Q}(i)}(x) = a^2 - 5b^2 = i \]
 has no solution for $a, b \in \mathbb{Q}(i)$.
The Golden code: $\gamma = i$ not a norm (III)

- We can lift the norm equation in the 5-adic field \mathbb{Q}_5

$$a^2 - 5b^2 = 2 + 5x \quad a, b \in \mathbb{Q}(i), \ x \in \mathbb{Z}_5$$

and show that it has no solution there.
The Golden code: \(\gamma = i \) not a norm (III)

- We can lift the norm equation in the 5-adic field \(\mathbb{Q}_5 \)
 \[a^2 - 5b^2 = 2 + 5x \quad a, b \in \mathbb{Q}(i), \ x \in \mathbb{Z}_5 \]
 and show that it has no solution there.

- We take the valuations of both sides:
 \[\nu_5(a^2 - 5b^2) = \nu_5(2 + 5x) \]
 to show that \(a \) and \(b \) must be in \(\mathbb{Z}_5 \).

- We conclude by showing that \(a^2 - 5b^2 = 2 + 5x \), \(a, b \in \mathbb{Q}(i), \ x \in \mathbb{Z}_5 \) has no solution. Reducing modulo 5 \(\mathbb{Z}_5 \) we find that 2 should be a square in \(\mathbb{F}_5 \), which is a contradiction.
The Golden code: $\gamma = i$ not a norm (III)

- We can lift the norm equation in the 5-adic field \mathbb{Q}_5

\[a^2 - 5b^2 = 2 + 5x \quad a, b \in \mathbb{Q}(i), \quad x \in \mathbb{Z}_5 \]

and show that it has no solution there.

- We take the valuations of both sides:

\[\nu_5(a^2 - 5b^2) = \nu_5(2 + 5x) \]

to show that a and b must be in \mathbb{Z}_5.

- Since $x \in \mathbb{Z}_5$, $\nu_5(2 + 5x) = \inf\{\nu_5(2), \nu_5(x) + 1\} = 0$. Now, $\nu_5(a^2 - 5b^2) = \inf\{2\nu_5(a), b\nu_5(b) + 1\}$ must be 0, hence $\nu_5(a) = 0$ which implies $a \in \mathbb{Z}_5$ and consequently $b \in \mathbb{Z}_5$.

The Golden code: $\gamma = i$ not a norm (III)

- We can lift the norm equation in the 5-adic field \mathbb{Q}_5

 $$a^2 - 5b^2 = 2 + 5x \quad a, b \in \mathbb{Q}(i), \quad x \in \mathbb{Z}_5$$

 and show that it has no solution there.

- We take the valuations of both sides:

 $$\nu_5(a^2 - 5b^2) = \nu_5(2 + 5x)$$

 to show that a and b must be in \mathbb{Z}_5.

- Since $x \in \mathbb{Z}_5$, $\nu_5(2 + 5x) = \inf \{\nu_5(2), \nu_5(x) + 1\} = 0$. Now, $\nu_5(a^2 - 5b^2) = \inf \{2\nu_5(a), b\nu_5(b) + 1\}$ must be 0, hence $\nu_5(a) = 0$ which implies $a \in \mathbb{Z}_5$ and consequently $b \in \mathbb{Z}_5$.

- We conclude by showing that

 $$a^2 - 5b^2 = 2 + 5x \quad a, b, x \in \mathbb{Z}_5$$

 has no solution. Reducing modulo $5\mathbb{Z}_5$ we find that 2 should be a square in \mathbb{F}_5, which is a contradiction.
The Golden Code: Minimum Determinant

- Let $X \in \mathcal{C}$ be a codeword from the Golden code.

\[
det(X) = \det \begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\sigma(\theta)) & a + b\sigma(\theta) \end{pmatrix} \\
= (a + b\theta)(a + b\sigma(\theta)) - i(c + d\theta)(c + d\sigma(\theta)) \\
= a^2 + ab(\sigma(\theta) + \theta) - b^2 - i[c^2 + cd(\theta + \sigma(\theta)) - d^2] \\
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
\]

