Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg
Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017

Last Time

1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.
2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.
3. Hamilton's quaternions provide such a family of fully diverse space-time codes.

Outline

Division Algebras
Cyclic Algebras Crossed Product Algebras
Quotients of Space-Time Codes
2×2 Space-Time Coded Modulation

Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$ (or more generally K a number field).

Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L / \mathbb{Q}(i)$ be a cyclic extension of de degree n, of Galois group $\langle\sigma\rangle$.

Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L / \mathbb{Q}(i)$ be a cyclic extension of de degree n, of Galois group $\langle\sigma\rangle$.
- A cyclic algebra \mathcal{A} is defined by

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L / \mathbb{Q}(i)$ be a cyclic extension of de degree n, of Galois group $\langle\sigma\rangle$.
- A cyclic algebra \mathcal{A} is defined by

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

in the basis $\left\{1, e, \ldots, e^{n-1}\right\}$ with $e^{n}=\gamma \in \mathbb{Q}(i)$.

Cyclic Algebras: Definition

- Consider the quadratic extension $\mathbb{Q}(i)=\{a+i b, a, b \in \mathbb{Q}\}$ (or more generally K a number field).
- Let $L / \mathbb{Q}(i)$ be a cyclic extension of de degree n, of Galois group $\langle\sigma\rangle$.
- A cyclic algebra \mathcal{A} is defined by

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

in the basis $\left\{1, e, \ldots, e^{n-1}\right\}$ with $e^{n}=\gamma \in \mathbb{Q}(i)$.

- Multiplication rule: $\lambda e=e \sigma(\lambda), \sigma: L \rightarrow L$, the generator of the Galois group of $L / \mathbb{Q}(i)$.

Cyclic Algebras: Coding $(n=2)$

1. For $n=2$, compute the multiplication by x of $y \in \mathcal{A}$:

$$
\begin{array}{rlc}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+e \sigma\left(x_{0}\right) y_{1}+e x_{1} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1} & \lambda e=e \sigma(\lambda) \\
& =\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right] & e^{2}=\gamma
\end{array}
$$

Cyclic Algebras: Coding $(n=2)$

1. For $n=2$, compute the multiplication by x of $y \in \mathcal{A}$:

$$
\begin{array}{rlc}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+e \sigma\left(x_{0}\right) y_{1}+e x_{1} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1} & \lambda e=e \sigma(\lambda) \\
& =\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right] & e^{2}=\gamma
\end{array}
$$

2. In the basis $\{1, e\}$, we have

$$
x y=\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right)\binom{y_{0}}{y_{1}} .
$$

Cyclic Algebras: Coding ($n=2$)

1. For $n=2$, compute the multiplication by x of $y \in \mathcal{A}$:

$$
\begin{array}{rlc}
x y & =\left(x_{0}+e x_{1}\right)\left(y_{0}+e y_{1}\right) \\
& =x_{0} y_{0}+e \sigma\left(x_{0}\right) y_{1}+e x_{1} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1} & \lambda e=e \sigma(\lambda) \\
& =\left[x_{0} y_{0}+\gamma \sigma\left(x_{1}\right) y_{1}\right]+e\left[\sigma\left(x_{0}\right) y_{1}+x_{1} y_{0}\right] \quad e^{2}=\gamma
\end{array}
$$

2. In the basis $\{1, e\}$, we have

$$
x y=\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right)\binom{y_{0}}{y_{1}} .
$$

3. Correspondence between x and its multiplication matrix.

$$
x=x_{0}+e x_{1} \in \mathcal{A} \leftrightarrow\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right) .
$$

Cyclic Algebras: Encoding

- In general:

$$
x \leftrightarrow\left(\begin{array}{ccccc}
x_{0} & \gamma \sigma\left(x_{n-1}\right) & \gamma \sigma^{2}\left(x_{n-2}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right) & \gamma \sigma^{2}\left(x_{n-1}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{2}\right) \\
\vdots & & \vdots & & \vdots \\
x_{n-2} & \sigma\left(x_{n-3}\right) & \sigma^{2}\left(x_{n-4}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{n-1}\right) \\
x_{n-1} & \sigma\left(x_{n-2}\right) & \sigma^{2}\left(x_{n-3}\right) & \ldots & \sigma^{n-1}\left(x_{0}\right)
\end{array}\right)
$$

Cyclic Algebras: Encoding

- In general:

$$
x \leftrightarrow\left(\begin{array}{ccccc}
x_{0} & \gamma \sigma\left(x_{n-1}\right) & \gamma \sigma^{2}\left(x_{n-2}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right) & \gamma \sigma^{2}\left(x_{n-1}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{2}\right) \\
\vdots & & \vdots & & \vdots \\
x_{n-2} & \sigma\left(x_{n-3}\right) & \sigma^{2}\left(x_{n-4}\right) & \ldots & \gamma \sigma^{n-1}\left(x_{n-1}\right) \\
x_{n-1} & \sigma\left(x_{n-2}\right) & \sigma^{2}\left(x_{n-3}\right) & \ldots & \sigma^{n-1}\left(x_{0}\right)
\end{array}\right)
$$

- Every $x_{i} \in L$ encodes n information symbols.

