
Division Algebras Quotients of Space-Time Codes

Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg

Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15
June 2017



Division Algebras Quotients of Space-Time Codes

Last Time

1. A fully diverse space-time code is a family C of (square)
complex matrices such that det(X− X′) 6= 0 when X 6= X′.

2. Division algebras whose elements can be represented as
matrices satisfy full diversity by definition.

3. Hamilton’s quaternions provide such a family of fully diverse
space-time codes.
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Division Algebras Quotients of Space-Time Codes

Cyclic Algebras: Definition

• Consider the quadratic extension Q(i) = {a + ib, a, b ∈ Q}
(or more generally K a number field).

• Let L/Q(i) be a cyclic extension of de degree n, of Galois
group 〈σ〉.

• A cyclic algebra A is defined by

A = {(x0, x1, . . . , xn−1) | xi ∈ L}

in the basis {1, e, . . . , en−1} with en = γ ∈ Q(i).

• Multiplication rule: λe = eσ(λ), σ : L→ L, the generator of
the Galois group of L/Q(i).
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Cyclic Algebras: Coding (n = 2)

1. For n = 2, compute the multiplication by x of y ∈ A:

xy = (x0 + ex1)(y0 + ey1)

= x0y0 + eσ(x0)y1 + ex1y0 + γσ(x1)y1 λe = eσ(λ)

= [x0y0 + γσ(x1)y1] + e[σ(x0)y1 + x1y0] e2 = γ

2. In the basis {1, e}, we have

xy =

(
x0 γσ(x1)
x1 σ(x0)

)(
y0
y1

)
.

3. Correspondence between x and its multiplication matrix.

x = x0 + ex1 ∈ A ↔
(

x0 γσ(x1)
x1 σ(x0)

)
.
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Cyclic Algebras: Encoding

• In general:

x ↔


x0 γσ(xn−1) γσ2(xn−2) . . . γσn−1(x1)
x1 σ(x0) γσ2(xn−1) . . . γσn−1(x2)
...

...
...

xn−2 σ(xn−3) σ2(xn−4) . . . γσn−1(xn−1)
xn−1 σ(xn−2) σ2(xn−3) . . . σn−1(x0)

 .

• Every xi ∈ L encodes n information symbols.
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Cyclic Division Algebras

• Remember: Given L/Q(i), a cyclic algebra A is defined by

A = {(x0, x1, . . . , xn−1) | xi ∈ L}

in the basis {1, e, . . . , en−1} with en = γ ∈ Q(i).

• Proposition. If γ and its powers γ2, . . . , γn−1 are not
algebraic norms (there is no x ∈ L with NL/Q(i)(x) = γj ,
j = 1, . . . n−1), then the cyclic algebra A is a division algebra.
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A Recipe

To obtain space-time codes:

1. Take a cyclic extension L/Q(i) of degree n (# antennas).

2. Build a cyclic division algebra.

3. This gives fully diverse codes and a practical encoding for
every n.

[ F. Oggier, G. Rekaya, J.-C. Belfiore, E. Viterbo, “Perfect Space-Time Block

Codes.” ]
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An Example: the Golden Code

• The Golden number is θ = 1+
√
5

2 , a root of x2 − x − 1 = 0

(σ(θ) = 1−
√
5

2 is the other root).

• Take L = Q(i , θ), the cyclic extension L/Q(i) and the cyclic
algebra which is division

A = {y = (u + vθ) + e(w + zθ) | e2 = i , u, v ,w , z ∈ Q(i)}

• We define the code C by{(
x11 x12
x21 x22

)
=

(
a + bθ c + dθ

i(c + dσ(θ)) a + bσ(θ)

)
: a, b, c , d ∈ Z[i ]

}
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The Golden code: γ = i not a norm (I)

• The determinant of X ∈ C is

det(X) = det

(
a + bθ c + dθ

i(c + dσ(θ)) a + bσ(θ)

)
= (a + bθ)(a + bσ(θ))− i(c + dθ)(c + dσ(θ)).

• Thus

0 = det(X) ⇐⇒ i =
(a + bθ)(a + bσ(θ))

(c + dθ)(c + dσ(θ))

• Make sure γ = i is not a norm.
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The Golden code: γ = i not a norm (II)

• To see: NL/Q(i)(x) 6= i , ∀x ∈ L.

• Consider
Q5 = {a−m 1

5m + a−m+1
1

5m−1 + . . .+ a−1
1
5 + a0 + a15 + . . .}

the field of 5-adic numbers, and
Z5 = {a0 + a15 + a252 + . . .} = {x ∈ Q5|ν5(x) ≥ 0} its
valuation ring.

• Then Q(i) can be embedded into Q5 by

i 7→ 2 + 5Z5

(the polynomial X 2 + 1 has roots in Z5, because it has roots
in F5, then use Hensel’s Lemma).

• Let x = a + b
√

5 ∈ K with a, b ∈ Q(i) then we must show
that

NL/Q(i)(x) = a2 − 5b2 = i

has no solution for a, b ∈ Q(i).
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The Golden code: γ = i not a norm (III)

• We can lift the norm equation in the 5-adic field Q5

a2 − 5b2 = 2 + 5x a, b ∈ Q(i), x ∈ Z5

and show that it has no solution there.