$a, b, c, d \in \mathbb{Z}[i]$.
The Golden Code: Minimum Determinant

- Let \(X \in C \) be a codeword from the Golden code.

\[
\text{det}(X) = \begin{vmatrix}
 a + b\theta & c + d\theta \\
 i(c + d\sigma(\theta)) & a + b\sigma(\theta)
\end{vmatrix}
= (a + b\theta)(a + b\sigma(\theta)) - i(c + d\theta)(c + d\sigma(\theta))
= a^2 + ab(\sigma(\theta) + \theta) - b^2 - i[c^2 + cd(\theta + \sigma(\theta)) - d^2]
= a^2 + ab - b^2 + i(c^2 + cd - d^2),
\]

where \(a, b, c, d \in \mathbb{Z}[i] \).

- Thus

\[
\text{det}(X) \in \mathbb{Z}[i] \Rightarrow \delta_{\text{min}}(C) = |\text{det}(X)|^2 \geq 1.
\]
The Golden Code: Minimum Determinant

- Let $\mathbf{X} \in \mathcal{C}$ be a codeword from the Golden code.

$$\det(\mathbf{X}) = \det \begin{pmatrix} a + b\theta & c + d\theta \\ i(c + d\sigma(\theta)) & a + b\sigma(\theta) \end{pmatrix}$$

$$= (a + b\theta)(a + b\sigma(\theta)) - i(c + d\theta)(c + d\sigma(\theta))$$

$$= a^2 + ab(\sigma(\theta) + \theta) - b^2 - i[c^2 + cd(\theta + \sigma(\theta)) - d^2]$$

$$= a^2 + ab - b^2 + i(c^2 + cd - d^2),$$

$a, b, c, d \in \mathbb{Z}[i]$.

- Thus

$$\det(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{min}(\mathcal{C}) = |\det(\mathbf{X})|^2 \geq 1.$$

- Is a property of *rings of integers*, can be generalized in dimension n.
The Golden code: a Space-Time lattice code (I)

- A complex lattice Λ is given by its generator matrix:

$$\Lambda = \{ Mv \mid v \in \mathbb{Z}[i]^n \}$$

- Note that $X \in \mathcal{C}$ can be written

$$X = \text{diag} \left(M \begin{bmatrix} a \\ b \end{bmatrix} \right) + \text{diag} \left(M \begin{bmatrix} c \\ d \end{bmatrix} \right) \cdot \begin{bmatrix} 0 & 1 \\ \gamma & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a + b\theta & c + d\theta \\ \gamma(c + d\sigma(\theta)) & a + b\sigma(\theta) \end{bmatrix},$$

where

$$M = \begin{bmatrix} 1 & \theta \\ 1 & \sigma(\theta) \end{bmatrix}.$$

- We add a structure of $\mathbb{Z}[i]^2$ lattice on each layer to guarantee no shaping loss.
The Golden code: a Space-Time lattice code (II)

- We recognize that
 \[M = \begin{bmatrix} 1 & \theta \\ 1 & \bar{\theta} \end{bmatrix} \]

 is the generator matrix of a lattice obtained from a quadratic number field.

- We add a structure of \(\mathbb{Z}[i]^2 \) lattice on each layer by defining \(\mathcal{C}_I \subset \mathcal{C} \) as

 \[x_1, x_2, x_3, x_4 \in \mathcal{I} = (\alpha)\mathbb{Z}[i][\frac{1+\sqrt{5}}{2}], \quad \alpha = 1 + i - i\theta, \]

 where \(\mathbb{Z}[i][\frac{1+\sqrt{5}}{2}] = \{ a + b\sqrt{5} \mid a, b \in \mathbb{Z}[i] \} \).
Crossed product algebras

- Codes for 4 antennas: take L/K, with

$$L = K(\sqrt{d}, \sqrt{d'})$$, $\text{Gal}(L/K) = \{1, \sigma, \tau, \sigma \tau\}$.
Crossed product algebras