Cyclic Division Algebras

- Remember: Given $L / \mathbb{Q}(i)$, a cyclic algebra \mathcal{A} is defined by

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

in the basis $\left\{1, e, \ldots, e^{n-1}\right\}$ with $e^{n}=\gamma \in \mathbb{Q}(i)$.

Cyclic Division Algebras

- Remember: Given $L / \mathbb{Q}(i)$, a cyclic algebra \mathcal{A} is defined by

$$
\mathcal{A}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mid x_{i} \in L\right\}
$$

in the basis $\left\{1, e, \ldots, e^{n-1}\right\}$ with $e^{n}=\gamma \in \mathbb{Q}(i)$.

- Proposition. If γ and its powers $\gamma^{2}, \ldots, \gamma^{n-1}$ are not algebraic norms (there is no $x \in L$ with $N_{L / \mathbb{Q}(i)}(x)=\gamma^{j}$, $j=1, \ldots n-1$), then the cyclic algebra \mathcal{A} is a division algebra.

A Recipe

To obtain space-time codes:

1. Take a cyclic extension $L / \mathbb{Q}(i)$ of degree n (\# antennas).

A Recipe

To obtain space-time codes:

1. Take a cyclic extension $L / \mathbb{Q}(i)$ of degree n (\# antennas).
2. Build a cyclic division algebra.

A Recipe

To obtain space-time codes:

1. Take a cyclic extension $L / \mathbb{Q}(i)$ of degree n (\# antennas).
2. Build a cyclic division algebra.
3. This gives fully diverse codes and a practical encoding for every n.
[F. Oggier, G. Rekaya, J.-C. Belfiore, E. Viterbo, "Perfect Space-Time Block Codes."]

An Example: the Golden Code

- The Golden number is $\theta=\frac{1+\sqrt{5}}{2}$, a root of $x^{2}-x-1=0$ $\left(\sigma(\theta)=\frac{1-\sqrt{5}}{2}\right.$ is the other root).

An Example: the Golden Code

- The Golden number is $\theta=\frac{1+\sqrt{5}}{2}$, a root of $x^{2}-x-1=0$ $\left(\sigma(\theta)=\frac{1-\sqrt{5}}{2}\right.$ is the other root).
- Take $L=\mathbb{Q}(i, \theta)$, the cyclic extension $L / \mathbb{Q}(i)$ and the cyclic algebra which is division

$$
\mathcal{A}=\left\{y=(u+v \theta)+e(w+z \theta) \mid e^{2}=i, u, v, w, z \in \mathbb{Q}(i)\right\}
$$

An Example: the Golden Code

- The Golden number is $\theta=\frac{1+\sqrt{5}}{2}$, a root of $x^{2}-x-1=0$ $\left(\sigma(\theta)=\frac{1-\sqrt{5}}{2}\right.$ is the other root).
- Take $L=\mathbb{Q}(i, \theta)$, the cyclic extension $L / \mathbb{Q}(i)$ and the cyclic algebra which is division

$$
\mathcal{A}=\left\{y=(u+v \theta)+e(w+z \theta) \mid e^{2}=i, u, v, w, z \in \mathbb{Q}(i)\right\}
$$

- We define the code \mathcal{C} by

$$
\left\{\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{cc}
a+b \theta & c+d \theta \\
i(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right): a, b, c, d \in \mathbb{Z}[i]\right\}
$$

The Golden code: $\gamma=i$ not a norm (I)

- The determinant of $\mathbf{X} \in \mathcal{C}$ is

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}) & =\operatorname{det}\left(\begin{array}{cc}
a+b \theta & c+d \theta \\
i(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right) \\
& =(a+b \theta)(a+b \sigma(\theta))-i(c+d \theta)(c+d \sigma(\theta))
\end{aligned}
$$

- Thus

$$
0=\operatorname{det}(\mathbf{X}) \Longleftrightarrow i=\frac{(a+b \theta)(a+b \sigma(\theta))}{(c+d \theta)(c+d \sigma(\theta))}
$$

- Make sure $\gamma=i$ is not a norm.