• We take the valuations of both sides:

ν5(a2 − 5b2) = ν5(2 + 5x)

to show that a and b must be in Z5.

• Since x ∈ Z5, ν5(2 + 5x) = inf {ν5(2), ν5(x) + 1} = 0. Now,
ν5(a2 − 5b2) = inf {2ν5(a), bν5(b) + 1} must be 0, hence
ν5(a) = 0 which implies a ∈ Z5 and consequently b ∈ Z5.

• We conclude by showing that

a2 − 5b2 = 2 + 5x a, b, x ∈ Z5

has no solution. Reducing modulo 5Z5 we find that 2 should
be a square in F5, which is a contradiction.
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The Golden Code: Minimum Determinant

• Let X ∈ C be a codeword from the Golden code.

det(X) = det

(
a + bθ c + dθ

i(c + dσ(θ)) a + bσ(θ)

)
= (a + bθ)(a + bσ(θ))− i(c + dθ)(c + dσ(θ))

= a2 + ab(σ(θ) + θ)− b2 − i [c2 + cd(θ + σ(θ))− d2]

= a2 + ab − b2 + i(c2 + cd − d2),

a, b, c, d ∈ Z[i ].

• Thus
det(X) ∈ Z[i ]⇒ δmin(C) = | det(X)|2 ≥ 1.

• Is a property of rings of integers, can be generalized in
dimension n.
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The Golden code: a Space-Time lattice code (I)

• A complex lattice Λ is given by its generator matrix:

Λ = {Mv | v ∈ Z[i ]n}

• Note that X ∈ C can be written

X = diag

(
M

[
a
b

])
+ diag

(
M

[
c
d

])
·
[

0 1
γ 0

]
=

[
a + bθ c + dθ

γ(c + dσ(θ)) a + bσ(θ)

]
,

where

M =

[
1 θ
1 σ(θ)

]
.

• We add a structure of Z[i ]2 lattice on each layer to guarantee
no shaping loss.
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The Golden code: a Space-Time lattice code (II)

• We recognize that

M =

[
1 θ
1 θ̄

]
is the generator matrix of a lattice obtained from a quadratic
number field.

• We add a structure of Z[i ]2 lattice on each layer by defining
CI ⊂ C as

x1, x2, x3, x4 ∈ I = (α)Z[i ][1+
√
5

2 ], α = 1 + i − iθ,

where Z[i ][1+
√
5

2 ] = {a + b
√

5 | a, b ∈ Z[i ]}.
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Crossed product algebras

• Codes for 4 antennas: take L/K , with

L = K (
√
d ,
√
d ′), Gal(L/K ) = {1, σ, τ, στ}.

• A crossed product algebra A = (a, b, u, L/K ) over L/K :

A = L⊕ eL⊕ fL⊕ efL

with
e2 = a, f 2 = b, fe = efu, λe = eσ(λ),

λf = f τ(λ) for all λ ∈ L,

for some elements a, b, u ∈ L× satisfying

σ(a) = a, τ(b) = b, uσ(u) =
a

τ(a)
, uτ(u) =

σ(b)

b
.
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Codewords from crossed product algebras

• Let x = x1 + exσ + fxτ + efxστ ∈ A. Its left multiplication
matrix X is given by

x1 aσ(xσ) bτ(xτ ) abτ(u)στ(xστ )
xσ σ(x1) bτ(xστ ) bτ(u)στ(xτ )
xτ τ(a)uσ(xστ ) τ(x1) τ(a)στ(xσ)
xστ uσ(xτ ) τ(xσ) στ(x1)

 .

• Such codewords are fully-diverse if A is a division algebras.
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xσ σ(x1) bτ(xστ ) bτ(u)στ(xτ )
xτ τ(a)uσ(xστ ) τ(x1) τ(a)στ(xσ)
xστ uσ(xτ ) τ(xσ) στ(x1)

 .

• Such codewords are fully-diverse if A is a division algebras.
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A criterion for full-diversity

Theorem. Let K be a number field, and let A = (a, b, u, L/K ).
Then the following conditions are equivalent:

1. A is a division algebra,

2. the quaternion algebra (d ,NK(
√
d ′)/K (b)) is not split,

3. the quaternion algebra (d ′,NK(
√
d)/K (a)) is not split.
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Encoding

• Let {ω1, ω2, ω3, ω4} be a Q(i)-basis of L, G be the matrix of
the embeddings of the basis, x = (x1, x2, x3, x4) be 4
information symbols, x = x1ω1 + x2ω2 + x3ω3 + x4ω4 ∈ L.

• We encode 16 information symbols Gx1, Gxσ, Gxτ , Gxστ
with

Gx = (x , σ(x), τ(x), στ(x))T .

• Define Γ1 = I4, and Γj , j = 2, 3, 4 resp. as
0 a 0 0
1 0 0 0
0 0 0 τ(a)
0 0 1 0

 ,


0 0 b 0
0 0 0 bσ(u)
1 0 0 0
0 στ(u) 0 0

 ,


0 0 0 abσ(u)
0 0 b 0
0 τ(a)τ(u) 0 0
1 0 0 0

 .