- Codes for 4 antennas: take L/K, with

$$L = K(\sqrt{d}, \sqrt{d'})$$
$$\text{Gal}(L/K) = \{1, \sigma, \tau, \sigma\tau\}.$$

- A crossed product algebra $\mathcal{A} = (a, b, u, L/K)$ over L/K:

$$\mathcal{A} = L \oplus eL \oplus fL \oplus efL$$

with

$$e^2 = a, \ f^2 = b, \ fe = efu, \ \lambda e = e\sigma(\lambda),$$
$$\lambda f = f\tau(\lambda) \text{ for all } \lambda \in L,$$

for some elements $a, b, u \in L^\times$ satisfying

$$\sigma(a) = a, \tau(b) = b, \ u\sigma(u) = \frac{a}{\tau(a)}, \ u\tau(u) = \frac{\sigma(b)}{b}.$$
Codewords from crossed product algebras

- Let $x = x_1 + e x_\sigma + f x_\tau + ef x_{\sigma \tau} \in A$. Its left *multiplication matrix* X is given by

\[
\begin{pmatrix}
 x_1 & a \sigma(x_\sigma) & b \tau(x_\tau) & ab \tau(u) \sigma \tau(x_{\sigma \tau}) \\
 x_\sigma & \sigma(x_1) & b \tau(x_{\sigma \tau}) & b \tau(u) \sigma \tau(x_\tau) \\
 x_\tau & \tau(a) u \sigma(x_{\sigma \tau}) & \tau(x_1) & \tau(a) \sigma \tau(x_\sigma) \\
 x_{\sigma \tau} & u \sigma(x_\tau) & \tau(x_\sigma) & \sigma \tau(x_1)
\end{pmatrix}.
\]
Codewords from crossed product algebras

• Let $x = x_1 + ex_\sigma + fx_\tau + efx_{\sigma\tau} \in \mathcal{A}$. Its left multiplication matrix X is given by

$$
\begin{pmatrix}
 x_1 & a\sigma(x_\sigma) & b\tau(x_\tau) & ab\tau(u)\sigma\tau(x_{\sigma\tau}) \\
 x_\sigma & \sigma(x_1) & b\tau(x_{\sigma\tau}) & b\tau(u)\sigma\tau(x_\tau) \\
 x_\tau & \tau(a)u\sigma(x_{\sigma\tau}) & \tau(x_1) & \tau(a)\sigma\tau(x_\sigma) \\
 x_{\sigma\tau} & u\sigma(x_\tau) & \tau(x_\sigma) & \sigma\tau(x_1)
\end{pmatrix}.
$$

• Such codewords are fully-diverse if \mathcal{A} is a division algebras.
A criterion for full-diversity

Theorem. Let K be a number field, and let $A = (a, b, u, L/K)$. Then the following conditions are equivalent:

1. A is a division algebra,
2. the quaternion algebra $(d, N_{K(\sqrt{d'})/K}(b))$ is not split,
3. the quaternion algebra $(d', N_{K(\sqrt{d})/K}(a))$ is not split.
Encoding

- Let \(\{\omega_1, \omega_2, \omega_3, \omega_4\} \) be a \(\mathbb{Q}(i) \)-basis of \(L \), \(G \) be the matrix of the embeddings of the basis, \(x = (x_1, x_2, x_3, x_4) \) be 4 information symbols, \(x = x_1\omega_1 + x_2\omega_2 + x_3\omega_3 + x_4\omega_4 \in L \).
Encoding

- Let $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ be a $\mathbb{Q}(i)$-basis of L, G be the matrix of the embeddings of the basis, $x = (x_1, x_2, x_3, x_4)$ be 4 information symbols, $x = x_1\omega_1 + x_2\omega_2 + x_3\omega_3 + x_4\omega_4 \in L$.
- We encode 16 information symbols Gx_1, Gx_σ, Gx_τ, $Gx_{\sigma\tau}$ with

$$Gx = (x, \sigma(x), \tau(x), \sigma\tau(x))^T.$$
Encoding

- Let \(\{\omega_1, \omega_2, \omega_3, \omega_4\} \) be a \(\mathbb{Q}(i) \)-basis of \(L \), \(G \) be the matrix of the embeddings of the basis, \(x = (x_1, x_2, x_3, x_4) \) be 4 information symbols, \(x = x_1\omega_1 + x_2\omega_2 + x_3\omega_3 + x_4\omega_4 \in L \).
- We encode 16 information symbols \(Gx_1, Gx_\sigma, Gx_\tau, Gx_{\sigma\tau} \) with

\[
Gx = (x, \sigma(x), \tau(x), \sigma\tau(x))^T.
\]