The Golden code: $\gamma=i$ not a norm (II)

- To see: $N_{L / \mathbb{Q}(i)}(x) \neq i, \forall x \in L$.

The Golden code: $\gamma=i$ not a norm (II)

- To see: $N_{L / \mathbb{Q}(i)}(x) \neq i, \forall x \in L$.
- Consider
$\mathbb{Q}_{5}=\left\{a_{-m} \frac{1}{5^{m}}+a_{-m+1} \frac{1}{5^{m-1}}+\ldots+a_{-1} \frac{1}{5}+a_{0}+a_{1} 5+\ldots\right\}$ the field of 5 -adic numbers, and
$\mathbb{Z}_{5}=\left\{a_{0}+a_{1} 5+a_{2} 5^{2}+\ldots\right\}=\left\{x \in \mathbb{Q}_{5} \mid \nu_{5}(x) \geq 0\right\}$ its valuation ring.

The Golden code: $\gamma=i$ not a norm (II)

- To see: $N_{L / \mathbb{Q}(i)}(x) \neq i, \forall x \in L$.
- Consider
$\mathbb{Q}_{5}=\left\{a_{-m} \frac{1}{5^{m}}+a_{-m+1} \frac{1}{5^{m-1}}+\ldots+a_{-1} \frac{1}{5}+a_{0}+a_{1} 5+\ldots\right\}$ the field of 5 -adic numbers, and
$\mathbb{Z}_{5}=\left\{a_{0}+a_{1} 5+a_{2} 5^{2}+\ldots\right\}=\left\{x \in \mathbb{Q}_{5} \mid \nu_{5}(x) \geq 0\right\}$ its valuation ring.
- Then $\mathbb{Q}(i)$ can be embedded into \mathbb{Q}_{5} by

$$
i \mapsto 2+5 \mathbb{Z}_{5}
$$

(the polynomial $X^{2}+1$ has roots in \mathbb{Z}_{5}, because it has roots in \mathbb{F}_{5}, then use Hensel's Lemma).

The Golden code: $\gamma=i$ not a norm (II)

- To see: $N_{L / \mathbb{Q}(i)}(x) \neq i, \forall x \in L$.
- Consider
$\mathbb{Q}_{5}=\left\{a_{-m} \frac{1}{5^{m}}+a_{-m+1} \frac{1}{5^{m-1}}+\ldots+a_{-1} \frac{1}{5}+a_{0}+a_{1} 5+\ldots\right\}$ the field of 5 -adic numbers, and
$\mathbb{Z}_{5}=\left\{a_{0}+a_{1} 5+a_{2} 5^{2}+\ldots\right\}=\left\{x \in \mathbb{Q}_{5} \mid \nu_{5}(x) \geq 0\right\}$ its valuation ring.
- Then $\mathbb{Q}(i)$ can be embedded into \mathbb{Q}_{5} by

$$
i \mapsto 2+5 \mathbb{Z}_{5}
$$

(the polynomial $X^{2}+1$ has roots in \mathbb{Z}_{5}, because it has roots in \mathbb{F}_{5}, then use Hensel's Lemma).

- Let $x=a+b \sqrt{5} \in K$ with $a, b \in \mathbb{Q}(i)$ then we must show that

$$
N_{L / \mathbb{Q}(i)}(x)=a^{2}-5 b^{2}=i
$$

has no solution for $a, b \in \mathbb{Q}(i)$.

The Golden code: $\gamma=i$ not a norm (III)

- We can lift the norm equation in the 5 -adic field \mathbb{Q}_{5}

$$
a^{2}-5 b^{2}=2+5 x \quad a, b \in \mathbb{Q}(i), x \in \mathbb{Z}_{5}
$$

and show that it has no solution there.

The Golden code: $\gamma=i$ not a norm (III)

- We can lift the norm equation in the 5 -adic field \mathbb{Q}_{5}

$$
a^{2}-5 b^{2}=2+5 x \quad a, b \in \mathbb{Q}(i), x \in \mathbb{Z}_{5}
$$

and show that it has no solution there.

- We take the valuations of both sides:

$$
\nu_{5}\left(a^{2}-5 b^{2}\right)=\nu_{5}(2+5 x)
$$

to show that a and b must be in \mathbb{Z}_{5}.

The Golden code: $\gamma=i$ not a norm (III)

- We can lift the norm equation in the 5 -adic field \mathbb{Q}_{5}

$$
a^{2}-5 b^{2}=2+5 x \quad a, b \in \mathbb{Q}(i), x \in \mathbb{Z}_{5}
$$

and show that it has no solution there.