The codeword X is encoded as follows:

X = Γ1diag(Gx1)+Γ2diag(Gxσ)+Γ3diag(Gxτ )+Γ4diag(Gxστ ).
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Example of code

• Consider the algebra on Q(i)(
√

2,
√

5)/Q(i).

• We take

a = ζ8, b =

√
1 + 2i

1− 2i
, u = i .

Thus the encoding matrices Γi , i = 2, 3, 4 are unitary.

• We obtain a matrix G unitary by restricting to an ideal of L.

• This is a division algebra.
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Comparison with previous codes
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An Order View Point

• Replace copies of OK by a maximal order with minimized
discriminant.

[ R. Vehkalahti, C. Hollanti, J. Lahtonen, K. Ranto, On the densest MIMO
lattices from cyclic division algebras. ]
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Summary

To obtain fully diverse space-time codes from division algebras:

1. For n antennas, consider a cyclic extension of Q(i), or for
n = 4, a biquadratic extension of Q(i). Construct a
cyclic/crossed product division algebra.

2. Restrict coefficients to the ring of integers (minimum
determinant).

3. Add lattices on each “layer”.
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Division Algebras
Cyclic Algebras
Crossed Product Algebras

Quotients of Space-Time Codes
2× 2 Space-Time Coded Modulation
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2× 2 MIMO Slow Fading Channel

Y︸︷︷︸
2×2L

= H︸︷︷︸
2×2

X + Z︸︷︷︸
2×2L

• 2L = frame length.

• X = [X1, . . . ,XL] ∈ C2×2L.
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Code Design Criteria

Design
X = [X1, . . . ,XL] ∈ C2×2L

such that

1. Xi are fully diverse, i = 1, . . . , L.

2. the minimum determinant

∆min = min
0 6=X

det(XX∗)

= min
0 6=X

det(
L∑

i=1

XiX
∗
i )

≥ min
0 6=X

(
L∑

i=1

| det(Xi )|)2

is maximized.
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Concatenated codes

1. Choose Xi , i = 1, . . . , L independently.

2. Use a concatenated code:
• inner code for diversity
• outer code for coding gain

[ L. Luzzi et al., Golden Space-Time Block Coded Modulation ]
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One example: the Golden Code G

• The inner code:

X =
1√
5

(
α(a + bθ) α(c + dθ)

iσ(α)(c + dσ(θ)) σ(α)(a + bσ(θ))

)
∈ G

• a, b, c, d ∈ Z[i ], θ = 1+
√
5

2 , σ(θ) = 1−
√
5

2 , α = 1 + i − iθ and
σ(α) = 1 + i − iσ(θ).
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Coset codes

• We have G = α(Z[i , θ]⊕ eZ[i , θ]), e2 = i and (more later)

G/(1 + i)G 'M2(F2).

• Construct a code on M2(F2) and lift it (outer code).

• For a coset code (Luzzi et al.)

∆min ≥ min
06=X

(
L∑

i=1

| det(Xi )|)2 ≥ min
(
|1 + i |4δ, d2

minδ
)
,

δ= minimum determinant of G, dmin=minimum distance.
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Linking M2(F2) and F4

• F4 = F2(ω), where ω2 + ω + 1 = 0.

• We have

M2(F2) ' F2(ω) + F2(ω)j ' F4 × F4

where j2 = 1 and jω = ω2j , given by[
0 1
1 0

]
7→ j ,

[
0 1
1 1

]
7→ w .

• This means:

φ : (a, b) ∈ F4 × F4 7→ Ma,b ∈M2(F2).
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An isometry between M2(F2) and F4

• φ : (a, b) ∈ F4 × F4 7→ Ma,b ∈M2(F2) maps

Hamming weight 1 7→ invertible.

• Define a weight on the matrices

w(Ma,b) =


0 Ma,b = 0
1 Ma,binvertible
2 0 6= Ma,bnon-invertible

.

• φ is an isometry:

w(Ma,b) = w(φ((a, b))) = wH((a, b))

where wH=Hamming weight.
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Back to the outer code design

• For a coset code

∆min ≥ min

(
4δ,

w2
min

2
δ

)
,

δ= minimum determinant of G, wmin=minimum weight on
code over F4.
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Example

• Take the [6,3,4] hexacode over F4, with

y = (y1, y2, y3, y1+ω(y2+y3), y2+ω(y1+y3), y3+ω(y1+y2)).

• Compute φ((y1, y2)).

(y1, y2) 7→ y1 + y2j = (y11 + y12ω) + (y21 + y22ω)j

7→
(

y11 y12
y12 y11 + y12

)
+

(
y21 y22
y22 y21 + y22

)(
0 1
1 0

)
= Y1

•
φ(y) = (Y1,Y2,Y3),

with minimum weight wmin = 4.
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Summary

• For coding for MIMO slow fading channels, joint design of an
inner and outer code.

• The outer code is a coset code, which addresses the problem
of codes over matrices.

• Connection between codes over matrices and codes over finite
fields.
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Thank you for your attention!
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