- Define \(\Gamma_1 = I_4 \), and \(\Gamma_j, j = 2, 3, 4 \) resp. as

\[
\begin{pmatrix}
0 & a & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \tau(a) \\
0 & 0 & 1 & 0 \\
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & b & 0 \\
0 & 0 & 0 & b\sigma(u) \\
1 & 0 & 0 & 0 \\
0 & \sigma\tau(u) & 0 & 0 \\
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 & 0 & ab\sigma(u) \\
0 & 0 & b & 0 \\
0 & \tau(a)\tau(u) & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

The codeword \(X \) is encoded as follows:

\[
X = \Gamma_1 \text{diag}(Gx_1) + \Gamma_2 \text{diag}(Gx_\sigma) + \Gamma_3 \text{diag}(Gx_\tau) + \Gamma_4 \text{diag}(Gx_{\sigma\tau}).
\]
Example of code

- Consider the algebra on \(\mathbb{Q}(i)(\sqrt{2}, \sqrt{5})/\mathbb{Q}(i) \).
- We take
 \[
 a = \zeta_8, \quad b = \sqrt{\frac{1 + 2i}{1 - 2i}}, \quad u = i.
 \]

 Thus the encoding matrices \(\Gamma_i, \ i = 2, 3, 4 \) are \textit{unitary}.
Example of code

- Consider the algebra on $\mathbb{Q}(i)(\sqrt{2}, \sqrt{5})/\mathbb{Q}(i)$.
- We take

 \[a = \zeta_8, \quad b = \sqrt{\frac{1 + 2i}{1 - 2i}}, \quad u = i. \]

 Thus the encoding matrices Γ_i, $i = 2, 3, 4$ are unitary.

- We obtain a matrix G unitary by restricting to an ideal of L.
- This is a division algebra.
Comparison with previous codes
An Order View Point

- Replace copies of \mathcal{O}_K by a maximal order with minimized discriminant.

Summary

To obtain fully diverse space-time codes from division algebras:

1. For n antennas, consider a cyclic extension of $\mathbb{Q}(i)$, or for $n = 4$, a biquadratic extension of $\mathbb{Q}(i)$. Construct a cyclic/crossed product division algebra.

2. Restrict coefficients to the ring of integers (minimum determinant).

3. Add lattices on each "layer".
Division Algebras
Cyclic Algebras
Crossed Product Algebras

Quotients of Space-Time Codes

2×2 Space-Time Coded Modulation
2×2 MIMO Slow Fading Channel

\[
\begin{align*}
Y_{2 \times 2L} &= H_{2 \times 2} X_{2 \times 2} + Z_{2 \times 2L}
\end{align*}
\]
2 × 2 MIMO Slow Fading Channel

\[\tilde{Y}_{2 \times 2L} = \tilde{H}_{2 \times 2} \tilde{X}_{2 \times 2L} + \tilde{Z}_{2 \times 2L} \]

- \(2L = \) frame length.
- \(\tilde{X} = [X_1, \ldots, X_L] \in \mathbb{C}^{2 \times 2L} \).