- We take the valuations of both sides:

$$
\nu_{5}\left(a^{2}-5 b^{2}\right)=\nu_{5}(2+5 x)
$$

to show that a and b must be in \mathbb{Z}_{5}.

- Since $x \in \mathbb{Z}_{5}, \nu_{5}(2+5 x)=\inf \left\{\nu_{5}(2), \nu_{5}(x)+1\right\}=0$. Now, $\nu_{5}\left(a^{2}-5 b^{2}\right)=\inf \left\{2 \nu_{5}(a), b \nu_{5}(b)+1\right\}$ must be 0 , hence $\nu_{5}(a)=0$ which implies $a \in \mathbb{Z}_{5}$ and consequently $b \in \mathbb{Z}_{5}$.

The Golden code: $\gamma=i$ not a norm (III)

- We can lift the norm equation in the 5 -adic field \mathbb{Q}_{5}

$$
a^{2}-5 b^{2}=2+5 x \quad a, b \in \mathbb{Q}(i), x \in \mathbb{Z}_{5}
$$

and show that it has no solution there.

- We take the valuations of both sides:

$$
\nu_{5}\left(a^{2}-5 b^{2}\right)=\nu_{5}(2+5 x)
$$

to show that a and b must be in \mathbb{Z}_{5}.

- Since $x \in \mathbb{Z}_{5}, \nu_{5}(2+5 x)=\inf \left\{\nu_{5}(2), \nu_{5}(x)+1\right\}=0$. Now, $\nu_{5}\left(a^{2}-5 b^{2}\right)=\inf \left\{2 \nu_{5}(a), b \nu_{5}(b)+1\right\}$ must be 0 , hence $\nu_{5}(a)=0$ which implies $a \in \mathbb{Z}_{5}$ and consequently $b \in \mathbb{Z}_{5}$.
- We conclude by showing that

$$
a^{2}-5 b^{2}=2+5 x \quad a, b, x \in \mathbb{Z}_{5}
$$

has no solution. Reducing modulo $5 \mathbb{Z}_{5}$ we find that 2 should be a square in \mathbb{F}_{5}, which is a contradiction.

The Golden Code: Minimum Determinant

- Let $\mathbf{X} \in \mathcal{C}$ be a codeword from the Golden code.

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}) & =\operatorname{det}\left(\begin{array}{cc}
a+b \theta & c+d \theta \\
i(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right) \\
& =(a+b \theta)(a+b \sigma(\theta))-i(c+d \theta)(c+d \sigma(\theta)) \\
& =a^{2}+a b(\sigma(\theta)+\theta)-b^{2}-i\left[c^{2}+c d(\theta+\sigma(\theta))-d^{2}\right] \\
& =a^{2}+a b-b^{2}+i\left(c^{2}+c d-d^{2}\right)
\end{aligned}
$$

$a, b, c, d \in \mathbb{Z}[i]$.

The Golden Code: Minimum Determinant

- Let $\mathbf{X} \in \mathcal{C}$ be a codeword from the Golden code.

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}) & =\operatorname{det}\left(\begin{array}{cc}
a+b \theta & c+d \theta \\
i(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right) \\
& =(a+b \theta)(a+b \sigma(\theta))-i(c+d \theta)(c+d \sigma(\theta)) \\
& =a^{2}+a b(\sigma(\theta)+\theta)-b^{2}-i\left[c^{2}+c d(\theta+\sigma(\theta))-d^{2}\right] \\
& =a^{2}+a b-b^{2}+i\left(c^{2}+c d-d^{2}\right),
\end{aligned}
$$

$a, b, c, d \in \mathbb{Z}[i]$.

- Thus

$$
\operatorname{det}(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min }(\mathcal{C})=|\operatorname{det}(\mathbf{X})|^{2} \geq 1
$$

The Golden Code: Minimum Determinant

- Let $\mathbf{X} \in \mathcal{C}$ be a codeword from the Golden code.

$$
\begin{aligned}
\operatorname{det}(\mathbf{X}) & =\operatorname{det}\left(\begin{array}{cc}
a+b \theta & c+d \theta \\
i(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right) \\
& =(a+b \theta)(a+b \sigma(\theta))-i(c+d \theta)(c+d \sigma(\theta)) \\
& =a^{2}+a b(\sigma(\theta)+\theta)-b^{2}-i\left[c^{2}+c d(\theta+\sigma(\theta))-d^{2}\right] \\
& =a^{2}+a b-b^{2}+i\left(c^{2}+c d-d^{2}\right)
\end{aligned}
$$

$a, b, c, d \in \mathbb{Z}[i]$.