Code Design Criteria

Design

\[X = [X_1, \ldots, X_L] \in \mathbb{C}^{2 \times 2L} \]

such that

1. \(X_i \) are fully diverse, \(i = 1, \ldots, L \).
2. the minimum determinant

\[
\Delta_{\text{min}} = \min_{0 \neq X} \det(XX^*) \\
= \min_{0 \neq X} \det\left(\sum_{i=1}^{L} X_i X_i^* \right) \\
\geq \min_{0 \neq X} \left(\sum_{i=1}^{L} |\det(X_i)| \right)^2
\]

is maximized.
Concatenated codes

1. Choose X_i, $i = 1, \ldots, L$ independently.
1. Choose X_i, $i = 1, \ldots, L$ independently.
2. Use a concatenated code:
 - inner code for diversity
 - outer code for coding gain

[L. Luzzi et al., *Golden Space-Time Block Coded Modulation*]
One example: the Golden Code \mathcal{G}

- The *inner code*:

\[\chi = \frac{1}{\sqrt{5}} \begin{pmatrix} \alpha(a + b\theta) & \alpha(c + d\theta) \\ i\sigma(\alpha)(c + d\sigma(\theta)) & \sigma(\alpha)(a + b\sigma(\theta)) \end{pmatrix} \in \mathcal{G} \]

- $a, b, c, d \in \mathbb{Z}[i]$, $\theta = \frac{1 + \sqrt{5}}{2}$, $\sigma(\theta) = \frac{1 - \sqrt{5}}{2}$, $\alpha = 1 + i - i\theta$ and $\sigma(\alpha) = 1 + i - i\sigma(\theta)$.
Coset codes

• We have $\mathcal{G} = \alpha(\mathbb{Z}[i, \theta] \oplus e\mathbb{Z}[i, \theta])$, $e^2 = i$ and (more later)

\[\mathcal{G}/(1 + i)\mathcal{G} \simeq M_2(\mathbb{F}_2).\]
Coset codes

• We have $\mathcal{G} = \alpha(\mathbb{Z}[i, \theta] \oplus e\mathbb{Z}[i, \theta]), \ e^2 = i$ and (more later)

$$\mathcal{G}/(1 + i)\mathcal{G} \simeq \mathcal{M}_2(\mathbb{F}_2).$$

• Construct a code on $\mathcal{M}_2(\mathbb{F}_2)$ and lift it (outer code).
Coset codes

• We have \(G = \alpha(\mathbb{Z}[i, \theta] \oplus e\mathbb{Z}[i, \theta]), \) \(e^2 = i \) and (more later)
\[
G/(1 + i)G \cong M_2(\mathbb{F}_2).
\]

• Construct a code on \(M_2(\mathbb{F}_2) \) and lift it (outer code).
• For a coset code (Luzzi et al.)
\[
\Delta_{\text{min}} \geq \min_{0 \neq X} \left(\sum_{i=1}^{L} |\det(X_i)| \right)^2 \geq \min \left(|1 + i|^4 \delta, d_{\text{min}}^2 \delta \right),
\]
\(\delta = \) minimum determinant of \(G, d_{\text{min}} = \) minimum distance.
Linking $\mathcal{M}_2(F_2)$ and F_4

- $F_4 = F_2(\omega)$, where $\omega^2 + \omega + 1 = 0$.
Linking $\mathcal{M}_2(\mathbb{F}_2)$ and \mathbb{F}_4

- $\mathbb{F}_4 = \mathbb{F}_2(\omega)$, where $\omega^2 + \omega + 1 = 0$.
- We have

$$\mathcal{M}_2(\mathbb{F}_2) \simeq \mathbb{F}_2(\omega) + \mathbb{F}_2(\omega)j \simeq \mathbb{F}_4 \times \mathbb{F}_4$$

where $j^2 = 1$ and $j\omega = \omega^2 j$, given by

$$
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix} \mapsto j, \quad
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix} \mapsto w.
$$
Linking $\mathcal{M}_2(\mathbb{F}_2)$ and \mathbb{F}_4

- $\mathbb{F}_4 = \mathbb{F}_2(\omega)$, where $\omega^2 + \omega + 1 = 0$.
- We have

$$\mathcal{M}_2(\mathbb{F}_2) \simeq \mathbb{F}_2(\omega) + \mathbb{F}_2(\omega)j \simeq \mathbb{F}_4 \times \mathbb{F}_4$$

where $j^2 = 1$ and $j\omega = \omega^2j$, given by

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mapsto j, \quad \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \mapsto \omega.$$