- Thus

$$
\operatorname{det}(\mathbf{X}) \in \mathbb{Z}[i] \Rightarrow \delta_{\min }(\mathcal{C})=|\operatorname{det}(\mathbf{X})|^{2} \geq 1
$$

- Is a property of rings of integers, can be generalized in dimension n.

The Golden code: a Space-Time lattice code (I)

- A complex lattice Λ is given by its generator matrix:

$$
\Lambda=\left\{M \mathbf{v} \mid \mathbf{v} \in \mathbb{Z}[i]^{n}\right\}
$$

- Note that $\mathbf{X} \in \mathcal{C}$ can be written

$$
\begin{aligned}
\mathbf{X} & =\operatorname{diag}\left(M\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)+\operatorname{diag}\left(M\left[\begin{array}{l}
c \\
d
\end{array}\right]\right) \cdot\left[\begin{array}{ll}
0 & 1 \\
\gamma & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
a+b \theta & c+d \theta \\
\gamma(c+d \sigma(\theta)) & a+b \sigma(\theta)
\end{array}\right]
\end{aligned}
$$

where

$$
M=\left[\begin{array}{cc}
1 & \theta \\
1 & \sigma(\theta)
\end{array}\right]
$$

- We add a structure of $\mathbb{Z}[i]^{2}$ lattice on each layer to guarantee no shaping loss.

The Golden code: a Space-Time lattice code (II)

- We recognize that

$$
M=\left[\begin{array}{ll}
1 & \theta \\
1 & \bar{\theta}
\end{array}\right]
$$

is the generator matrix of a lattice obtained from a quadratic number field.

- We add a structure of $\mathbb{Z}[i]^{2}$ lattice on each layer by defining $\mathcal{C}_{\mathcal{I}} \subset \mathcal{C}$ as

$$
x_{1}, x_{2}, x_{3}, x_{4} \in \mathcal{I}=(\alpha) \mathbb{Z}[i]\left[\frac{1+\sqrt{5}}{2}\right], \alpha=1+i-i \theta
$$

where $\mathbb{Z}[i]\left[\frac{1+\sqrt{5}}{2}\right]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}[i]\}$.

Crossed product algebras

- Codes for 4 antennas: take L / K, with

$$
L=K\left(\sqrt{d}, \sqrt{d^{\prime}}\right), \operatorname{Gal}(L / K)=\{1, \sigma, \tau, \sigma \tau\}
$$

Crossed product algebras

- Codes for 4 antennas: take L / K, with

$$
L=K\left(\sqrt{d}, \sqrt{d^{\prime}}\right), \operatorname{Gal}(L / K)=\{1, \sigma, \tau, \sigma \tau\}
$$

- A crossed product algebra $\mathcal{A}=(a, b, u, L / K)$ over L / K :

$$
\mathcal{A}=L \oplus e L \oplus f L \oplus e f L
$$

with

$$
\begin{aligned}
e^{2}=a, f^{2} & =b, f e=e f u, \quad \lambda e=e \sigma(\lambda) \\
\lambda f & =f \tau(\lambda) \text { for all } \lambda \in L
\end{aligned}
$$

for some elements $a, b, u \in L^{\times}$satisfying

$$
\sigma(a)=a, \tau(b)=b, u \sigma(u)=\frac{a}{\tau(a)}, u \tau(u)=\frac{\sigma(b)}{b} .
$$

Codewords from crossed product algebras

- Let $x=x_{1}+e x_{\sigma}+f x_{\tau}+e f x_{\sigma \tau} \in \mathcal{A}$. Its left multiplication matrix X is given by

$$
\left(\begin{array}{cccc}
x_{1} & a \sigma\left(x_{\sigma}\right) & b \tau\left(x_{\tau}\right) & a b \tau(u) \sigma \tau\left(x_{\sigma \tau}\right) \\
x_{\sigma} & \sigma\left(x_{1}\right) & b \tau\left(x_{\sigma \tau}\right) & b \tau(u) \sigma \tau\left(x_{\tau}\right) \\
x_{\tau} & \tau(a) u \sigma\left(x_{\sigma \tau}\right) & \tau\left(x_{1}\right) & \tau(a) \sigma \tau\left(x_{\sigma}\right) \\
x_{\sigma \tau} & u \sigma\left(x_{\tau}\right) & \tau\left(x_{\sigma}\right) & \sigma \tau\left(x_{1}\right)
\end{array}\right) .
$$

Codewords from crossed product algebras

- Let $x=x_{1}+e x_{\sigma}+f x_{\tau}+e f x_{\sigma \tau} \in \mathcal{A}$. Its left multiplication matrix X is given by

$$
\left(\begin{array}{cccc}
x_{1} & a \sigma\left(x_{\sigma}\right) & b \tau\left(x_{\tau}\right) & a b \tau(u) \sigma \tau\left(x_{\sigma \tau}\right) \\
x_{\sigma} & \sigma\left(x_{1}\right) & b \tau\left(x_{\sigma \tau}\right) & b \tau(u) \sigma \tau\left(x_{\tau}\right) \\
x_{\tau} & \tau(a) u \sigma\left(x_{\sigma \tau}\right) & \tau\left(x_{1}\right) & \tau(a) \sigma \tau\left(x_{\sigma}\right) \\
x_{\sigma \tau} & u \sigma\left(x_{\tau}\right) & \tau\left(x_{\sigma}\right) & \sigma \tau\left(x_{1}\right)
\end{array}\right) .
$$

- Such codewords are fully-diverse if \mathcal{A} is a division algebras.

A criterion for full-diversity

Theorem. Let K be a number field, and let $\mathcal{A}=(a, b, u, L / K)$. Then the following conditions are equivalent:

1. \mathcal{A} is a division algebra,
2. the quaternion algebra $\left(d, N_{K\left(\sqrt{d^{\prime}}\right) / K}(b)\right)$ is not split,
3. the quaternion algebra $\left(d^{\prime}, N_{K(\sqrt{d}) / K}(a)\right)$ is not split.

Encoding

- Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ be a $\mathbb{Q}(i)$-basis of L, G be the matrix of the embeddings of the basis, $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be 4 information symbols, $x=x_{1} \omega_{1}+x_{2} \omega_{2}+x_{3} \omega_{3}+x_{4} \omega_{4} \in L$.

Encoding

- Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ be a $\mathbb{Q}(i)$-basis of L, G be the matrix of the embeddings of the basis, $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be 4 information symbols, $x=x_{1} \omega_{1}+x_{2} \omega_{2}+x_{3} \omega_{3}+x_{4} \omega_{4} \in L$.
- We encode 16 information symbols $G \mathbf{x}_{1}, G \mathbf{x}_{\sigma}, G \mathbf{x}_{\tau}, G \mathbf{x}_{\sigma \tau}$ with

$$
G \mathbf{x}=(x, \sigma(x), \tau(x), \sigma \tau(x))^{T}
$$

Encoding

- Let $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ be a $\mathbb{Q}(i)$-basis of L, G be the matrix of the embeddings of the basis, $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be 4 information symbols, $x=x_{1} \omega_{1}+x_{2} \omega_{2}+x_{3} \omega_{3}+x_{4} \omega_{4} \in L$.
- We encode 16 information symbols $G \mathbf{x}_{1}, G \mathbf{x}_{\sigma}, G \mathbf{x}_{\tau}, G \mathbf{x}_{\sigma \tau}$ with

$$
G \mathbf{x}=(x, \sigma(x), \tau(x), \sigma \tau(x))^{T}
$$

- Define $\Gamma_{1}=\mathbf{I}_{4}$, and $\Gamma_{j}, j=2,3,4$ resp. as

$$
\left(\begin{array}{cccc}
0 & a & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \tau(a) \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & b & 0 \\
0 & 0 & 0 & b \sigma(u) \\
1 & 0 & 0 & 0 \\
0 & \sigma \tau(u) & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & a b \sigma(u) \\
0 & 0 & b & 0 \\
0 & \tau(a) \tau(u) & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The codeword X is encoded as follows:
$X=\Gamma_{1} \operatorname{diag}\left(G \mathbf{x}_{1}\right)+\Gamma_{2} \operatorname{diag}\left(G \mathbf{x}_{\sigma}\right)+\Gamma_{3} \operatorname{diag}\left(G \mathbf{x}_{\tau}\right)+\Gamma_{4} \operatorname{diag}\left(G \mathbf{x}_{\sigma \tau}\right)$.

Example of code

- Consider the algebra on $\mathbb{Q}(i)(\sqrt{2}, \sqrt{5}) / \mathbb{Q}(i)$.
- We take

$$
a=\zeta_{8}, \quad b=\sqrt{\frac{1+2 i}{1-2 i}}, u=i
$$

Thus the encoding matrices $\Gamma_{i}, i=2,3,4$ are unitary.