- This means:

$$\phi : (a, b) \in \mathbb{F}_4 \times \mathbb{F}_4 \mapsto M_{a,b} \in \mathcal{M}_2(\mathbb{F}_2).$$
An isometry between $\mathcal{M}_2(\mathbb{F}_2)$ and \mathbb{F}_4

- $\phi : (a, b) \in \mathbb{F}_4 \times \mathbb{F}_4 \mapsto M_{a,b} \in \mathcal{M}_2(\mathbb{F}_2)$ maps

 Hamming weight 1 \mapsto invertible.
An isometry between $\mathcal{M}_2(\mathbb{F}_2)$ and \mathbb{F}_4

- $\phi : (a, b) \in \mathbb{F}_4 \times \mathbb{F}_4 \mapsto M_{a,b} \in \mathcal{M}_2(\mathbb{F}_2)$ maps Hamming weight 1 \mapsto invertible.

- Define a weight on the matrices

$$w(M_{a,b}) = \begin{cases}
0 & M_{a,b} = 0 \\
1 & M_{a,b} \text{ invertible} \\
2 & 0 \neq M_{a,b} \text{ non-invertible}
\end{cases}$$
An isometry between $\mathcal{M}_2(\mathbb{F}_2)$ and \mathbb{F}_4

- $\phi : (a, b) \in \mathbb{F}_4 \times \mathbb{F}_4 \mapsto M_{a,b} \in \mathcal{M}_2(\mathbb{F}_2)$ maps Hamming weight 1 \mapsto invertible.

- Define a weight on the matrices

$$w(M_{a,b}) = \begin{cases}
0 & M_{a,b} = 0 \\
1 & M_{a,b} \text{ invertible} \\
2 & 0 \neq M_{a,b} \text{ non-invertible}
\end{cases}.$$

- ϕ is an isometry:

$$w(M_{a,b}) = w(\phi((a, b))) = w_H((a, b))$$

where $w_H = \text{Hamming weight}$.
Back to the outer code design

- For a coset code

$$\Delta_{min} \geq \min \left(4\delta, \frac{w_{min}^2}{2}\delta \right),$$

$$\delta = \text{minimum determinant of } G, \ w_{min} = \text{minimum weight on code over } \mathbb{F}_4.$$
Example

- Take the [6,3,4] hexacode over \mathbb{F}_4, with

$$y = (y_1, y_2, y_3, y_1 + \omega(y_2 + y_3), y_2 + \omega(y_1 + y_3), y_3 + \omega(y_1 + y_2)).$$
Example

- Take the $[6,3,4]$ hexacode over \mathbb{F}_4, with

 \[y = (y_1, y_2, y_3, y_1 + \omega(y_2 + y_3), y_2 + \omega(y_1 + y_3), y_3 + \omega(y_1 + y_2)). \]

- Compute $\phi((y_1, y_2))$.

 \[
 (y_1, y_2) \mapsto y_1 + y_2j = (y_{11} + y_{12}\omega) + (y_{21} + y_{22}\omega)j \\
 \mapsto \begin{pmatrix} y_{11} & y_{12} \\ y_{12} & y_{11} + y_{12} \end{pmatrix} + \begin{pmatrix} y_{21} & y_{22} \\ y_{22} & y_{21} + y_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
 = Y_1
 \]

- $\phi(y) = (Y_1, Y_2, Y_3)$,

 with minimum weight $w_{min} = 4$.
Summary

- For coding for *MIMO slow fading channels*, joint design of an *inner and outer* code.
Summary

- For coding for **MIMO slow fading channels**, joint design of an *inner and outer* code.
- The outer code is a *coset code*, which addresses the problem of *codes over matrices*.
Summary

- For coding for MIMO slow fading channels, joint design of an inner and outer code.
- The outer code is a coset code, which addresses the problem of codes over matrices.
- Connection between codes over matrices and codes over finite fields.
Thank you for your attention!