Example of code

- Consider the algebra on $\mathbb{Q}(i)(\sqrt{2}, \sqrt{5}) / \mathbb{Q}(i)$.
- We take

$$
a=\zeta_{8}, b=\sqrt{\frac{1+2 i}{1-2 i}}, u=i
$$

Thus the encoding matrices $\Gamma_{i}, i=2,3,4$ are unitary.

- We obtain a matrix G unitary by restricting to an ideal of L.
- This is a division algebra.

Comparison with previous codes

An Order View Point

- Replace copies of \mathcal{O}_{K} by a maximal order with minimized discriminant.
[R. Vehkalahti, C. Hollanti, J. Lahtonen, K. Ranto, On the densest MIMO lattices from cyclic division algebras.]

Summary

To obtain fully diverse space-time codes from division algebras:

1. For n antennas, consider a cyclic extension of $\mathbb{Q}(i)$, or for $n=4$, a biquadratic extension of $\mathbb{Q}(i)$. Construct a cyclic/crossed product division algebra.
2. Restrict coefficients to the ring of integers (minimum determinant).
3. Add lattices on each "layer".

Division Algebras Cyclic Algebras Crossed Product Algebras

Quotients of Space-Time Codes
2×2 Space-Time Coded Modulation

2×2 MIMO Slow Fading Channel

$$
\underbrace{\mathbf{Y}}_{2 \times 2 L}=\underbrace{\mathbf{H}}_{2 \times 2} \mathbf{X}+\underbrace{\mathbf{Z}}_{2 \times 2 L}
$$

2×2 MIMO Slow Fading Channel

$$
\underbrace{\mathbf{Y}}_{2 \times 2 L}=\underbrace{\mathbf{H}}_{2 \times 2} \mathbf{X}+\underbrace{\mathbf{Z}}_{2 \times 2 L}
$$

- $2 L=$ frame length.
- $\mathbf{X}=\left[X_{1}, \ldots, X_{L}\right] \in \mathbb{C}^{2 \times 2 L}$.

Code Design Criteria

Design

$$
\mathbf{X}=\left[X_{1}, \ldots, X_{L}\right] \in \mathbb{C}^{2 \times 2 L}
$$

such that

1. X_{i} are fully diverse, $i=1, \ldots, L$.
2. the minimum determinant

$$
\begin{aligned}
\Delta_{\min } & =\min _{\mathbf{0} \neq \mathbf{X}} \operatorname{det}\left(\mathbf{X X}^{*}\right) \\
& =\min _{\mathbf{0} \neq \mathbf{X}} \operatorname{det}\left(\sum_{i=1}^{L} X_{i} X_{i}^{*}\right) \\
& \geq \min _{\mathbf{0} \neq \mathbf{X}}\left(\sum_{i=1}^{L}\left|\operatorname{det}\left(X_{i}\right)\right|\right)^{2}
\end{aligned}
$$

is maximized.

Concatenated codes

1. Choose $X_{i}, i=1, \ldots, L$ independently.

Concatenated codes

1. Choose $X_{i}, i=1, \ldots, L$ independently.
2. Use a concatenated code:

- inner code for diversity
- outer code for coding gain
[L. Luzzi et al., Golden Space-Time Block Coded Modulation]

One example: the Golden Code \mathcal{G}

- The inner code:

$$
X=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\alpha(a+b \theta) & \alpha(c+d \theta) \\
i \sigma(\alpha)(c+d \sigma(\theta)) & \sigma(\alpha)(a+b \sigma(\theta))
\end{array}\right) \in \mathcal{G}
$$

- $a, b, c, d \in \mathbb{Z}[i], \theta=\frac{1+\sqrt{5}}{2}, \sigma(\theta)=\frac{1-\sqrt{5}}{2}, \alpha=1+i-i \theta$ and $\sigma(\alpha)=1+i-i \sigma(\theta)$.

Coset codes

- We have $\mathcal{G}=\alpha(\mathbb{Z}[i, \theta] \oplus e \mathbb{Z}[i, \theta]), e^{2}=i$ and (more later)

$$
\mathcal{G} /(1+i) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

Coset codes

- We have $\mathcal{G}=\alpha(\mathbb{Z}[i, \theta] \oplus e \mathbb{Z}[i, \theta]), e^{2}=i$ and (more later)

$$
\mathcal{G} /(1+i) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

- Construct a code on $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and lift it (outer code).

Coset codes

- We have $\mathcal{G}=\alpha(\mathbb{Z}[i, \theta] \oplus e \mathbb{Z}[i, \theta]), e^{2}=i$ and (more later)

$$
\mathcal{G} /(1+i) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

- Construct a code on $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and lift it (outer code).
- For a coset code (Luzzi et al.)

$$
\Delta_{\min } \geq \min _{\mathbf{0} \neq \mathbf{X}}\left(\sum_{i=1}^{L}\left|\operatorname{det}\left(X_{i}\right)\right|\right)^{2} \geq \min \left(|1+i|^{4} \delta, d_{\min }^{2} \delta\right)
$$

$\delta=$ minimum determinant of $\mathcal{G}, d_{\text {min }}=$ minimum distance.

Linking $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$, where $\omega^{2}+\omega+1=0$.

Linking $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$, where $\omega^{2}+\omega+1=0$.
- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}(\omega)+\mathbb{F}_{2}(\omega) j \simeq \mathbb{F}_{4} \times \mathbb{F}_{4}
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$, given by

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \mapsto j,\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \mapsto w
$$

Linking $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$, where $\omega^{2}+\omega+1=0$.
- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}(\omega)+\mathbb{F}_{2}(\omega) j \simeq \mathbb{F}_{4} \times \mathbb{F}_{4}
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$, given by

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \mapsto j,\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \mapsto w
$$

- This means:

$$
\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

An isometry between $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ maps

Hamming weight $1 \mapsto$ invertible.

An isometry between $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ maps

Hamming weight $1 \mapsto$ invertible.

- Define a weight on the matrices

$$
w\left(M_{a, b}\right)=\left\{\begin{array}{cc}
0 & M_{a, b}=0 \\
1 & M_{a, b} \text { invertible } \\
2 & 0 \neq M_{a, b} \text { non-invertible }
\end{array} .\right.
$$

An isometry between $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ maps

Hamming weight $1 \mapsto$ invertible.

- Define a weight on the matrices

$$
w\left(M_{a, b}\right)=\left\{\begin{array}{cc}
0 & M_{a, b}=0 \\
1 & M_{a, b} \text { invertible } \\
2 & 0 \neq M_{a, b} \text { non-invertible }
\end{array} .\right.
$$

- ϕ is an isometry:

$$
w\left(M_{a, b}\right)=w(\phi((a, b)))=w_{H}((a, b))
$$

where $w_{H}=$ Hamming weight.

Back to the outer code design

- For a coset code

$$
\Delta_{\min } \geq \min \left(4 \delta, \frac{w_{\min }^{2}}{2} \delta\right)
$$

$\delta=$ minimum determinant of $\mathcal{G}, w_{\min }=$ minimum weight on code over \mathbb{F}_{4}.

Example

- Take the $[6,3,4]$ hexacode over \mathbb{F}_{4}, with

$$
y=\left(y_{1}, y_{2}, y_{3}, y_{1}+\omega\left(y_{2}+y_{3}\right), y_{2}+\omega\left(y_{1}+y_{3}\right), y_{3}+\omega\left(y_{1}+y_{2}\right)\right) .
$$

Example

- Take the $[6,3,4]$ hexacode over \mathbb{F}_{4}, with

$$
y=\left(y_{1}, y_{2}, y_{3}, y_{1}+\omega\left(y_{2}+y_{3}\right), y_{2}+\omega\left(y_{1}+y_{3}\right), y_{3}+\omega\left(y_{1}+y_{2}\right)\right) .
$$

- Compute $\phi\left(\left(y_{1}, y_{2}\right)\right)$.

$$
\begin{aligned}
\left(y_{1}, y_{2}\right) & \mapsto y_{1}+y_{2} j=\left(y_{11}+y_{12} \omega\right)+\left(y_{21}+y_{22} \omega\right) j \\
& \mapsto\left(\begin{array}{cc}
y_{11} & y_{12} \\
y_{12} & y_{11}+y_{12}
\end{array}\right)+\left(\begin{array}{cc}
y_{21} & y_{22} \\
y_{22} & y_{21}+y_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =Y_{1}
\end{aligned}
$$

$$
\phi(y)=\left(Y_{1}, Y_{2}, Y_{3}\right)
$$

with minimum weight $w_{\min }=4$.

Summary

- For coding for MIMO slow fading channels, joint design of an inner and outer code.

Summary

- For coding for MIMO slow fading channels, joint design of an inner and outer code.
- The outer code is a coset code, which addresses the problem of codes over matrices.

Summary

- For coding for MIMO slow fading channels, joint design of an inner and outer code.
- The outer code is a coset code, which addresses the problem of codes over matrices.
- Connection between codes over matrices and codes over finite fields.

Thank you for your attention!

